

BALTIMORE HARBOR ANCHORAGES AND CHANNELS (BHAC) MODIFICATION OF SEAGIRT LOOP CHANNEL FEASIBILITY STUDY

FINAL INTEGRATED FEASIBILITY REPORT & ENVIRONMENTAL ASSESSMENT

APPENDIX B: ENGINEERING

FEBRUARY 2023

List of Appendices

Appendix B1. Geotech Data and Boring Logs

Appendix B2. Design Vessel and Air Draft Analysis

Appendix B3. Maritime Institute of Technology and Graduate Studies (MITAGS) Study

Appendix B4. Seagirt Loop Channel Navigation Impact Assessment

Appendix B5. West Seagirt Branch Channel Sections

Appendix B6. Berth Stability Assessment

Appendix B7. Capacity Evaluation

Contents

1. Introduction	5
2. Existing Federal Channels	5
2.1.General	5
2.1.1.West Dundalk Branch Channel	7
2.1.2.Seagirt/Dundalk Connecting Channel	7
2.1.3.West Seagirt Branch Channel	7
2.2.Physical Conditions of Baltimore Harbor	7
2.2.1.Climate	7
2.2.2.Tides, Currents, and Wind	8
2.2.3.Sediment Quality in Baltimore Harbor	9
2.2.3.1 West Seagirt Branch Channel and Seagirt/Dundalk Connecting Ch	annel 10
2.2.3.2 West Dundalk Branch Channel	10
2.2.3.3 South Locust Point Branch Channel and Turning Basin Sediments	; 11
2.3.Geology	11
3. Recommended Plan	12
4. Design Vessel	13
4.1.Air Draft	13
5. Relative Sea Level Change and Air Draft Clearance	15
5.1.General Conditions	15
6. Ship Simulation Modeling	16
6.1. Maritime Institute of Technology and Graduate Studies Study (2018)	16
6.2. Engineer Research Development Center's Coastal Hydraulics Lab Ship	Tow Simulator18
7. Channel Design	21
7.1.Channel Width	22
7.2. Channel Depth and Underkeel Clearance	22
7.2.1.Squat	23
7.2.2.Safety Clearance	23
7.2.3.Total Underkeel Clearance	24
7.3 Structural Considerations	24

7.3.1.Channel Stability Analysis	24
7.3.2.Berth Stability Analysis	25
8. Developing Quantity Estimates	27
8.1.Existing Conditions Surface	27
8.2.Proposed Condition Surface	27
8.3.Dredge Quantities	28
8.4.Excavated Depth Summary	28
8.5.Placement Location and Capacity	29
9. Further Analysis and Design Development Needs	30
9.1.Hydrodynamic Data Collection	30
9.2. Hydrodynamic and Sediment Modeling and Analysis	30
10. References	31

List of Figures

facilities (DMCFs) (USACE 2017)	6
Figure 2. Location of National Atmospheric and Oceanic Administration (NOAA) Water Level/Meteorological Station at Fort McHenry (Station ID: 8574680)	8
Figure 3. Air draft parameter definitions.*	. 14
Figure 4. Masthead elevation of the CMA CGM Marco Polo transiting at MHW, draft 47.5 feet, we the three SLR scenarios applied. The controlling Bay Bridge elevation is shown (black) to reflect the change in ADC due to SLR.)
Figure 5. Wideners proposed during the MITAGS 2018 study	. 17
Figure 6. Proposed channel designs and vessel paths in the Seagirt Loop Channel	. 20
Figure 7. Proposed Channel Dimensions.	. 22
Figure 8. Hydrographic survey of Seagirt Loop and Anchorage 3 in February 2021 with side slopes	. 25
Figure 9. Existing berth features adjacent to the study area.	. 26
Figure 10. Sample proposed channel template showing 5H:1V side slope	. 27
Figure 11. Typical dredge zones	. 29
List of Tables	
Table 1. CMA CGM Marco Polo E Design Ship Dimensions (dimensions from Clarkson Register 2021).	
Table 2. CMA CGM Marco Polo design vessel dimensions and characteristics.	. 19
Table 3. Cumulative volume dredged for West Seagirt Branch Channel and Wideners at increas depths.	

1. Introduction

The U.S. Army Corps of Engineers (USACE) Baltimore District (CENAB), in partnership with the Maryland Department of Transportation Maryland Port Administration (MDOT MPA), evaluated the advisability of modifications to the Baltimore Harbor Anchorages and Channels (BHAC), particularly pertaining to the Seagirt Loop, which includes the West Dundalk Branch Channel, the Dundalk-Seagirt Connecting Channel, and the West Seagirt Branch Channel. This Engineering Appendix details the methodology, assumptions, and analyses completed to determine sufficient details to prepare costs of alternatives for plan formulation leading to the selection of the Recommended Plan.

The lead federal agency for this study is USACE. The non-Federal sponsor for this study is the MDOT MPA.

2. Existing Federal Channels

2.1. General

The Port of Baltimore's (Port) harbor is located on a 32-square-mile area of the Patapsco River and its tributaries, approximately 12 miles northwest of the Chesapeake Bay. Container ship traffic enters the Port through federally authorized Baltimore Harbor Channels that run from the Atlantic Ocean by two distinct shipping routes: from the south through the Virginia Capes and the Chesapeake Bay, or from the east through the Delaware Bay, Chesapeake and Delaware (C&D) Canal, and the Chesapeake Bay. The Port includes three federal dredging projects; the BHAC Project (which is dredged to various depths), the 42-Foot Project, and a portion of the 50-Foot Project.

Baltimore Harbor encompasses many channels that provide access to the public and private terminals serving the Port and several anchorages serving those ports (Figure 1). The Baltimore Harbor Channels are defined as those channels west of the North Point-Rock Point line in the Patapsco River. The federally authorized channels located within the Baltimore Harbor are Curtis Bay Channel, Curtis Creek Channel, Middle Branch Channel, Ferry Bar East, Northwest Branch (East and West Channels), East and West Dundalk Branch Channels, Dundalk/Seagirt Connecting Channel, West Seagirt Branch Channel, South Locust Point Branch Channel, Brewerton Channel, Brewerton Angle, and Fort McHenry Channel.

The Port is the farthest inland port on the East Coast. The Baltimore District presently maintains approximately 18 nautical miles (nm)of navigation channels within the harbor, which are used intensively for both commercial and recreational vessels. Other channels within the harbor are maintained by MDOT MPA, private terminal owners, and various commercial interests. Historically most channels have been maintained as two-way

channels; however, increasing vessel sizes often limit certain channels to one-way traffic due to limitations imposed by channel width or channel depth. The West Seagirt Branch Channel, for example, is maintained to -45 feet mean lower low water (MLLW) for vessels outbound to the Fort McHenry Channel but can only accommodate vessels that draft up to 42 feet. Larger vessels requiring a deeper draft must back out from the Seagirt Marine Terminal (SMT), turn around in a turning basin, and transit outbound through the West Dundalk Branch Channel. Figure 1 shows the study area and the existing navigation channels within the Port. The channels of interest to this study are described in detail below.

The goal of this project is to reasonably maximize the contribution that the Seagirt Loop channels provide, consistent with protecting the Nation's environment, by addressing the physical constraints and inefficiencies in the existing navigation system's ability to safely and efficiently serve the current and forecasted vessel fleet and process the forecasted cargo volumes.

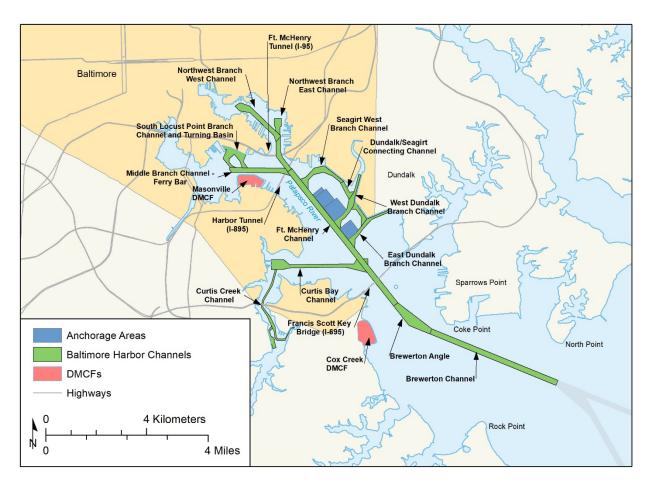


Figure 1. Baltimore Harbor Federal Channels, Anchorages, and dredged material containment facilities (DMCFs) (USACE 2017).

2.1.1. West Dundalk Branch Channel

The West Dundalk Branch Channel serves the Seagirt and Dundalk Marine Terminals. The Dundalk Marine Terminal, a 570-acre cargo terminal, is the largest general cargo facility at the Port. This terminal handles containers, automobiles, farm, construction and other Roll-on/Roll-off (Ro/Ro) equipment, wood pulp, steel, breakbulk, and project cargo. The West Dundalk Branch Channel is authorized to 500 feet wide by 0.67 nm long and is federally maintained to a depth of 42 feet and state maintained to a depth of -50 feet MLLW.

2.1.2. Seagirt/Dundalk Connecting Channel

The Seagirt/Dundalk Connecting Channel provides access to both the Dundalk and SMT. The SMT is a state-of-the-art, 284-acre container terminal, currently capable of handling 450,000 containers a year. The terminal has four ship berths, including two 50-foot berths, with a total of 15 cranes, eight of which are super post-Panamax size with an outreach of 23 containers wide, thus providing the capability of unloading and loading new-Panamax ships. The Seagirt/Dundalk Connecting Channel is authorized at 500 feet wide by 0.42 nm long. The channel is federally maintained to a depth of -42 feet MLLW and state maintained to a depth of -50 feet MLLW.

2.1.3. West Seagirt Branch Channel

The West Seagirt Branch Channel allows for outbound transit of vessels from the SMT. This channel is authorized to 500 feet wide with an actual average width of 655 feet wide by 0.86 nm long and is federally maintained to a depth of -42 feet MLLW and state maintained to a depth of -45 feet MLLW.

2.2. Physical Conditions of Baltimore Harbor

2.2.1. Climate

The project area has a continental climate with four distinct seasons, although extreme winter and some temperatures are moderated somewhat by the Chesapeake Bay. The average annual temperature is 62 degrees Fahrenheit (F), with the highest temperatures occurring in late July (the average maximum is 89 degrees F) and the lowest temperatures occurring in January and February (the average minimum is 21 degrees F).

Annual precipitation ranges from 40 to 44 inches, distributed evenly throughout the year. The lowest average monthly precipitation (2.57 inches) occurs in January and the highest (4.26 inches) in August. Winter low pressure systems moving up the Atlantic coast cause most of the precipitation during the cold months, while summer showers and

thunderstorms provide warm weather precipitation. Average snowfall in the project area is 20 to 25 inches, mainly occurring in December, January, and February.

The prevailing winds are southerly from May through September and west-northwesterly to northwesterly during the rest of the year. Hurricanes, blizzards, tornadoes, and other destructive storms are uncommon.

2.2.2. Tides, Currents, and Wind

The tide range is approximately 1 foot in the project area. In the larger Chesapeake Bay area, the mean range of tide is 2.8 feet at the Cape Henry Channel, 2.3 feet at the York Spit Channel, 1.4 feet at the Rappahannock Shoal Channel, 0.8 feet at the Craighill Entrance, 0.9 feet in the Craighill Upper Range, 1.1 feet at Fort McHenry, and 1.2 feet at Pooles Island in the upper Chesapeake Bay. Prolonged high winds from the north tend to blow water out of the bay, resulting in unusually low tides, and prolonged high winds from the south tend force water into the bay, resulting in unusually high tides.

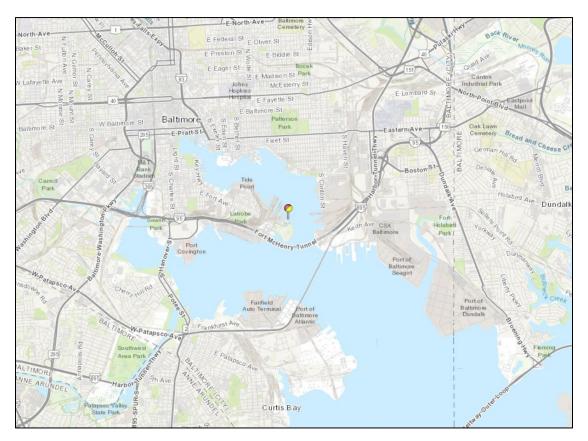


Figure 2. Location of National Atmospheric and Oceanic Administration (NOAA) Water Level/Meteorological Station at Fort McHenry (Station ID: 8574680).

Water levels in the Chesapeake Bay are dominated by a semidiurnal lunar tide, which is a tide multiple times a day driven by the gravitational pull of the moon. Tides enter the Bay via the Chesapeake Bay entrance and the C&D Canal. The combination of tides and freshwater inflow creates a spring tide (a high tide caused by a new or full moon) approximately 30 to 40 percent larger than mean tide and a neap tide (the lowest tides that occur during quarter and last quarter phases of the moon) approximately 30 to 40 percent smaller than the mean tide (Schubel and Pritchard 1987). While a single NOAA monitoring station is located in the vicinity of the project area (Figure 2), hydrodynamic studies of the Baltimore Harbor (Boicourt and Olson 1982) included field measurements of current velocity, temperature and salinity at several locations in the Patapsco River. Results from the study's tidal current measurements indicated the existence of a threelayer, density-driven circulation that can dominate flow such that typical semi-diurnal tidal current direction reversals (shifting between high and low tide) do not necessarily occur. The study also determined that wind events often dominate circulation patterns, especially within the Middle Branch and the tributaries; however, high flow events from the Patapsco River often produce a typical two-layer estuarine circulation. Two-layer circulation consists of fresh river water flowing out on the surface and higher salinity bay water flowing in at the bottom. The study determined that the short-term variability of circulation and density is as significant as seasonal variability.

2.2.3. Sediment Quality in Baltimore Harbor

Bottom sediments in the Chesapeake Bay and approach channels to Baltimore Harbor are predominantly clayey silt, with some locations containing a fraction of sandy material (CENAB 1997 and EA EST 2019). The upper Chesapeake Bay and Baltimore Harbor are zones of sediment deposition. The principal source of sediment is the Susquehanna River. The bottom sediments in the study area are generally characterized as soft, highly plastic, organic silty clay. The upper layer of sediment in the project area, varying from 0.5 to 3 feet thick, exists primarily in a semi-liquid state.

Sediment characteristics have been obtained from previous reports (CENAB 1997, MDOT MPA 2019, and EA EST 2019). In general, the site is characterized by very fine silt and clay sediments with a very low percentage of sand sediments. Surveys of bottom sediments by the Chesapeake Biological Laboratory in 1997 found that the sediments in the Patapsco River near the Masonville Dredged Material Containment Facility (DMCF), located about two miles to the northwest of the project area, consisted of 90 to 95 percent silts and clays, while sediments closer to the mouth of the Patapsco were comprised mainly of sand sediments (CENAB 1997). Analyses conducted in 2019 confirm that sediments remain consistent with the 1997 survey findings (EA EST 2019).

Sediments in Baltimore Harbor and the Patapsco River contain contaminants from industrial and municipal sources as well as from non-point sources as would be expected in an urbanized/industrialized region. Studies indicate that sediments in some areas of

Baltimore Harbor presently exhibit toxic characteristics, and sediment toxicity in tributary creeks and bays is patchy (USACE 2017). Due to these characteristics, all dredged material in the Harbor is by Maryland Law stipulated to be unsuitable for open water disposal in an unconfined manner into the Chesapeake Bay or of the tidewater portions of any of the Chesapeake Bay's tributaries outside of Baltimore Harbor. However, the dredged material may be disposed in contained areas approved by the Maryland Department of the Environment (Maryland Environmental Code Section 5-1102(a)). An evaluation of the dredged material is required prior to dredging and placement to document the existing physical and chemical attributes of the sediments and ensure that the materials are appropriate for available placement options.

2.2.3.1 West Seagirt Branch Channel and Seagirt/Dundalk Connecting Channel

Under contract with the MDOT MPA and Gahagan & Bryant and Associates (GBA), Soil and Land Use Technology, Inc. (SaLUT) performed an extensive sampling program in 2019 in support of a study to deepen the Seagirt Loop Channel. Fifty-six borings were drilled to an elevation of approximately -60 feet MLLW. Borings were located afront Berth 1, Berth 2, Berth 3, in the Seagirt-Dundalk Connecting Channel, and in the West Seagirt Branch Channel (Appendix B1).

In nearly all boreholes, dark gray to grayish-brown and black silt and clay was encountered to the full depth of the borings. Blow counts ranged from Weight of Rod (WOR) to 15 blows per foot. Lab testing on representative samples indicates that the average moisture content of the material is 121.2 percent, fines content is 81 percent, plasticity index is 64 percent, and liquid limit is 108 percent. Given the in-situ moisture content of the sediments exceeds the liquid limit, the sediments exist in a liquid state. Blow counts indicate that the material is exceptionally weak and exhibits nearly no shear strength.

Analysis of a multi-beam survey performed by CENAB in January 2021 shows the range of natural side-slopes that are achieved after dredging the channels. While some side slopes are as steep as 2H:1V (2:1) and 3:1, side slopes are generally between 4:1 and 5:1. If not for the low unit weight (approximately 86 lb/cubic foot given the average properties above), the side slopes would be much shallower because of the low shear strengths. Refer to Figure 8. Hydrographic survey of Seagirt Loop and Anchorage 3 in February 2021 with side slopes.

2.2.3.2 West Dundalk Branch Channel

Under contract with MDOT MPA and GBA, Findling Inc. performed a geotechnical investigation of the West Dundalk Branch channel in 2012 in support of the proposed widening and deepening of the channel. The widening and deepening have since been

completed. A total of 15 borings were drilled in the area in which the channel was widened.

All borings contained surficial layers of dark gray to green silt with trace fine sand. Beneath the surficial layer of silt, brown silty fine to coarse sand with varying amounts of gravel was found. The sand layer was encountered anywhere from approximately El. -43 feet MLLW to El. -53 feet MLLW. In some borings, only the silt layer was observed (Appendix B1).

Blow counts within the silt layer were either WOR or Weight of Hammer (WOH). Blow counts within the sand layer ranged from one to 48. Only two Atterberg Limits tests were performed on the silt, resulting in plasticity indices of 39 and 44, with liquid limits of 84 and 90. Natural water contents within the silt layer generally exceeded 100 percent, indicating they exist in a liquid state. Based on grain size analysis, the sand classified as well-graded sand, poorly graded sand to silty sand, and silty sand with interspersed layers of gravel, classifying as well-graded gravel and well-graded to silty gravel.

2.2.3.3 South Locust Point Branch Channel and Turning Basin Sediments

A dredged material evaluation of Baltimore Harbor Channels was completed in 2019. This evaluation was the latest in a series of routine evaluations to assess the physical and chemical attributes of the sediments within the federal channels and anchorages. Three samples were collected in the South Locust Point Channel and analyzed. A composite sample that was composed of all three samples was tested.

Grain size analysis indicated that the material within the South Locust Point Channel was sandy elastic silt. The material was highly plastic. The in-situ water content was 76 percent. Unlike the material within the Seagirt Loop and Dundalk Loop Channels, the material within South Locust Point exists in a plastic state.

Strength data was not collected as a part of the material evaluation. However, given the lower in-situ water content, it is presumed that while still weak, the material likely had more strength than the materials found within the Seagirt Loop and Dundalk Loop Channels. A multi-beam survey performed by USACE in January 2021 indicates most existing channel side slopes are between 3H:1V and 4H:1V. This also suggests the material is slightly stronger than the material found within the Seagirt Loop Channel (EA EST 2019).

2.3. Geology

The Chesapeake Bay is located within the Atlantic Coastal Plain physiographic province and is underlain by sequences of clay, silt, sand, and gravel. The general geologic setting of Baltimore Harbor consists of a series of wedge-shaped sediment layers dipping and thickening bayward. The older, and generally harder, Cretaceous sediments are encountered to the north and west within Baltimore Harbor, while younger and less compact Tertiary and Quaternary sediments are typically encountered eastward.

A review of the Geologic Map of the Baltimore East Quadrangle, Maryland (Reinhardt and Cowley, 1979) indicates extensive areas of artificial fill used to construct the terminals. Underwater, the primary surficial geologic unit is the Arundel Formation, a lower cretaceous formation consisting of kaolinitic and illitic clays with locally interbedded quartz silt or sand lenses. Limited Holocene formations are evident and consist mostly of the Talbot formation adjacent to the SMT. The Talbot formation consists of poorly-sorted quartz silts with kaolinite and montmorillonite clays. The geologic map predates placement of artificial fill used to construct the Seagirt terminal.

While the geologic map gives insight into the surficial geology of the land in and adjacent to the project sites, it does not provide great insight into the sediment composition underwater in areas of proposed dredging. Surficial sediments within the Chesapeake Bay and approach channels are predominantly more recent Holocene alluvial deposits which are not shown on the surficial geologic map. Extensive sediment samples and past borings within the project site have been collected over the past several decades. Sediment composition in the proposed areas of dredging is fairly inform and predominantly highly-plastic silts and clays.

3. Recommended Plan

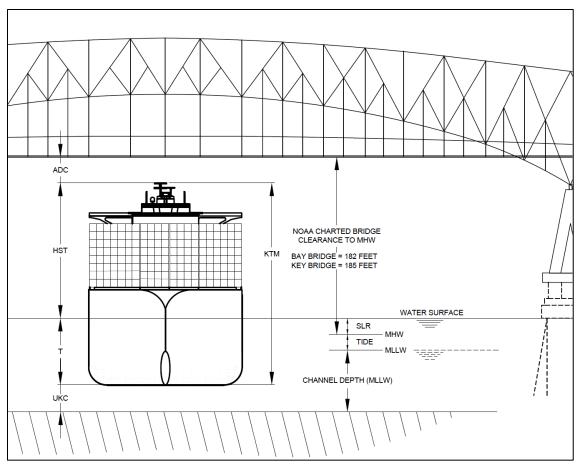
The proposed authorized depth for the Seagirt Loop Channel is -50-feet MLLW which is the National Economic Development (NED) plan. Following the Tentatively Selected Plan (TSP) milestone, which identified the NED plan as the 47-foot channel, multiple plan optimization activities were completed in order to address concerns related to the plan evaluation and selection. Plan optimization activities performed after the TSP milestone included examining assumptions for the future without project (FWOP) conditions, re-running HarborSym modeling, and ship simulation modeling at the USACE Engineer Research and Development Center (ERDC) Coastal Hydraulics Lab (CHL) Ship/Tow Simulator to optimize channel design and compare safety and other considerations related to the 47 and 50-foot channel depths.

A major change in the FWOP condition was implemented in the HarborSym modeling to account for berth deepening and improvements in parallel with deepening of the federally authorized channel. This change allowed vessels to call at SMT and use the loop channel for both inbound and outbound traffic allowing improved access to three Berths as is anticipated to occur in normal Port operations. Additionally, the dredged

quantities were updated to include additional channel wideners proposed during ship simulation (see wideners A, B, and C in Appendix B4). Following optimization, the NED plan was updated to the 50-foot plan. Dredging would include two feet of allowable overdepth (to -52 feet MLLW) to allow for inaccuracies in the dredging process, as permitted in ER-1130-2-520 (Navigation and Dredging Operations and Maintenance Policies).

4. Design Vessel

The design vessel is based upon economic projections of the vessels most likely to call on the Port in the near future with consideration of limiting air draft conditions approaching the Port. The design vessel chosen for this study is *CMA CGM Marco Polo*, which is in the Ultra Large Container Vessel (ULCV) class of ship (Appendix B2). The dimensions of the design ship for this study are shown in Table 1.


Table 1. CMA CGM Marco Polo E Design Ship Dimensions (dimensions from Clarkson Register 2021).

Vessel	CMA CGM Marco Polo
Capacity (TEU)*	16,000
Length Over All (LOA)	1,299 feet
Beam	175.9 feet
Design Draft	46 feet
Scantling Draft	52.5 feet
Keel to Masthead	227.9 feet

^{*}TEU (Twenty-foot equivalent unit)

4.1. Air Draft

Vessel access to Baltimore Harbor will be constrained by the channel width and depth and the two bridges under which vessels must pass to reach Baltimore: the Chesapeake Bay Bridge ("Bay Bridge") and the Francis Scott Key Bridge ("Key Bridge"). The air draft of the vessel is defined as the distance from the water surface to the highest point on a vessel (Figure 3).

^{*}Not to Scale

KTM: Keel to Masthead. Distance from the bottom of the hull of the vessel to the highest point on the mast atop the wheelhouse.

HST: Air Draft. Distance from the water surface to the top of the vessel mast.

ADC: Air Draft Clearance. Distance from the top of the ship mast to the lowest point of the overhanging bridge.

UKC: Underkeel Clearance. Distance from lowest point on the ship hull to the mudline of the channel.

SLR: Sea Level Rise. Varies depending on scenario.

Figure 3. Air draft parameter definitions.*

To pass under the bridge safely, a minimum air draft clearance (ADC) is required. The clearance is determined by the elevation of the water surface at a given time, the vessel's draft, which varies based on loading, and the speed of transit. The charted clearance of the two bridges is given by NOAA on the nautical chart relative to the mean high water (MHW) elevation:

- Chesapeake Bay Bridge 182 feet MHW
- Francis Scott Key Bridge 185 feet MHW

T: Vessel draft under water surface.

5. Relative Sea Level Change and Air Draft Clearance

5.1. General Conditions

Changes in sea level and its potential to impact the Seagirt Loop Channel project are detailed in Appendix E. The USACE Sea Level Change Curve Calculator (described in Appendix E) was used to evaluate the effects of projected sea level rise (SLR) on the ADC at the Chesapeake Bay Bridge and Francis Scott Key Bridge and potential long-term impacts on navigation by Post-Panamax Generation 3 (PPX III) Max (up to 16,000 twenty-foot equivalent units (TEU)) vessels. Since the Bay Bridge, built to 182 feet, and the Key Bridge, built to 185 feet, are fixed bridges (they do not fold up or retract). Air draft sensors on both bridges allow vessels' pilots to manage ADC in real time: for both bridges the available ADC exceeds the charted value 99% of the time under present-day conditions.

Relative SLR (RSLR) projections were obtained from the USACE Sea-Level Change Curve Calculator (Version 2021.12) for the years 2022 to 2130 using measured data relative to the current tidal epoch (1983 - 2001) from the NOAA tide gauge in Baltimore and Annapolis. The Sea-Level Change Curve Calculator provides three possible RSLR scenarios: low, intermediate, and high.

The SLR projections from the Baltimore tide gauge were used to assess future vessel ADC at the Key Bridge while the SLR projections from the Annapolis tide gauge were used at the Bay Bridge due to the location of the gauges relative to the bridges of interest. For reference, the Key Bridge is about 4.25 miles southwest of the Baltimore tide gauge and the Bay Bridge is about 5.50 miles east-northeast of the Annapolis tide gauge.

The future ADC of the PPX III MAX vessel is shown graphically in Figure 4 as the future masthead elevation (relative to MHW) due to SLR for the three RSLR projection scenarios. The controlling elevation of the Bay Bridge (relative to MHW) is also shown in. The intersection between the Bay Bridge elevation (black) and the future vessel masthead elevation (blue, orange, and gray) indicates the time where air draft is project to exceed the charted clearance of the bridge.

It is important to emphasize that the ADC with future SLR incorporated assumes that vessels are transiting at the channel design draft of 47.5 feet. For lighter loaded vessels, the vessel water draft will decrease with a concomitant decrease in ADC. For the PPX III Max, the vessel must be ballasted or loaded to the maximum allowable channel draft of 47.5 feet to provide sufficient ADC.

The Bay Bridge with lower clearance controls the allowable air draft into Baltimore. For the PPX III Max vessel transiting at high tide (e.g., MHW), there is approximately 1.3 feet of ADC to the charted bridge height under present day conditions. For the immediate

SLR scenario, the ADC decreases to 0.90 feet in 2045 and 0.45 feet in 2065. For the high SLR scenario, the ADC reduces to 0.83 feet and 0.36 feet in 2035 and 2045, respectively.

Maryland Transportation Authority has commissioned studies for replacement of the span and the Tier 1 Draft Environmental Impact Study (DEIS) was released for public comment in February 2021. Replacement of the span could alleviate the ADC restrictions and allow unimpeded access by PPX III Max class vessels (and larger). The DEIS focused on alternatives for accommodating traffic volumes in 2040. Under the High RSLR scenario, ADC may limit the PPX Class III Max vessels starting in 2045, therefore bridge replacement by 2040 would alleviate this restriction.

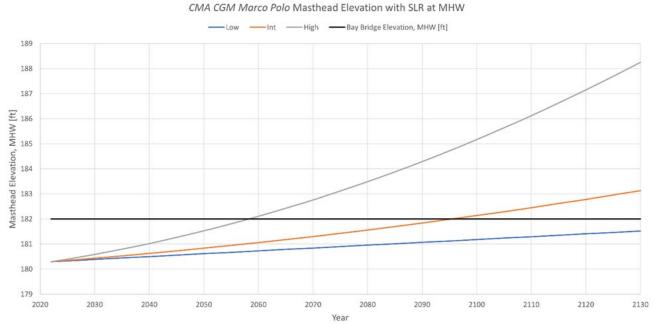


Figure 4. Masthead elevation of the CMA CGM Marco Polo transiting at MHW, draft 47.5 feet, with the three SLR scenarios applied. The controlling Bay Bridge elevation is shown (black) to reflect the change in ADC due to SLR.

6. Ship Simulation Modeling

6.1. Maritime Institute of Technology and Graduate Studies Study (2018)

After the completion of the 50-foot deepening of SMT Berth 4, MDOT MPA commissioned a ship simulation study to design the deepening of SMT Berth 3 and help develop best practices for ULCVs to efficiently transit to SMT. This study was conducted on behalf of MDOT MPA at the Maritime Institute of Technology and Graduate Studies Study (MITAGS) facility in Linthicum Heights, Maryland from April 30 to May 4, 2018. Participants in the study included pilots from the Association of Maryland Pilots (AMP) and docking and tug pilots from Moran Towing Corporation and McAllister Towing and Transportation Company.

Ships modeled for this study included the 14,000 TEU MSC *Kalina* and the 18,000 TEU *Ben Franklin*. Throughout the study, 34 runs were completed with the *Kalina* and *Ben Franklin* container vessels transiting to SMT Berth 3 via the East and West Loop.

During the study wideners 1-7 were proposed (Figure 5). Widener 1 expanded the channel width in front of Berth 3. Widener 2A/2B increased the size of the turning basin between Berth 4 and the Dundalk Marine Terminal, expanding the turning basin for ULCVs to back up, turn, and exit via the Seagirt-Dundalk Connecting Channel. These wideners were constructed as part of the project to deepen Berth 3.

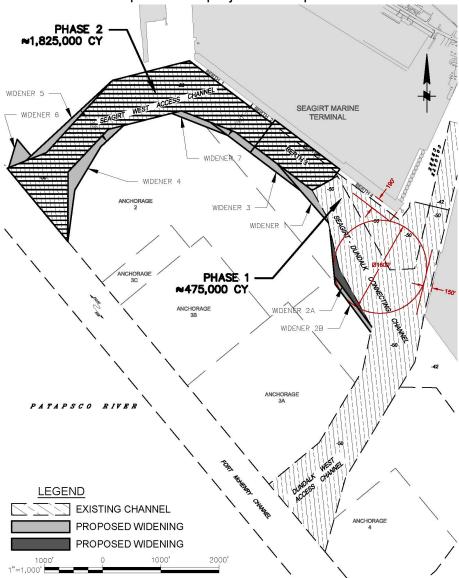


Figure 5. Wideners proposed during the MITAGS 2018 study.

The remaining wideners (4-7) were not constructed but were used in development of the channel design for the Seagirt Loop Study up through the TSP. Following the TSP, a Seagirt Study Ship/Tow Simulation at ERDC CHL was conducted. The updated modeling

was conducted to optimize the recommended channel design and better estimate quantities and safety needs. The CHL ship simulation is described in section 6.2.

6.2. Engineer Research Development Center's Coastal Hydraulics Lab Ship/Tow Simulator

The MDOT MPA and CENAB requested ERDC CHL conduct a ship simulation study to evaluate the safety and efficiency of the proposed navigation improvements in the Seagirt Loop Channel using the Ship/Tow Simulator facility in Vicksburg, Mississippi. The ship simulation testing was performed over the course of two weeks on April 18-22, 2022 (Week 1) and April 25-29, 2022 (Week 2). Four licensed pilots from the AMP participated in the study; two pilots were present for each week of testing. A total of 124 ship simulation exercises were performed over the two testing weeks. The variables in the scenarios performed included channel design, transit path, vessel draft, wind direction and magnitude, visibility, and tug availability. Each scenario was tested using the proposed alternatives; 47-foot-deep channel and 50-foot-deep channel. The underkeel clearance (UKC) was assumed to be 2.5 feet at static draft for both channel designs.

The design vessel for the study was the *CMA CGM Marco Polo* container ship (PPX III Max). Two model versions of the *CMA CGM Marco Polo* container ship were used in this study (Table 2). The Generation III Max (44.5-foot draft vessel model (CNTNR52) was used to evaluate both the 47-foot and 50-foot designs. The 47.5-foot draft vessel model (CNTNR51) was used to evaluate the maximum sailing draft of the 50-foot channel design. Vessel model CNTNR51 cannot transit in the West Seagirt Branch Channel under the 47-foot alternative because the vessel draft exceeds the channel depth; instead, the vessel must back out to exit the Seagirt Loop.

Table 2. CMA CGM Marco Polo design vessel dimensions and characteristics.

Vessel	CMA CGM Marco Polo	CMA CGM Marco Polo
Vessel Model	CNTNR51	CNTNR52
Class	PPX III Max	PPX III Max
Maximum Capacity	16,022 TEU*	16,022 TEU*
Length Overall (LOA)	1,299 feet	1,299 feet
Beam	175.9 feet	175.9 feet
Static Draft	47.5 feet	44.5 feet
Trim	Even Keel	Even Keel
Deadweight	187,625 tons	187,625 tons
Engine	102,346 hp	102,346 hp
Propeller	Fixed pitch	Fixed pitch
Bow Thruster	2 (9,789 hp)	(9,789 hp)

All simulations included four tugboats of 65-ton push/pull to assist the transiting vessel. Pilots provided tug commands including tonnage and direction to the ERDC simulator operators during the exercises. Wind speeds ranging from 20 to 35 knots from several directions including NW (315°), WNW (300°), SSE (170°), SE (135°), and NE (45°) were tested in the study. The majority of the runs simulated wind from either the WNW or SSE direction. During the database validation, Pilots confirmed these wind conditions were representative of real-world conditions.

Visibility conditions, such as lightning and weather, were also evaluated during testing. Since the Pilots mostly operate at night, the darkness level in the simulator was increased to replicate nighttime conditions. A few simulations were also tested with snow in addition to nighttime lightning. Only one scenario simulated day light, which occurred during the start of testing.

During week one of testing, upon completing several simulation exercises with both of the channel designs, the Pilots identified the need for additional widening along the West Seagirt Branch Channel to improve safety in navigating the *CMA CGM Marco Polo* vessel. Modified 47-foot and 50-foot channels with increased wideners to a minimum of 620 feet following the Pilots' recommendations during the first test week. Pilots tested both the original channel layouts and the modified layouts during week two (Figure 6).

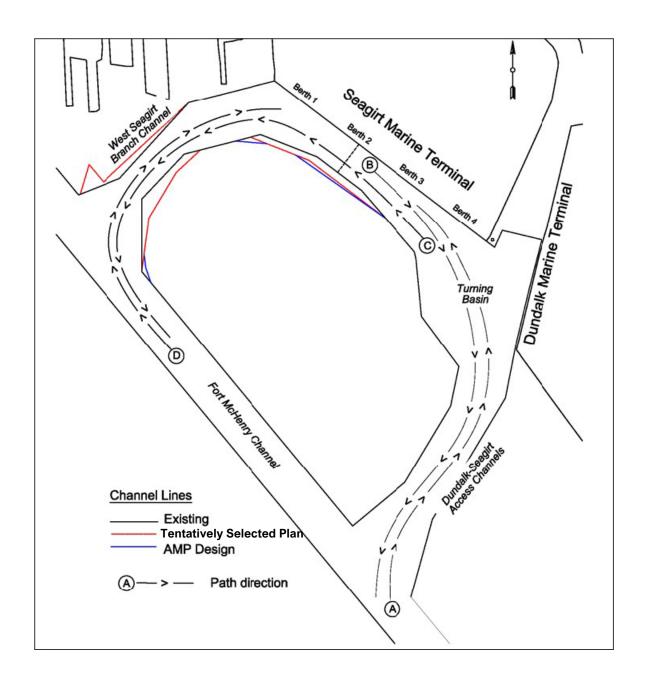


Figure 6. Proposed channel designs and vessel paths in the Seagirt Loop Channel.

Comments provided by the Pilots on the simulation were compiled with the ERDC simulation report found in Appendix B4. Of particular interest for this study was maneuverability of the fully loaded *CMA CGM Marco Polo* vessel when using Path B in the 47-foot channel plan which required backing from Berth 3 into the turning basin. Docked vessels were placed at SMT Berths 1 and 4 and Dundalk Marine Terminal Berth 5. One track showed the vessel nearly exceeding the upper corner of the turning basin when passing SMT Berth 4. The remaining runs showed the vessel had adequate space to maneuver in the turning basin. The Pilots commented that all four tugs were required to complete this maneuver successfully. One vessel track showed the stern not clearing

when turning towards the Fort McHenry Channel. Pilots commented that this scenario is manageable with all four tugs, but that it would be safer to depart directly through the West Seagirt Branch Channel. Another vessel track is shown to nearly exceed the southeastern boundary of the turning basin. This scenario was particularly difficult under a NE wind when first entering the turning basin and trying to work stern into the wind. Two pilots stated they would have not been able to recover the vessel in the event of a tug casualty. The Pilots expressed that the vessel is highly exposed in the turning basin and there is less safety margins navigating the *CMA CGM Marco Polo* in the turning basin, compared to exiting via the West Seagirt Branch Channel.

Additional turning basin maneuvers completed with the lighter loaded vessel model showed most turning maneuvers were manageable. One trackplot showed the stern nearly exceeded the upper corner of the turning basin when backing up. Another track showed a vessel not clearing the west corner when entering the Fort McHenry Channel. In two of the tracks, the bow reaches the turning basin limits. To keep the vessel clear of the docked vessels, the pilot needed to work the vessel towards the wind while also staying within the basin limits. The pilots expressed this was a difficult maneuver and that all four tugs are required.

The turning basin maneuver in Path B required significant use of the tugboats. Several scenarios required all four tugboats to exert maximum force for an extended period of time, presenting concerns for overworking the tugboats and potential mechanical failure. Any potential tug casualties could cause a serious, damaging accident, such as striking surrounding terminal infrastructure, an allision with a docked vessel at Dundalk Marine Terminal Berth 6, or exceeding the channel limits and running aground. The Pilots expressed that the vessel is highly exposed in the turning basin and there is less safety margins navigating the *CMA CGM Polo* in the turning basin, compared to exiting via the WSBC.

When the proposed wideners were added to the 50-foot channel configuration, the ERDC study reports that all runs show the Pilots using the proposed wideners while achieving adequate clearance for safe navigation. The Pilots noted that the channel configuration accommodates the *CMA CGM Marco Polo* vessel well and the maneuvers can be completed safely with overall less tug assistance, including in the event of tug casualties which were demonstrated during various runs.

7. Channel Design

In addition to modeling, numerous coordination meetings were held with the AMP, the US Coast Guard, and local interest groups to ensure that the proposed channel improvements would provide adequate navigability for the design ship while meeting the

needs of the Port facilities and the maritime community. The recommended channel improvements are shown in Appendix B5.

7.1. Channel Width

The proposed channel improvements were designed in accordance with USACE guidance Engineering Manual (EM) 1110-2-1613. This guidance is based on a number of factors including traffic pattern (one way or two way), design vessel dimensions, channel cross section shape, current speed and direction, quality of aids to navigation and variability of channel and currents. For one-way channels, widths can vary from 2.5 times the vessel beam for a well-defined channel with minimal currents to 5.5 times the vessel beam for a variable channel with stronger currents. Two-way channels can vary from 4 to 8 times the vessel beam.

The improved West Seagirt Branch Channel under the Recommended Plan has an authorized dimension of 760 feet on average with additional widening at bends necessary for the safe handling of vessels. See Figure 7 for details on channel widths.

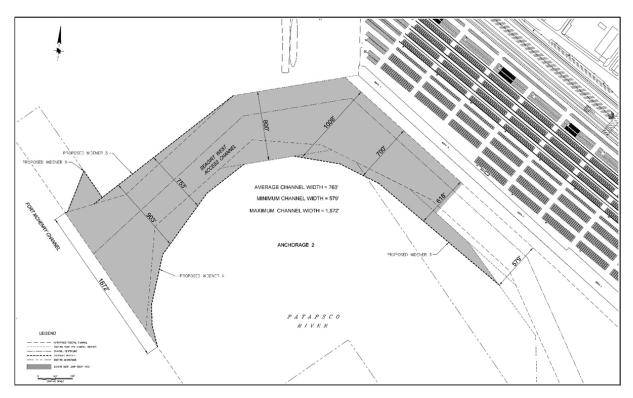


Figure 7. Proposed Channel Dimensions.

7.2. Channel Depth and Underkeel Clearance

The maximum channel depth is designed to permit the safe and efficient transit of a fully loaded design vessel at any phase of the tide. The determination of the navigation

channel depth is based upon the loaded static summer saltwater draft of the design vessel, plus allowances for various UKC such as ship squat, water density, ship response to waves, and safety clearance. The selection of the actual project design depth is determined by economic analysis of the expected project benefits compared with the project cost at various alternative depths. Refer to Appendix C, Economic Analysis, for details of the optimization analyses.

7.2.1. Squat

Squat is the tendency of a vessel underway to sink and trim in the waterway, thereby reducing the UKC. The sinkage is due to the reduction in pressure on the ship's hull resulting from the increased water velocity passing the ship. In a shallow or confined channel, squat tends to increase because the blockage caused by the ship creates a higher water velocity around the hull, lowering the actual water surface. Another component of squat is dynamic trim, or the change in pitch of a vessel due to the forward motion. Generally, it has been found that most full-bodied shipssuch as tankers and bulk carriers trim down at the bow, and sleeker containerships trim down at the stern. The magnitude of the squat depends on several factors including ship speed, dimensions, ship blockage coefficient, and channel depth. EM 1110-2-1613 provides a simplified expression to estimate squat which is proportional to the square of velocity:

$$Z_{max} = \frac{C_b BT V^2}{4.573 Lh}$$

Zmax = Squat in feet
Cb = Vessel block coefficient (~0.68 for large containerships)
L = Vessel length (feet)
h = water depth (feet)
V = vessel speed through water (knots)

Assuming a typical maximum transit speed in the Seagirt Loop Channel of 5 knots, the resultant squat for the *CMA CGM Marco Polo* transiting at 47.5-foot draft is approximately 0.5 feet.

7.2.2. Safety Clearance

A safety clearance is provided between the hull of the ship in transit and the design channel bottom to minimize the risk of damage to the vessel due to bottom irregularities and debris. The safety clearance also accounts for uncertainties such as tide stage, survey tolerances, etc. A safety clearance of 2 feet is provided for channels with a soft bottom. In time, as the channel begins to shoal, a safety clearance of 2 feet will be maintained since the recently deposited material tends to be soft.

7.2.3. Total Underkeel Clearance

The total UKC is the sum of the squat and the safety clearance. The total UKC for the *CMA CGM Marco Polo* is estimated at 2.5 feet. The UKC is added to the sailing draft of the vessel. The safety of this depth was confirmed during the ship simulation using the ERDC CHL Ship/Tow Simulator.

7.3. Structural Considerations

7.3.1. Channel Stability Analysis

Seagirt Loop has been extensively sampled over the past three decades in support of numerous dredging contracts. The most recent investigation was performed SaLUT from December 2018 to January 2019. A total of 56 standard penetration borings were performed within and adjacent to the Seagirt Loop Channel. Borings extended approximately to an elevation of -60 feet MLLW.

Blow counts are a poor indication of strength in weak/soft cohesive materials (undrained shear strength less than approximately 1,000 pounds per square foot. A single blow count can cover a wide range of undrained shear strengths, and nearly every blow count within Seagirt Loop down to the proposed channel depth of -50 feet MLLW was WOR. A blow count of WOR indicates that the soil is unable to support the load of the drill rods even before adding the weight of the hammer to begin counting blows. Given that the plasticity index of the material is above 50 percent, and the in-situ water content of the material is above the liquid limit, the material exhibits almost no strength. By definition, a soil with a water content exceeding the liquid limit behaves like a liquid instead of a solid. Liquids generally have extremely small shear strengths. Water has no shear strength. The stability of side slopes can be calculated if reliable estimates of undrained shear strengths can be deduced. Within the Seagirt Loop, this would require either field vane shear testing, cone penetration testing, or dilatometer testing. Because past investigations were used primarily to characterize the dredged material for upland disposal, tests to specifically determine undrained shear strengths were not performed. The best indication of the strength of the material is observation of in-situ channel side slopes.

CENAB performed a multi-beam hydrographic survey of Seagirt Loop and Anchorage 3 in February 2021. Using the multi-beam survey, channel side slopes were computed on a 20-foot grid and plotted on top of the NOAA nautical chart (Figure 8). Side slopes were color-coded so that variations in the side slopes could be easily identified. All prior dredging by both USACE and MDOT MPA within Seagirt Loop and Anchorage 3 was done according to a template with 3 Horizontal to 1 Vertical slopes (3H:1V). If 3H:1V side slopes were dredged in the past, and if they are stable, 3H:1V excavated slopes would be expected on the survey.

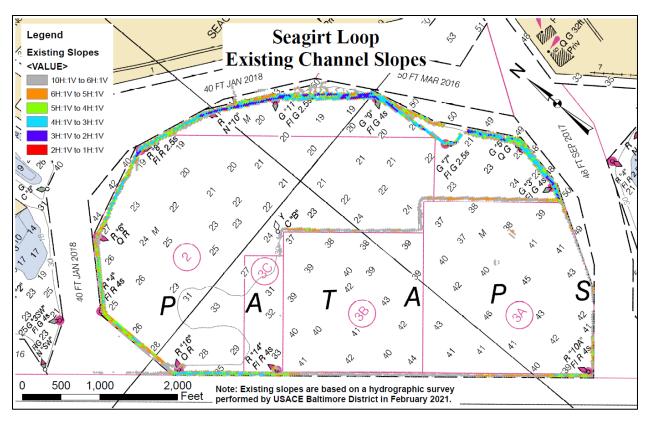


Figure 8. Hydrographic survey of Seagirt Loop and Anchorage 3 in February 2021 with side slopes.

The plot of the side slopes indicates that only limited reaches of the channel in front of Berth 2 and Berth 3 exhibit side slopes of 3H:1V or steeper. The majority of the side slopes for the Seagirt Loop channel are between 3H:1V and 5H:1V. Existing side slopes indicate the slope steepness that is marginally stable. The consequence of slope failure is sloughing of material into the channel, requiring more maintenance dredging. To prevent sloughing of the channel side slopes, a 5H:1V slope is recommended for the proposed project. The 5H:1V slope better matches the existing slopes than the traditionally recommended 3H:1V slopes and is a better risk-informed assumption in the study.

7.3.2. Berth Stability Analysis

A berth stability analysis was completed for existing structures within close proximity of the proposed channel deepening. The relationship of existing structures to the proposed improvements is shown in Figure 9.

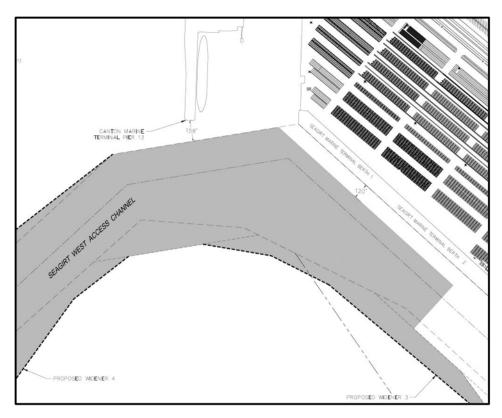


Figure 9. Existing berth features adjacent to the study area.

The proposed federal channel dredging for the West Seagirt Branch Channel (labeled as Seagirt West Access Channel in Figure 9) would not have any detrimental impact on the existing structures adjacent to the channel. The 50-foot dredge depth for the Federal channel footprint is within 158 feet of the southeast corner of the Canton Marine Terminal Pier 13. If a 5:1 side slope is used, it intersects existing river bottom approximately 113 feet from the edge of the 50-foot channel, or 45 feet from the pier. The proposed dredging within the federal channel limits is far enough away from the berth structures that the pile support would be unchanged from its present condition.

The proposed 50-foot dredge depth is within 120 feet of SMT Berths 1 and 2. If a 5:1 side slope is used, the slope intersects existing river bottom approximately 92 feet outboard of the berthing face of Berth 1 and 103 feet outboard of Berth 2. The berth face is supported by concrete piles backed by a cellular cofferdam. The proposed dredging is far enough away from the berth and pier structures that the pile support would be unchanged from its present condition. Local and global stability analyses were performed to assess the impact of deepening the Federally authorized portion of the channel on the structural stability of the piles and existing cofferdam. Calculated factors of safety for the cofferdam stability models exceeded requirements by more than two times when the proposed dredging is considered. The analysis and associated memo dated 13 January 2022 conducted by Moffatt & Nichol can be found in Appendix B6.

8. Developing Quantity Estimates

8.1. Existing Conditions Surface

To estimate excavation quantities, a complete surface of the excavation areas was developed. Areas to be excavated are included mostly within the existing channels and in adjacent areas of channel widening based on bathymetric data collected in December of 2021 and January 2022. Preliminary quantities used in the screening of alternatives for the study are provided in Appendix B7.

Survey data were imported into AutoCAD to create a Triangulated Irregular Network (TIN) of the study area. Extraneous triangles were eliminated from the TIN to create a more representative surface.

8.2. Proposed Condition Surface

The proposed conditions surfaces correspond to the channel "templates" at the proposed depth(s) of excavation. The templates represent the cross-section of the proposed channels, including the side slopes (Appendix B7). The proposed channels maintain the same footprints as the existing channels except where widenings are proposed. The side slope has been set at 5H:1V, which is meant to prevent excessive sedimentation back into the channel (Figure 10).

During plan optimization, the costs of proceeding with 5H:1V side slopes was compared to costs for a 3H:1V side slope channel and the potential increased operations and maintenance dredging. Analysis supported channel slopes dredged to 5H:1V to ensure the long-term stability of the channel and reduce shoaling and therefore operation and maintenance dredging.

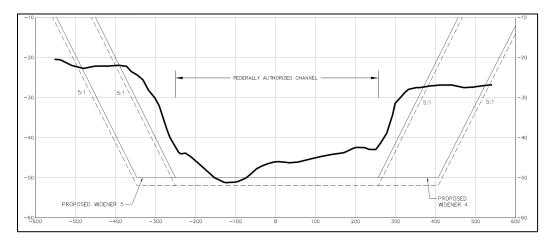


Figure 10. Sample proposed channel template showing 5H:1V side slope.

8.3. Dredge Quantities

The gross excavation quantity for each channel segment was determined simply by subtracting the proposed conditions surface from the existing conditions surface at incremental one-foot depths. Table 3 shows the quantities to be excavated by depth.

Table 3. Cumulative volume dredged for West Seagirt Branch Channel and Wideners at increasing depths.

To Elevation (Feet/MLLW)	Segment	Cumulative Dredging Vol cubic yards(cy)
-45	Channel	173,792
-43	Wideners	617,770
-46	Channel	248,270
	Wideners	653,197
-47	Channel	338,204
-47	Wideners	687,924
-48	Channel	453,478
-40	Wideners	722,124
-49	Channel	596,711
-49	Wideners	756,198
-50	Channel	753,839
-50	Wideners	790,450
-51	Channel	916,384
-51	Wideners	824,961
-52	Channel	1,082,386
-52	Wideners	859,795

8.4. Excavated Depth Summary

Figure 11 provides an illustration of the different dredge zones referenced in developing quantities. These horizons are defined as:

1) Existing Condition: Based on the most recent hydrographic data at the start of the study.

- 2) Maintained Depth: The maintenance quantity is the volume required to be dredged from the existing condition to the currently maintained channel dimensions.
- 3) Authorized Depth: The authorized depth is the nominal depth used for the Plan Formulation increments and includes consideration for UKC.
- 4) Advanced Maintenance: Dredging contracts typically include a depth of advanced maintenance beyond the authorized depth. This depth is often greater in areas of rock than areas of sand.
- 5) Paid Overdepth: In consideration of the difficulty to dredge or blast to an exact depth, material within an agreed upon vertical distance below the authorized depth will be paid for.
- 6) Unpaid Overdepth: Material that is below the agreed upon paid overdepth quantity. Note that some material in this range may be paid for if it falls within the side slope area and is needed for slope stability.

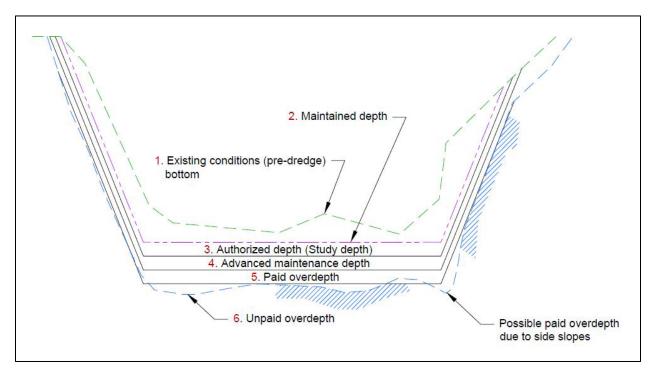


Figure 11. Typical dredge zones.

8.5. Placement Location and Capacity

The 2017 USACE Dredged Material Management Plan details the current dredged material disposal sites for material dredged from the Harbor approach channels. The

MDOT MPA maintains the Baltimore Harbor placement sites to accommodate at least the 20-year dredging placement need, which is calculated based on historical maintenance volumes and identified new work projects. The primary placement site being considered for this project is Cox Creek DMCF. The Cox Creek DMCF is located in Anne Arundel County, Maryland, just south of the Baltimore City line, along the western shoreline of the Patapsco River. In February 2010, Cox Creek was approved by USACE North Atlantic Division as the federal standard for Baltimore Harbor placement. Material dredged from the Harbor that is within the Patapsco River is legally considered to be unsuitable for open water placement by State law, 90 percent of Harbor material has also been found to be unsuitable for open water placement in accordance with local EPA regulations, and thus must be placed in upland contained facilities. Cox Creek is owned and operated by MDOT MPA. The existing Cox Creek site includes a DMCF as well as wetland and upland areas. The current dikes are constructed to +36 feet MLLW. MDOT MPA is actively expanding the Cox Creek DMCF. The Cox Creek Expanded project consists of raising the existing dikes to +60 feet MLLW and expanding the facility onto the upland portion of the property by summer of 2024. Appendix B7 analyzes the considerations utilized in determining available placement capacity.

9. Further Analysis and Design Development Needs

No new data were collected for project's feasibility study, commensurate with risk informed decision-making. However, data from the prior harbor deepening study were used for this study. Suggested data collection and analysis to be conducted during the PED phase are discussed below. The design development concerns discussed are limited to those efforts related to channel design; therefore, this discussion of data and analysis needs should not be considered comprehensive.

9.1. Hydrodynamic Data Collection

The collection of water surface elevation, current velocity data, and wind velocity data may be warranted to both provide insight at critical project locations and to support the validation of an updated hydrodynamic and sediment model. The necessity and distribution of this data collection effort should be considered and developed in collaboration with harbor and docking pilots, and the developers of both the recommended hydrodynamic and sediment model (discussed below).

9.2. Hydrodynamic and Sediment Modeling and Analysis

A comprehensive hydrodynamic model exists for the study area from previous ERDC CHL ship simulation work completed in Baltimore Harbor. Additional hydrodynamic modeling is not needed at this time determined by the subject matter experts at ERDC CHL.

10. References

Boicourt, W.C. and P.L. Olson. 1982. *A Hydrodynamic Study of the Baltimore Harbor System*. Chesapeake Bay Institute and Johns Hopkins University.

CENAB. 1997. Baltimore Harbor Anchorages and Channels, Maryland Integrated Feasibility Report and Environmental Impact Statement Draft Report.

EA EST. 2019. FY19 Sediment Sampling and Chemical Analysis for Baltimore Harbor and Chesapeake Bay, Maryland. Prepared for USACE Baltimore District.

MDOT MPA. 2019. Geotechnical Investigation Report. Seagirt Berth 3 Dredging and Masonville Unloading Area Basin Dredging.

MITAGS. 2016. Preliminary 18,000 TEU Full Mission Ship Simulation Study Report for the Port of New York/New Jersey Shipping Association. Linthicum Heights, MD. The Maritime Institute of Technology and Graduate Studies.

Reinhardt, Juergen. and Crowley, W.P. 1979. Geologic Map of the Baltimore East Quadrangle, Maryland.

Schubel, J.R. and D.W. Pritchard, 1987. *A brief physical description of the Chesapeake Bay, in Contaminant problems and management of living Chesapeake Bay resources*. Edited by S. K. Majumdar, L.W. Hall, Jr., and H. M. Austin, 1-32, Pa Acad. Sci., Philadelphia, PA.

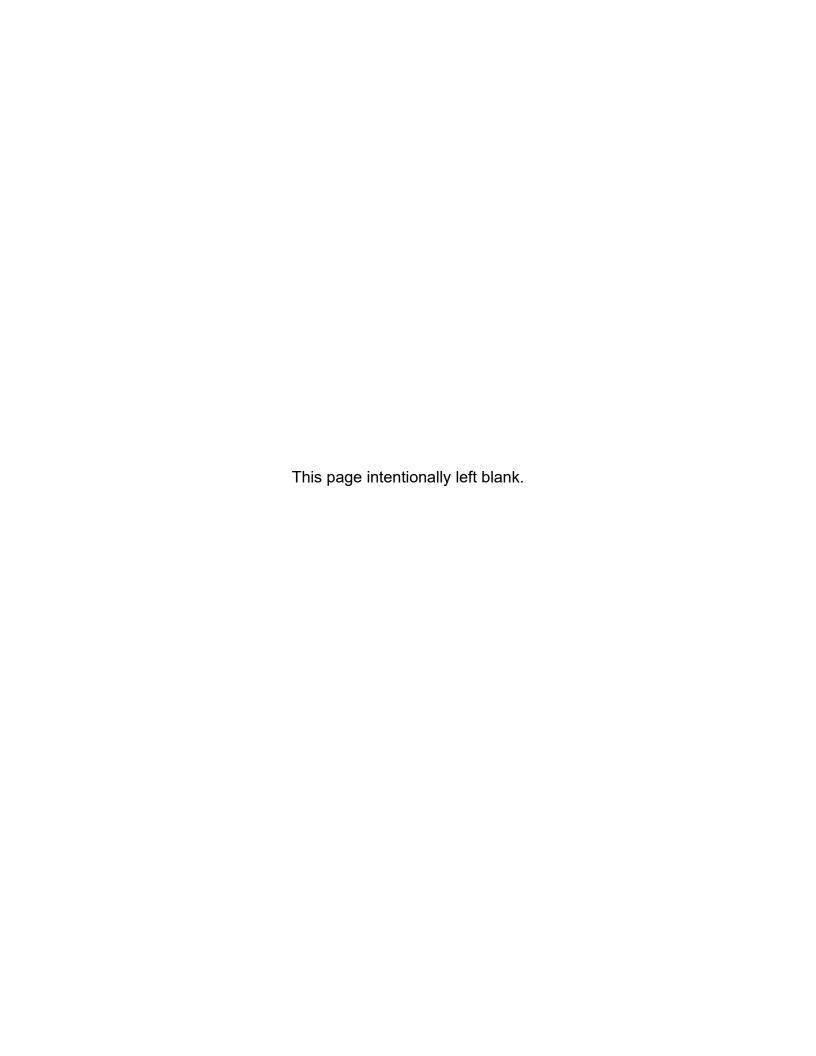
USACE. 1996. Engineer Regulation 1130-2-520. "Navigation and Dredging Operations and Maintenance Policies."

USACE. 2006. Engineer Manual 1110-2-1613. "Hydraulic Design of Deep-Draft Navigation Project."

USACE. 2017. Baltimore Harbor and Channels Dredged Material Management Plan Update.

USACE. Version 2021.12. *Sea-Level Change Curve Calculator*. Retrieved from https://cwbi-app.sec.usace.army.mil/rccslc/slcc calc.html

BALTIMORE HARBOR ANCHORAGES AND CHANNELS (BHAC)


MODIFICATION OF SEAGIRT LOOP CHANNEL

FEASIBILITY STUDY

FINAL INTEGRATED FEASIBILITY REPORT & ENVIRONMENTAL ASSESSMENT

APPENDIX B1: Geotech Data and Boring Logs

Baltimore Harbor Anchorages and Channels (BHAC)
Modification of Seagirt Loop Channel Feasibility Study

Geotechnical Investigation Report

Seagirt Berth 3 Dredging and Masonville Unloading Basin Dredging

Baltimore, Maryland MES Contract No. 14-07-58 Task 17

Prepared for:

Maryland Port Administration

401 E. Pratt Street, Suite 1900 Baltimore, MD 21202

And

Maryland Environmental Service

259 Najoles Road Millersville, MD 21638

Prepared by:

Gahagan & Bryant Associates, Inc.

9008 Yellow Brick Road, Suite O Baltimore, MD 21237

May 2019

GEOTECHNICAL INVESTIGATION DATA REPORT

SEAGIRT LOOP CHANNEL DEEPENING BALTIMORE, MARYLAND

Prepared for:

Gahagan & Bryant Associates, Inc. 9008 Yellow Brick Road, Suite O Baltimore, Maryland 21237

Prepared by:

SaLUT-TLB 530 McCormick Drive, Suite S Glen Burnie, Maryland 21061

MAY 2, 2019

530 McCormick Drive, Suite S • Glen Burnie, MD 21061

(443) 577-1600 www.SaLUTinc.com

May 2, 2019

Gahagan & Bryant Associates, Inc. 9008 Yellow Brick Road, Suite O Baltimore, Maryland 21237

Attn: Mr. William Murchison

Re: Geotechnical Investigation Data Report

Seagirt Loop Channel Deepening Project

Dundalk Marine Terminal

SaLUT-TLB Reference No. 18-0043

Dear Mr. Murchison,

Pursuant to your request, we have performed a geotechnical investigation in support of your planning efforts on the referenced project. The following revised report summarizes the results of our subsurface explorations and laboratory testing for the Seagirt Loop Channel Deepening project in Baltimore, Maryland.

We thank you for providing us this opportunity to perform these services for Gahagan & Bryant Associates, Inc., and look forward to working with you as the project progresses. Please do not hesitate to contact us if you have any comments or questions regarding this report, or when we can be of further assistance on this and other projects.

Sincerely,

SaLUT-TLB

Edward Dalton, P.E. Executive Vice-President

Shul Helat

Olivia Erony, P.E. Project Engineer

aliria & Erong

TABLE OF CONTENTS

LETTE	ER OF	TRANSMITTAL	l
		ODUCTION	
2.0	PRO	JECT DESCRIPTION	1
3.0	SCO	PE OF SERVICES	1
4.0	SUBS	SURFACE EXPLORATION	1
5.0	SUBS	SURFACE CONDITIONS	2
	5.1	Subsurface Stratigraphy	2
	5.2	Laboratory Test Results	2
6.0	т іміт	TATIONS	3

ATTACHMENTS

Drawing No. 1 - Project Location Plan Drawing No. 2 - Test Boring Location Plan

APPENDIX A Records of Soil Exploration

Z:\01 Projects\2016 PROJECTS\Gahagan & Bryant Associates\Task 17 - Seagirt Loop Channel Deepening - MES 14-07-58\Report\Geotech Data Report- Seagirt R2 5.2.19.Doc

1.0 INTRODUCTION

Gahagan & Bryant Associates, Inc. (GBA) of Baltimore, MD has been engaged to perform engineering services for dredging at the Seagirt Marine Terminal in Baltimore, Maryland. To assist with obtaining subsurface information and laboratory testing GBA retained SaLUT-TLB. The subsurface investigation and testing were conducted in general accordance with the scope of services outlined in SaLUT-TLB's proposal dated November 15, 2018. The results of our investigation and testing are included in this data report.

2.0 PROJECT DESCRIPTION

The project consists of dredging in front of the Seagirt Marine Terminal Berth 3 and adjacent channels. More specifically the area included in this investigation included Berth 3, Seagirt – Dundalk Connecting Channel and the Seagirt West Access Channel. These areas will be deepened and widened. The project location is shown on the attached Drawing No. 1 – Project Location Plan. The areas will be dredged to about El -50 plus 2 foot over depth MLLW. To evaluate the subsurface conditions and obtain samples for testing in the area to be dredged 56 test borings were drilled at locations identified by GBA. Laboratory test were conducted on soil samples to identify the soil physical and environmental characteristics. This data report provides the geotechnical data and laboratory testing results for the project.

3.0 SCOPE OF SERVICES

The general scope of services consisted of:

- Mark boring locations from the barge using a handheld GPS unit.
- Obtain a Miss Utility ticket to identify underground utilities.
- Drill 56 soil borings to a depth of about EI -60 ft MLLW
- Perform SPT sampling at 2.5-foot intervals
- Decontaminate down the hole drill tools between designated drill areas
- Perform laboratory testing on select samples to identify physical and environmental characteristics
- Perform strength test Pocket Penetrometer and Torvane test to identify soil strength characteristics
- Prepare a Geotechnical Data Report

4.0 SUBSURFACE EXPLORATION

To evaluate the subsurface conditions, 56 test borings (PR-1 to PR-56) were drilled in 8 designated zones between Dec 06, 2018 to Jan 15, 2019. The borings were drilled with a Mobile 57 drill rig mounted on a barge equipped with two spuds to hold the barge in position during drilling. The test boring locations were selected by GBA and marked in the field by SaLUT-TLB using a Trimble Geo-7X handheld GPS and Terra-sync software. The planned test boring locations and the eight (8) designated environmental composite sample areas (Area 1 through Area 8) are shown on the attached Drawing No. 2— Test Boring Location Plan. The asdrilled coordinates for the test borings are included on the boring logs. The time each boring was drilled was recorded and based on the date and time of drilling the water surface elevation was estimated from National Oceanic and Atmospheric Administration tide recordings from Ft. McHenry Station. All tide data is referenced from MLLW.

The test borings extended to an approximate EI -60 ft. The depth of the water was estimated using a lead line over the side on the barge prior to start of drilling, the lead line is approximately 4-inches in diameter and weighs about 5 lbs. The depth of water varied from about 20 feet to 52 feet and mudline elevation varied from about EI -19.6 to EI -50.3 ft. Depth and elevation data are included on the boring logs. Soil samples were obtained from the test borings at 2.5-foot intervals using a split-barrel sampler (spoon) in accordance with the Standard Penetration Test (SPT) procedure ASTM D1586. A representative portion of each split spoon sample was placed in a glass jar and transported to our laboratory for evaluation and testing. Two jar samples were retained from each split spoon sample, one for environmental testing and one for physical and strength testing. The environmental jar samples from each of the 8 designated areas were combined to make up one composite sample from each of the 8 areas for environmental testing. Environmental jar samples were stored in SaLUT lab refrigerator until the composite sample was delivered to the environmental lab for testing. To prevent cross contamination between the 8 designated environmental areas the down the hole drill tools were decontaminated when moving between areas. The initial drilling plan was to complete all borings in each one of the 8 environmental areas before moving to the next area but due to ship traffic restrictions and access restrictions in the Berth 3 area this was not possible, therefore multiple decontamination events were required during the day and at the end of each day.

5.0 SUBSURFACE CONDITIONS

Logs describing the subsurface soil conditions, are presented as "Records of Soil / Rock Exploration" in Appendix A. The descriptive terminology used to classify the soils encountered during this study is summarized on the first page of Appendix A. The subsurface conditions are summarized below.

5.1 Subsurface Stratigraphy

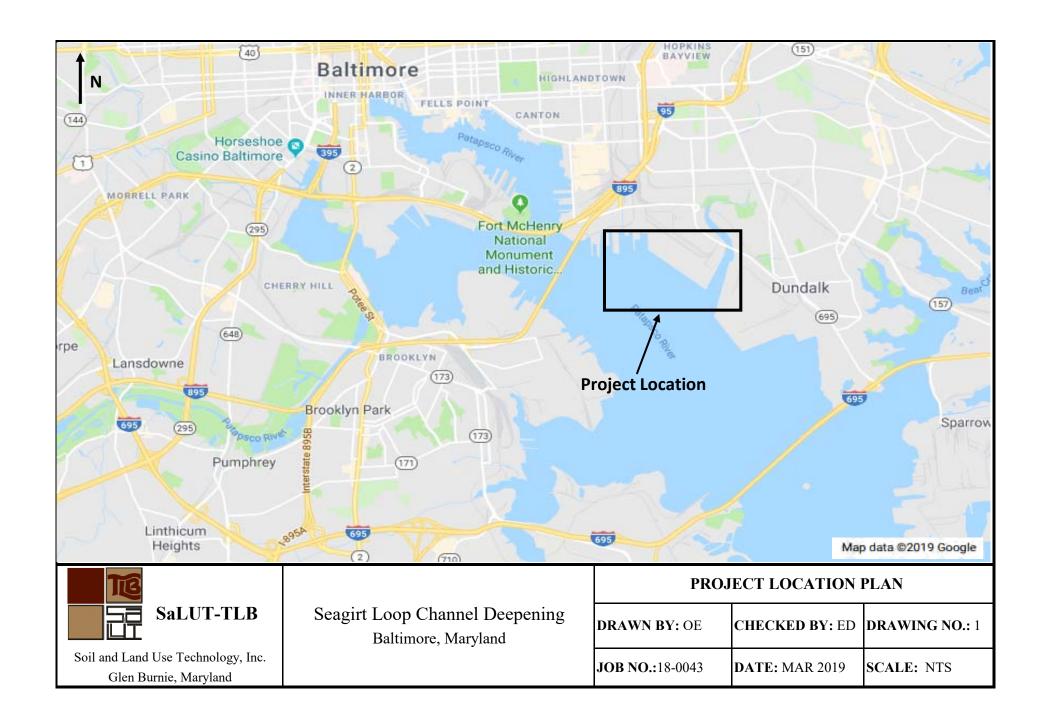
Dark Gray to Grayish-Brown, Brown and Black Silt and Clay was encountered from the mudline to the full depth of the borings except in PR-16, PR-36, PR-39, PR-46 and PR-51 to PR-56. The Standard Penetration Test (SPT) N-values for Clay and Silt ranged from Weight of Rods (WOR) over 18-inches to 15 blows per foot (bpf), indicating very soft to stiff relative consistencies. Gray, Brown to Dark Grayish-brown, and Dark Green interbedded Sand layers were encountered within Clay and Silt in borings PR-23, PR-35, PR-47 and PR-53 with Standard Penetration Test (SPT) N –values ranging from 1 to 7, indicating very loose to lose relative consistencies. Tan, Brown, and Gray to Grayish-Brown Sand was encountered in borings PR-16, PR-36, PR-39, PR-46 and PR-51 to PR-56 about EL. 29.7 to EL.54.3 and continued through boring termination depth. The Standard Penetration Test (SPT) N –values for Sand ranged from 2 to 27, indicating very loose to medium dense relative consistencies. Very loose Clay and Silt layers were encountered within Sand strata at Boring B-39 below elevation EL.-29.7 feet.

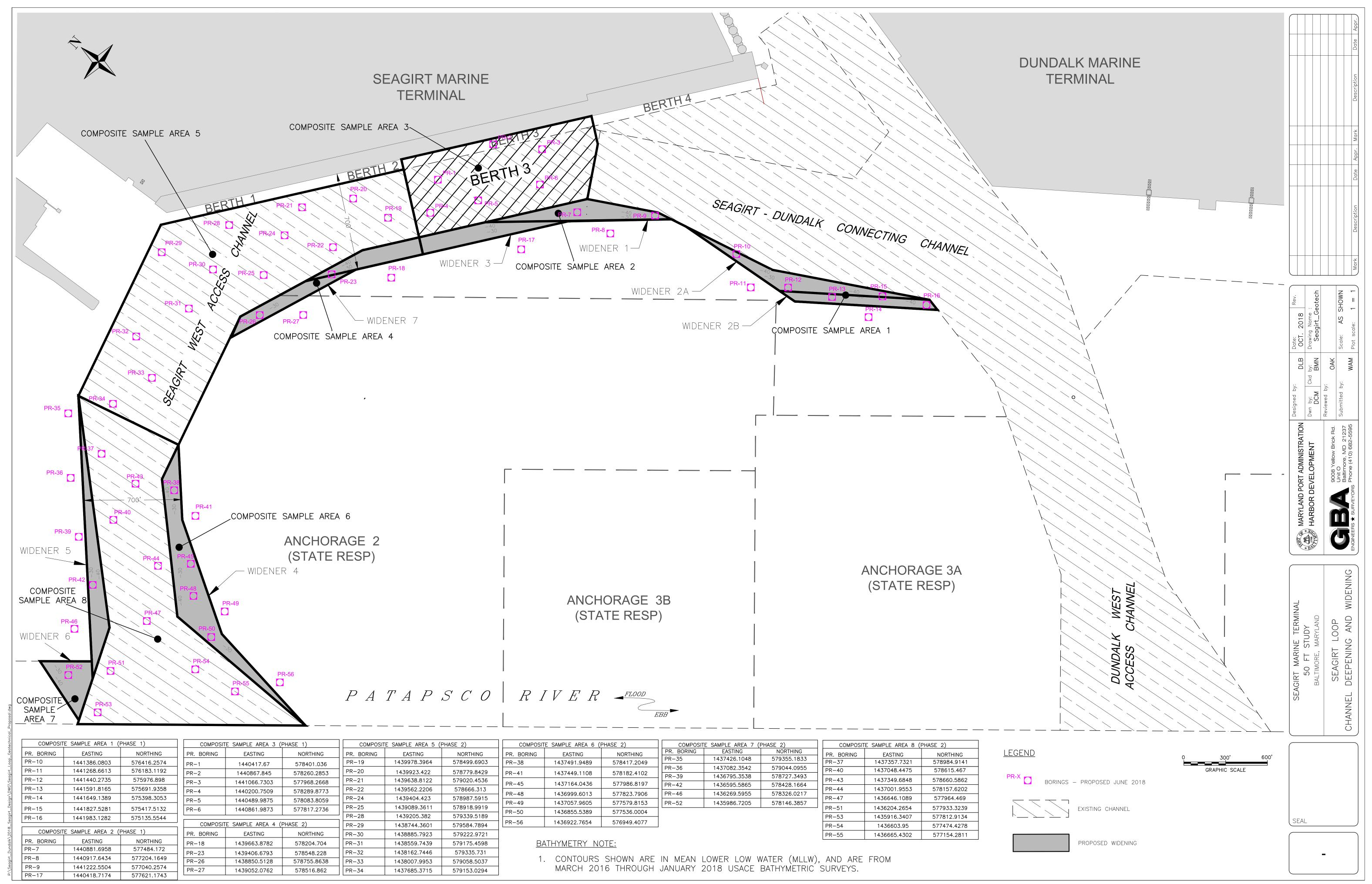
5.2 Laboratory Test Results

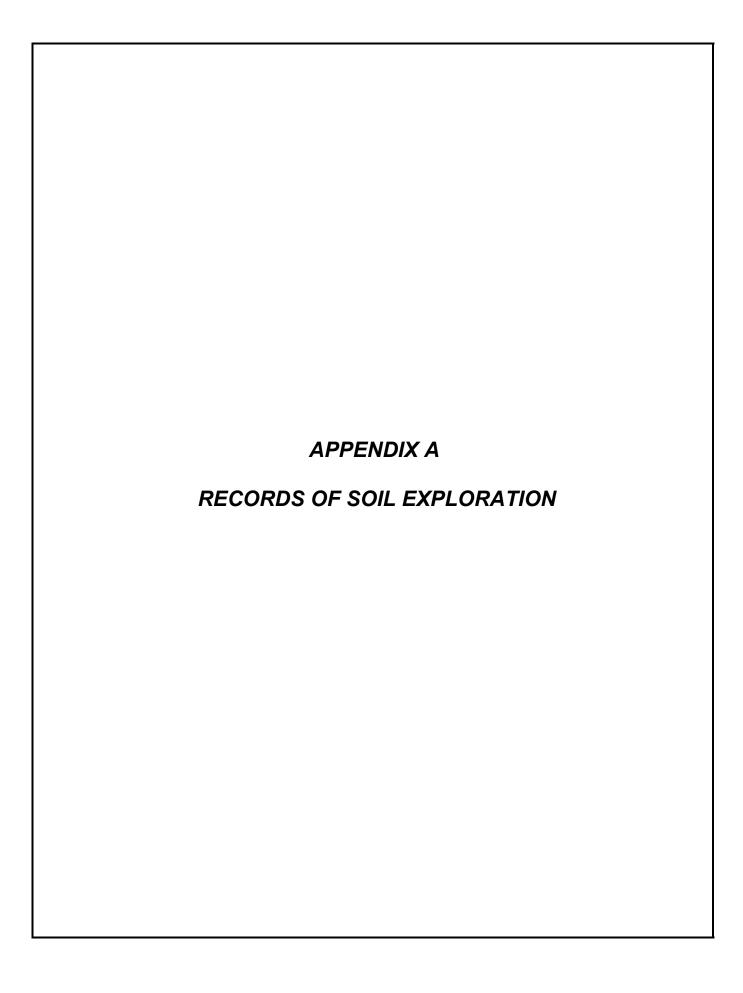
SaLUT-TLB selected soil samples from each boring for laboratory physical testing. The tests included natural moisture content (ASTM D2216), gradation analysis (with hydrometer) (ASTM D7928), Atterberg limits (ASTM D4318) and Specific Gravity (ASTM D854). The test results are presented in Appendix B and are summarized in the table on the next page. Each split spoon

sample was tested for shear strength evaluation using a Pocket Penetrometer and Torvane. The Pocket Penetrometer is a spring-operated device that provides direct measure of the unconfined compressive strength of the soil. A 0.25-inch diameter piston is pushed into the soil sample a depth of 0.25 inches and the unconfined compressive strength is indicated by the direct-reading scale on the piston barrel. The shear strength of the soil is one-half the unconfined compressive strength. The Torvane device uses a torsion spring to provide direct measurement of soil shear strength. Several samples were too soft to obtain any strength data as the range for the Pocket Penetrometer is about 500psf to about 4,500psf and the Torvane range is about 200psf to 5,000psf. The results are summarized in Appendix B. The environmental jar samples from each boring in each of the designated environmental areas were combined to make up one composite sample for environmental testing. The results of environmental test are included in Appendix B.

Toot	Results								
Test	Range	Average							
Moisture Content (%)	11.2 - 216.5	121.2							
% Passing No. 200 Sieve	2.8 - 100	80.8							
Liquid Limit (%)	27 - 178	107.7							
Plastic Index (%)	3 - 126	64.1							
Specific Gravity	2.52 - 2.67	2.59							


The remaining soil samples are being temporarily stored in our Glen Burnie, Maryland laboratory and are available for review. The samples will be discarded forty-five (45) days following the submittal of this report unless other arrangements are made.


6.0 LIMITATIONS


This report has been prepared to aid in the evaluation of this site and to assist GBA in the design aspects of aforementioned project. All subsurface explorations require the extrapolation of limited amounts of data based on general geologic knowledge. The water level observations, geologic descriptions, presented on the accompanying logs have been made with reasonable care and accuracy, but must be considered only an approximate representation of subsurface conditions to be encountered beyond a particular exploratory location.

Variations in the soil conditions noted in this report may be encountered during construction. SaLUT-TLB should be retained to observe subsurface conditions encountered during construction and to verify that conditions are compatible with the findings of this study. SaLUT-TLB should be contacted immediately if significant variations are encountered or if the proposed locations or designs are altered.

We have completed these services in accordance with general engineering practices used by members of the profession in the same region and under similar conditions of this project. We make no warranty or guarantee, either expressed or implied, for these services.

GENERAL CLASSIFICATION SUMMARY FOR SOIL AND ROCK EXPLORATION SOIL

	Particle Siz	ze Identification	Relative Proportions			
Boulders		- 12 inch diameter or more				
Cobbles		- 3 to 12 inch diameter	In accordance with ASTM D 2487 and			
Gravel	- Coarse	- 3/4 to 3 inches	ASTM D 2488			
	- Fine	- 4.75mm to 3/4 inch				
Sand	- Coarse	- 2.00mm to 4.75 mm [Sieve #10 to #4]				
	- Medium	- 0.4mm to 2.00mm [Sieve #40 to #10]				
	- Fine	- 0.075mm to 0.4mm [Sieve #200 to #40]				
Silt/Clay		- less than 0.075mm (Cannot see particles)				
Silt		- Atterberg limits plot below "A" line				
Clay		- Atterberg limits plot above "A" line				

COHESIONLESS SOILS

COHESIVE SOILS

<u>Density</u>	N-Value	<u>Consistency</u>	ľ	V-Value
Very loose	0-4 blows/ft.	Very Soft	0-1	blows/ft
Loose	5-10 blows/ft.	Soft	2-4	blows/ft.
Medium Dense	11-30 blows/ft.	Medium Stiff	5-8	blows/ft.
Dense	31-50 blows/ft.	Stiff	9-15	blows/ft.
Very Dense	> 50 blows/ft.	Very Stiff	16-30	blows/ft.
		Hard	> 30	blows/ft.

<u>Classifications</u> on logs are made by visual inspection.

Standard Penetration Test - Driving a 2.0" O.D., 1 3/8" I.D., sampler a distance of 1.0 foot into undisturbed soil with a 140 pound hammer free failing a distance of 30.0 inches. It is customary for us to drive the spoon 6.0 inches of penetration to seat into undisturbed soil, and then perform the test. The number of hammer blows for seating the spoon and making the tests are recorded for each 6.0 inches of penetration on the drill log (Example: 6-8-9). The standard penetration test resistance or "N"-value can be obtained by adding the last two figures (i.e., 8 + 9 = 17 blows/ft.).

Strata Changes - In the column "Soil Descriptions" on the drill log, the horizontal lines represent estimated strata changes.

<u>Groundwater</u> observations were made at the times indicated. Porosity of soil strata, weather conditions, site topography, etc., may cause changes in the water levels indicated on the logs.

ROCK

Rock Quality Designation (RQD) - The sum of the lengths of pieces of recovered core which are greater than four inches in length, expressed as a percentage of the total length of the core run. If the core has been broken by the drilling process, it is considered to be intact provided the broken fragments are cumulatively greater than 4 inches in length. For this investigation, vertical separations which split the core have not been considered discontinuities when determining RQD.

Recovery (REC) - The total length of core recovered expressed as a percentage of the total length of that coring run.

ROCK CLASSIFICATION

Residual Soil – reduced to soil. Rock fabric not discernible. Can be easily broken by hand.

Completely weathered (Saprolite) – Rock fabric discernible in a few scattered locations. Effectively reduced to soil and can be broken by hand.

Highly weathered – Almost all of the rock shows severe discoloration and weathering. Rock fabric evident in majority of the rock.

Moderately weathered – Significant portions show discoloration and weakening (softening, lighter color). Shows loss of weight. Rock fabric evident.

Slightly weathered – Slightly discolored. Lower in strength than fresh rock. Dull under hammer.

Fresh - No visible signs of discoloration or decomposition.

	TE

RECORD OF SOIL / ROCK EXPLORATION

	Contracted With Gahagan & Bryant Associates Boring #PR- 1											
Contracted Project Na		agirt Loop Cha		eepeni	ng					Borin Job #	· · · · · · · · · · · · · · · · · · ·	
Location	•											
	SAMPLER											
DatumM	LLW	Hammer Wt.	140	lb	_ Ho	ole Dian	neter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	-0.4 ± ft	Hammer Dro		in		ck Core	e Dia. N/A			ector _	D. Patterson	
Date Started	12/7/18	Spoon Size	2 in		_ Bo	ring Me	ethod HSA		Date	e Comp	leted12/7/18	
	SOIL DESCRIPT	ION	STRA	٦,	ΞЩ		SAI	MPLE				\neg
ELEV. (ft)	Color, Moisture, Density, F Proportions		DEPTH (ft)	SYMBOL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER			L							1. Area 3	
				Juu							2. 578387.55 N	L
4				<u></u>							1440418.45 E	-
-					5							-
				Jun	—							
				fuu	1							
												L
_				Jun	1,_							\vdash
				Jun	10							-
					1 -							
				Jun								
_				Jun	_							F
					15_							
\dashv				Lui	-							
				fuu								
				m	20_							_
\dashv				Jun	$\mid \; \; \mid$							\vdash
\dashv												
				fuu	25							
					1 4							-
\dashv] -							\vdash
\exists				Juu	$\mid \; \dashv$							-
				<u> </u>	30							
					1]							L_
\dashv				l	$\mid \; \; \mid$							-
\dashv				<u> </u>	$\mid \; \dashv$							\vdash
\exists					35							-
\perp				Juu	$\mid \; $							L
\dashv] -							-
\dashv				سَسَا	40							-
	AMPLER TYPE	SAMPLE CO	NDITIO	DNS		UND	NATER DEP	TH	1	BO	ING METHOD	
DS - DRIVI	EN SPLIT SPOON	D - DISINTI	EGRATED)	AT CC	OMPLE	TION ft			A - HOL	LOW STEM AUGERS	
CA - CONT	SSED SHELBY TUBE FINUOUS FLIGHT AUGER	I - INTACT U - UNDIST			AFTER	R 24 HF	HRS RS ft	π	DC	- DRI	ITINUOUS FLIGHT AUGERS /ING CASING	
RC - ROCK		L - LOST					ft				DRILLING	
STANDARD	STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS											

TE

RECORD OF SOIL / ROCK EXPLORATION

Con	ıtracted	With Gahagan & Brya	nt Associat		JOIL	. / 1		LXI LOIV	~11 0 1	•	Boring	g# PR-1	
Proj	roject Name Task 17 - Seagirt Loop Channel Deepening Job #18-0043												
Loc	ocation Baltimore, MD												
		1144		440			1PLEI	2 :				M 51.1.1	
Datui Surf	m <u> </u>	_LW -0.4 ± ft	Hammer Wt. Hammer Dro				ole Dian ock Cor				eman ector	M. Fletcher D. Patterson	
	Started _	12/7/18	Spoon Size	2 in			oring Me	. Dia			e Comple		
		SOIL DESCRIPTION		STRA	٦	ΞШ		SAN	ИPLE				7
	ELEV. (ft)	Color, Moisture, Density, Plasti Proportions	city, Size	DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
		WATER (continued)											
_					Juu	_							
\dashv] —							_
\exists						45							
					fuu								
] _							
\dashv	40.4			49.0		-							
\exists	-49.4	Gray, wet, very soft, elastic	SILT,	49.0	TITT	50		WOR/18"	1	DS	12		
		(MH)			Ш				·		12		
4					Ш	-		WOR/18"	2	DS	18		
\dashv					Ш	_		***************************************	_		10		_
\exists					Ш	- 55		WOR/18"	3	DS	15		
					Ш			***************************************	3		13		
					Ш	_		WOR/18"	4	DS	18		
\dashv	-58.4	Bottom of Boring at 58.0 ft		58.0	Ш			VVOI\/ 10	4	טפ	10		
+		Bottom of Borning at 50.0 it				60							
						00							
4						_							_
\dashv													_
						65							
						_							
\dashv													
						70							
4													
						<u>75</u>							
						-							
-													-
		AMPLER TYPE S	AMPLE CO	MDITIC) NG	80 GPC	יכואו וי	WATER DEP	TU		POF	RING METHOD	
DS		EN SPLIT SPOON	D - DISINTE		-			TION ft	ıп	HSA		LOW STEM AUGERS	
PT	- PRES	SED SHELBY TUBE INUOUS FLIGHT AUGER	I - INTACT U - UNDIST			AFTE	R	HRS RS ft	ft	CF/	A - CON	TINUOUS FLIGHT AUGERS ING CASING	
	- ROCK		L - LOST			CAV	ED AT	ft				DRILLING	
ST	STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS												

	TE

	RECORD OF SOIL / ROCK EXPLORATION												
Con	Contracted With Gahagan & Bryant Associates Boring # PR- 2												
-	ect Nar		t Loop Cha	nnel D	eepeni	ng					Job #	18-0043	
Loca	ation _	Baltimore, MD											
	SAMPLER												
Datur	mML	LW	Hammer Wt.			_ Hc	ole Dian			Fore	eman _	M. Fletcher	
	Elev	0.7 ± ft	Hammer Dro	•	in		ock Core				ector _	D. Patterson	
Date	Started _	12/12/18	Spoon Size	2 in		_ Bo	ring Me	ethod HSA		Date	e Compl	eted12/12/18	
	EL E. (SOIL DESCRIPTION		STRA	79	ΞЩ		SAI	MPLE			DODING & GAMPLE	
	ELEV. (ft)	Color, Moisture, Density, Plast Proportions	icity, Size	DEPTH (ft)	SYMBOL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
_		WATER			Lun							1. Area 3	
					hu	_						2. 578240.32 N	
4					luu.	_						1440788.45 E	-
\dashv						5							\vdash
					Jun) 							
┪					Jun	-							
_					Jun	10							_
-					Jum	_							H
-						_							\vdash
7] —							
					Jun	15							
					Jun	_							
4] _							-
\dashv					Luu.	_							\vdash
\dashv					Jun	20							H
						20							
4					Jun	_							
4					Jun								-
-						<u>25</u>							_
\dashv] —							
\exists					hun	_							
					<u></u>								
						30							
\dashv													\vdash
\dashv					Jun								\vdash
\dashv						-							<u></u>
\dashv						35							
					Jun								
					fuu								L
\dashv] -							F
\dashv					Jun	40							\vdash
	S	AMPLER TYPE S	SAMPLE CO	NDITIO	DNS		UND	WATER DEP	TH		BOI	ING METHOD	
	- DRIVE	EN SPLIT SPOON	D - DISINTE	EGRATED)	AT CC	OMPLE	TION ft			A - HOL	LOW STEM AUGERS	
		SED SHELBY TUBE INUOUS FLIGHT AUGER	I - INTACT U - UNDIST					HRS RS ft	ft			ITINUOUS FLIGHT AUGERS /ING CASING	
	- ROCK		L - LOST			CAVI	ED AT	ft) DRILLING	
ST	STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS												

	Ι		RECOF	RD OF	SOIL	. / R0	OCK	EXPLOR	ATIO	N			
Contracte	ed WithG	ahagan & Brya	ant Associa	tes							Borin	g# <u>PR-2</u>	
Project N	ameTa	ask 17 - Seagii	rt Loop Cha	annel D	eepeni	ing					Job#		
Location	Ba	altimore, MD											
						SAM	PLEF	3					
Datum	MLLW		Hammer Wt	140	lb	Но	le Diam	neter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	0.7 ± ft		Hammer Dro		in		ck Core				ector _	D. Patterson	
Date Started	12/12/18		Spoon Size	2 in		Boi	ring Me	thod HSA		Date	e Compl	eted12/12/18	
		OIL DESCRIPTION		STRA	٦.	ΞШ		SAM	MPLE				
ELEV. (ft)		Proportions		DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER (co	ontinued)											
					Jun	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $							
4					Jun	\ _							L
						45							<u> </u>
-46.3	,			47.0	m] -							\vdash
-40.3	Brown, wet	, very soft, elasti	c SILT,	47.0	ш			WOR/18"	1	DS	8		\vdash
	(MH)				Ш	_		***************************************	!		O		
					Ш	50		WOR/18"		D0	40		
4					Ш	_		WOR/10	2	DS	18		\vdash
-					Ш	-		MOD/401	_				\vdash
$\overline{}$					Ш	-		WOR/18"	3	DS	18		\vdash
					Ш	55 ■							
					Ш			WOR/18"	4	DS	18		
					Ш	_							L
4					Ш	-		WOR/18"	5	DS	15		\vdash
\dashv					Ш	60 ■							\vdash
-60.3				61.0	Ш	00_		WOR/18"	6	DS	18		
	Bottom of E	Boring at 61.0 ft											
													L
4													\vdash
-						65							<u> </u>
\dashv						_							
\Box													
						70							-
-						_							\vdash
\dashv						_							\vdash
						<u>75</u>							
4													_
4													\vdash
\dashv						-							\vdash
\dashv						80							\vdash
	SAMPLER TY	PE S	SAMPLE CO	ONDITIO	DNS		UNDV	WATER DEP	TH		BOF	RING METHOD	
DS - DRI PT - PRE	VEN SPLIT SPOON ESSED SHELBY TU NTINUOUS FLIGHT	N JBE	D - DISINT I - INTACT U - UNDIST	EGRATEI 「)	AT CO	MPLET	FION ft HRS RS ft	ft	CF/	A - HOL A - CON	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING	
RC - ROC			L - LOST					ft				DRILLING	
STANDAR	RD PENETRATION	TEST DRIVING 2"	OD SAMPLER	1' WITH	140# HA	MMER	FALLIN	NG 30": COUNT	MADE	AT 6" INT	TERVAL	S	

	TE

RECORD OF SOIL / ROCK EXPLORATION

	_	0.1			JUIL	. / 八	UUN	EXPLOR	A1101	• •		DD 0	
Contract		Gahagan & Brya Task 17 - Seagirt			anani	na					Borin		
Project N Location		Baltimore, MD	Loop Ona		<i>э</i> срсііі	iig					Job #	10-00-10	
Location	-					SAM	1PLEI	₹					
	MLLW			140				0 :		_		M. Fletcher	
Datum Surf. Elev.	0.4 ± ft		Hammer Wt. Hammer Dro				ole Dian ock Cor	10101			eman _ bector _	D. Patterson	
Date Starte	d 12/6/18		Spoon Size _	2 in			ring Me				e Comp	eted12/6/18	
					ب ا			SAL	MPLE				7
ELE\ (ft)	/. Color,	SOIL DESCRIPTION , Moisture, Density, Plastic Proportions	city, Size	STRA DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATE	R			uu							1. Area 3	
					Juu	_						2. 577978.12 N	_
4						_						1441071.79 E	\vdash
-						5							\vdash
					Juu	, —							
] _							L
_					Juu								H
					L	10							
					Juu	_							L
_					<u> </u>								L
						<u>15</u>							-
					Juu	-							
					luu.								
] _							L
					Lui	<u>20</u>							<u> </u>
-					ļ	-							\vdash
					Juu	<u>25</u>							<u></u>
_] -							H
\dashv] —							-
					Juu	_							
						30							
													L
\dashv					Juu	_							\vdash
-					<u> </u>	_							-
-						I							
4													\vdash
-					Li.	40							\vdash
	SAMPLER	R TYPE S	AMPLE CC	NDITIO	DNS		UND	NATER DEP	TH		BO	RING METHOD	
	IVEN SPLIT S	POON	D - DISINTE	GRATED)	AT CC	MPLE	TION ft			A - HOL	LOW STEM AUGERS	
CA - CO		BY TUBE LIGHT AUGER	I - INTACT U - UNDIST			AFTE	R 24 H	HRS RS ft	tt	DC	- DRI	ITINUOUS FLIGHT AUGERS /ING CASING	
	ICK CORE RD PENETRA	TION TEST DRIVING 2" (L - LOST	1' \\/\T⊔ ·	140# 44			ft NG 30": COUNT	MADE			D DRILLING S	
CIANDA	LINETIVA	OIT ILOI DIMVING Z	O ONIVII'LLN	, vviiii	. τυπ I IA	.vviட17	/¬LLII	10 00 . OOUNI	INICOL	TO IN	. L. \ V AL	<u> </u>	

	10

RECORD OF SOIL / ROCK EXPLORATION

Con	tracted	l WithGahagan & Bry	ant Associat			.,		LXI LOIG	····		Borin	g# PR-3	
-	ect Naı		rt Loop Cha	nnel D	eepeni	ng					Job #	18-0043	
Loca	ation _	Baltimore, MD						_					
						SAN	/IPLEI						
Datur		_LW 0.4 ± ft					ole Dian				eman _	M. Fletcher D. Patterson	
	Elev Started _	12/6/18	Hammer Dro Spoon Size	p 2 in	111		ock Core oring Me	. Dia			ector e Comple		
Г			,						4DL E				_
	ELEV. (ft)	SOIL DESCRIPTION Color, Moisture, Density, Plas Proportions		STRA DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
\dashv		WATER (continued)			Lun								
					Jun	_							
_					Jun	_							\vdash
\dashv						 45							\vdash
_					Lui.	45_							
					Jun	-							
_						_							\vdash
-	-49.6	Gray, wet, very soft, elastic	SILT.	50.0	 	50		WOD/10"		D0	40		-
-		(MH)	- ,		Ш	-		WOR/18"	1	DS	18		
					Ш	_		WOD/40!					
					Ш			WOR/18"	2	DS	14		
					Ш	<u>55</u>							
-					Ш	-		WOR/18"	3	DS	18		\vdash
_					Ш	_							
	-58.6			59.0				WOR/18"	4	DS	18		
		Bottom of Boring at 59.0 ft				<u>60</u> _							
_						-							\vdash
-						_							\vdash
						_							
\Box						65							
						_							
-						_							\vdash
-						_							
						70							
_						_							\vdash
_						-							\vdash
\dashv						75							\vdash
$\overline{}$						13_							
						_							<u> </u>
\dashv													\vdash
	9	SAMPLER TYPE	SAMPLE CO	NDITIC)NS	80 GRC	יטאוו	WATER DEP	TH		BOF	RING METHOD	
	- DRIVE	EN SPLIT SPOON	D - DISINTE	GRATE)	AT C	OMPLE	TION ft			A - HOLI	LOW STEM AUGERS	
		SED SHELBY TUBE INUOUS FLIGHT AUGER	I - INTACT U - UNDIST			AFTE AFTE	R R 24 H	HRS RS ft	ft			TINUOUS FLIGHT AUGERS /ING CASING	
	- ROCK		L - LOST			CAV	ED AT	ft				DRILLING	
ST	ANDARD	PENETRATION TEST DRIVING 2"	OD SAMPLER	1' WITH	140# HA	MMEF	RFALLI	NG 30": COUNT	MADE	AT 6" INT	ERVAL	S	

	TE

	Well Cohogon 9	Bryant Associa	atoc							. .	,, DD 4	
Contracted		Bryant Associa Seagirt Loop Ch		aanani	na					Borin		
roject Nar			anner De	eepem	ng					Job #	10-0043	
ocation _	DaitiiiiOle,	IVID										
					SAM	1PLEF	Κ					
atumML	LW	Hammer W				le Diam				eman _	M. Fletcher	
urf. Elev	1.1 ± ft	Hammer Dr	•	in		ck Core				ector _	D. Patterson	
ate Started _	12/7/18	Spoon Size	2 in		_ Bo	ring Me	thod HSA		Date	e Compl	leted12/7/18	
5,5,	SOIL DESCRI	PTION	STRA	79	Ξщ		SAN	MPLE			DODING A CAMPIE	
ELEV. (ft)	Color, Moisture, Density Proportio	y, Plasticity, Size	DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 3	
											2. 578283.25 N	
				hi	. –						1440214.8 E	
				Jun								
				fuu	5							
_] _							
4] _							
4				Jun								
-				Jun	10							
\dashv				Jun	$\mid \; \; \dashv \;$							
\dashv \mid				Jun	1 -							
\dashv					Ì -							
-					15							
				Lu.	13							
-				Jun	-							
-				fuu	=							
7				fuu	-							
7					20							
				Jun								
				Jun	_							
_				Jun	<u>25</u>							
_				Jun	_							
⊣					i _							
<u> </u>]							
-												
-				Jun	30							
-				Jun								
\dashv				fuu	-							
\dashv				ļ	$\mid \; \dashv$							
\dashv \mid					35							
 					33							
7				Jun								
7				Jun	$\mid \; \; $							
7				fun	$\mid \; \; $							
<u> </u>				<u> </u>	40							
s	AMPLER TYPE	SAMPLE C	ONDITIO	ONS		UNDV	VATER DEP	TH		BOI	RING METHOD	
DS - DRIVE PT - PRES	EN SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER	D - DISINT I - INTAC U - UNDIS L - LOST	TEGRATED T)	AT CC AFTEI AFTEI	MPLE1 R R 24 HF	TION ft HRS RS ft ft		CF <i>A</i> DC	A - HOL A - CON DRIV	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS VING CASING D DRILLING	

	10

		RECOR	KD OF	SOIL	. / R	OCK	EXPLOR	ATIO	N			
Contracted										Boring	g# <u>PR-4</u>	
Project Na		irt Loop Cha	nnel D	eepen	ing					Job#	18-0043	
Location _	Baltimore, MD											
					SAN	1PLEF	₹					
DatumML	LLW	_ Hammer Wt.	140	lb	Ho	ole Dian	neter 8 in		For	eman	M. Fletcher	
Surf. Elev	1.1 ± ft	_ Hammer Dro	•	in		ock Core				ector	D. Patterson	
Date Started _	12/7/18	_ Spoon Size	2 in		Bo	ring Me	thod HSA		Dat	e Comple	eted 12/7/18	
	SOIL DESCRIPTION	 J	STRA	٦,	Ξщ		SAM	MPLE				
ELEV. (ft)	Color, Moisture, Density, Plas Proportions	ticity, Size	DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER (continued)			tu								
				L.								
4				fuu	\ _							
-												-
				m	45							-
7				Jun	-							
<u>-47.9</u>	O	OU T	49.0									
	Gray, wet, very soft, elastic (MH)	SILI,		Ш	<u>50</u>		WOR/18"	1	DS	18		-
\dashv				Ш								-
				Ш			WOR/18"	2	DS	8		
				Ш								
				Ш	<u>55</u>		WOR/18"	3	DS	18		
-				Ш								\vdash
-56.9			58.0	Ш	-		WOR/18"	4	DS	18		
-30.5	Bottom of Boring at 58.0 ft		30.0		_							
					60							
					_							L
4					-							\vdash
-					_							-
-					65							
					_							L
-					_							_
\dashv					70							H
					10_							
												L
												\vdash
-					<u>75</u>							-
					-							
		0.115.			80			<u></u>				
_	SAMPLER TYPE EN SPLIT SPOON	SAMPLE CO D - DISINTI				_	NATER DEP	TH	ПС		RING METHOD LOW STEM AUGERS	
PT - PRES	SSED SHELBY TUBE	I - INTACT			AFTE	R	HRS	ft	CFA	A - CON	TINUOUS FLIGHT AUGERS	
CA - CONT RC - ROCK	TINUOUS FLIGHT AUGER CORE	U - UNDIST L - LOST	UKBED				RS ft				ING CASING DRILLING	
STANDARD	PENETRATION TEST DRIVING 2'	OD SAMPLER	1' WITH	140# HA	MMER	RFALLI	NG 30": COUNT	MADE	AT 6" IN	TERVALS	8	

10

Contracted With Gahagan & Bryant Associates Boring # PR-5
Date
Datum MILLW
Datum MLLW Hammer Wit, 140 lb Hole Diameter 8 in Foreman M. Fletcher Inspector D. Patterson Date Started 12/7/18 SOIL DESCRIPTION Color, Moleture, Density, Plasticity, Size Proportions STAN DEPTH OF STAN DE
Surf. Elev. 0.2 ± ft Hammer Drop 30 in Spoon Size 2 in Boring Method HSA Date Completed 1277/18 Date Started 1277/18 Date Completed 1277/18
Date Started 12/7/18
ELEV. Color, Moisture, Density, Plasticity. Size STRA DEPTH (ft) O S S Lave Cond Blows/6* No. Type Rec (in) BORING & SAMPLE NOTES
Color, Molisture, Density, Plasticity, Size Proportions DEPTH
WATER 1. Area 3 2. 578091.83 N 1440507.82 E 1. Area 3 2. 578091.83 N 1440507.82 E 1. Area 3 2. 578091.83 N 1440507.82 E
2. 578091.83 N 1440507.82 E
1440607.82 E
1440607.82 E
-
-
40
SAMPLER TYPE SAMPLE CONDITIONS GROUNDWATER DEPTH BORING METHOD DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETIONft HSA - HOLLOW STEM AUGERS
PT - PRESSED SHELBY TUBE I - INTACT AFTER HRS ft CFA - CONTINUOUS FLIGHT AUGERS
CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED AFTER 24 HRSft DC - DRIVING CASING RC - ROCK CORE L - LOST CAVED ATft MD - MUD DRILLING
STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS

	<u>.</u>	KECOF	KD OF	SOIL	_ / K	UCK	EXPLOR	AHO	N			
Contracte										Boring		
Project Na		irt Loop Cha	nnel D	eepen	ing					Job#	18-0043	
Location	Baltimore, MD						_					
					SAN	1PLEI	₹					
Datam	<u>//LLW</u> 0.2 ± ft					ole Dian				eman _	M. Fletcher D. Patterson	
Surf. Elev Date Started		Hammer DroSpoon Size	~ — —	III		ock Core oring Me	C Dia			ector _ e Comple		
			1									
ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Plas	N ticitv. Size	STRA DEPTH	SOIL	DEPTH SCALE			MPLE		Rec	BORING & SAMPLE	
(ft)	Proportions		(ft)	SYN	SC	Cond	Blows/6"	No.	Туре	(in)	NOTES	
	WATER (continued)											
				luu.	√ _							
				Jun	١ _							
_					`							
					45_							-
-				Jun	√ -							
				<u> </u>								
) _							
49.8	Gray, wet, very soft, elastic	· CII T	50.0	│ ╊ ▞▗▞▗ ▞▄	50							_
-	Oray, wet, very sort, elastic	JILI			-		WOR/18"	1	DS	18		
							WOR/18"	2	DS	18		
					55							
					_		WOR/18"	3	DS	18		
-					1 -							
-58.8			59.0		_		WOR/18"	4	DS	18		
	Bottom of Boring at 59.0 ft		55.5		60							
					_							-
\dashv					-							
					65							
_					_							
-					70							\vdash
					10							
					_							
\perp												
-					<u>75</u>							
\dashv					-							
	OAMBLED TVDE	04401 = 66	LIDIT:		80		A/ATED DED			D 0-	DINO METUCE	
	SAMPLER TYPE /EN SPLIT SPOON	SAMPLE CO D - DISINTI		_		_	WATER DEP	'1H	HSA	_	RING METHOD LOW STEM AUGERS	
PT - PRE	SSED SHELBY TUBE ITINUOUS FLIGHT AUGER	I - INTACT U - UNDIST	•	-	AFTE	R	HRS RS ft	ft	CFA	A - CON	ITINUOUS FLIGHT AUGERS /ING CASING	
RC - ROC		L - LOST	UNDED		CAV	ED AT	κ5 π ft				DRILLING	
STANDAR	D PENETRATION TEST DRIVING 2	OD SAMPLER	1' WITH	140# HA	MMER	FALLI	NG 30": COUNT	Γ MADE	AT 6" IN	TERVAL	S	

	TE

RECORD OF SOIL / ROCK EXPLORATION

Contract	Nation Gahadan &	Bryant Associa			JUCK	EXPLOR	A110	IA	Deni-	na # PR- 6	
Contracted Project Na		eagirt Loop Cha		pening					Borin Job #	· J · ·	
Location .	Baltimore, M								0007		
				SAI	MPLEI	₹					
DatumM	LLW	Hammer Wt	140 lb	н	ole Dian	neter 8 in		For	eman _	M. Fletcher	
Surf. Elev	0.8 ± ft	Hammer Dro	op30 in		ock Cor				pector _	D. Patterson	
Date Started .	12/6/18	Spoon Size	2 in	В	oring Me	ethod HSA		Dat	e Comp	leted12/6/18	
	SOIL DESCRIP	PTION	STRA _	7 1		SA	MPLE				\neg
ELEV. (ft)	Color, Moisture, Density, Proportions	Plasticity, Size	DEPTH (ft)	SYMBOL DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER			$\overline{\Box}$	1					1. Area 3	
										2. 577852.7 N	
_				~~ _	4					1440848.53 E	
4					-						F
				₩5_	-						-
-				- h	1						\vdash
-				- ···	1						
					1						
				10							
											L
				~~ _	-						-
_					-						
_				15	1						
				13	1						
				~ ~	1						
				20_	4						_
-				- L	-						\vdash
-					1						-
					1						\vdash
				25							
				~ _							
4											
_			1 1	- لس	-						_
				$\sim \frac{30}{2}$	1						
-				-	1						
7					1						
				- 3 <u>5</u>]						
\exists				~ _							
_											
\dashv			1 1								\vdash
\dashv				40	-						
	AMPLER TYPE	SAMPLE CO			יחאטכ	WATER DEF	TH		BΩ	LING METHOD	
DS - DRIVE	EN SPLIT SPOON	D - DISINT	EGRATED	AT C	OMPLE	TION ft			A - HOL	LOW STEM AUGERS	
CA - CONT	SSED SHELBY TUBE FINUOUS FLIGHT AUGER	I - INTACT U - UNDIST		AFTE	R 24 H	HRS RS ft	ft	DC	- DRI	NTINUOUS FLIGHT AUGERS VING CASING	
RC - ROCK		L - LOST		CA\	/ED AT	ft				D DRILLING	
STANDARD	PENETRATION TEST DRIVIN	NG 2" OD SAMPLEF	R 1' WITH 140	# HAMME	R FALLI	NG 30": COUN	I MADE	AT 6" IN	IERVAL	.S	

	TO

			RECOR	D OF	SOIL	. / R	OCK	EXPLORA	OITA	N			
Con	tracted	l WithGahagan & Bryar	nt Associat	es							Borin	g# <u>PR-6</u>	
Proj	ject Na	meTask 17 - Seagirt	Loop Cha	nnel De	eepeni	ng					Job#	-	
Loc	ation ₋	Baltimore, MD											
						SAN	1PLE	R					
Datur	mML	LLW	Hammer Wt.	140	lb	_ Hc	le Dian	neter 8 in		For	eman	M. Fletcher	
	Elev	0.8 ± ft	Hammer Dro		in		ck Cor	e Dia. N/A			ector _	D. Patterson	
Date	Started _	12/6/18	Spoon Size	2 in		_ Bo	ring Me	ethod HSA		Dat	e Comple	eted12/6/18	
[SOIL DESCRIPTION		STRA	٦.	ΤШ		SAN	//PLE				
_	ELEV. (ft)	Color, Moisture, Density, Plastic Proportions	ity, Size	DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
\dashv		WATER (continued)				_							
] _							
					Juu								
4													_
-						45							-
\dashv					Juu	-							
					luu.	_							
					Juu	50							
+	-50.2	Gray, wet, very soft, elastic \$	SILT.	51.0				MOD/40"					-
\dashv		(MH)	,		Ш	-		WOR/18"	1	DS	14		
\exists					Ш								
					Ш	55		WOR/18"	2	DS	18		
4					Ш	_							_
\dashv					Ш	_		WOR/18"	3	DS	18		\vdash
\dashv					Ш								-
\exists	-59.2			60.0	Ш	60		WOR/18"	4	DS	18		
		Bottom of Boring at 60.0 ft											
4						_							
\dashv						_							\vdash
+						65							
						05_							
4						_							
\dashv													_
						70							
\dashv													
\perp						_							L
						<u>75</u>							_
\dashv						-							-
\dashv						-							
						80							
DO			AMPLE CO					WATER DEP	TH			RING METHOD	
PT	- PRES	EN SPLIT SPOON SED SHELBY TUBE	D - DISINTE			AFTE	₹	TION ft HRS	_ ft	CFA	A - CON	LOW STEM AUGERS TINUOUS FLIGHT AUGERS	
	A - CONT C - ROCK	INUOUS FLIGHT AUGER CORE	U - UNDIST L - LOST	URBED		AFTEI CAVI	R 24 HI ED AT	RS ft				/ING CASING DRILLING	
ST	ANDARD	PENETRATION TEST DRIVING 2" C	DD SAMPLER	1' WITH	140# HA	MMER	FALLI	NG 30": COUNT	MADE	AT 6" IN	ΓERVALS	S	

	10

		RECOF	RD OF	SOIL	. / R	ОСК	EXPLOR	ATIO	N			
Contracted										Borin	T	
Project Na		<u> </u>	annel D	eepeni	ng					Job #	<u> 18-0043</u>	
Location ₋	Baltimore, MD	<u> </u>										
					SAM	IPLEF	₹					
DatumM	LLW	Hammer Wt	140	lb	_ Ho	le Diam	neter 8 in		For	eman _	M. Fletcher	
Surf. Elev	1.0 ± ft	Hammer Dro	•	in						ector _	D. Patterson	
Date Started _	12/10/18	Spoon Size	2 in		Bo	ring Me	thod HSA		Dat	e Comp	leted12/10/18	
5.5 7	SOIL DESCRIPTION	ON	STRA	79	Ξщ		SAI	MPLE				
ELEV. (ft)	Color, Moisture, Density, Pl Proportions		DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 2	
				uu	$\rfloor \ \Box$						2. 577490.31 N	
_				Jun	$\downarrow $ \downarrow						1440874.29 E	
\dashv]							
				- Jun	5							-
				Jun	$\downarrow \ \dashv$							
_												
				Jun	10							_
\dashv												
				h	lacksquare							
				ļ	<u>15</u>							
4												
-					\rfloor $-$							
				Jun	\dashv							
					20							
_				luu.	-							
-				ļ	\vdash							-
-24.0			25.0		 25							
-24.0	Black, wet, very soft, elas	stic SILT,	20.0	Ш	25		WOR/18"	1	DS	10		
	(MH)			Ш								
				Ш	-		WOR/18"	2	DS	12		
_				Ш			***************************************	_		12		
_				Ш	30		WOR/18"	3	DS	14		
				Ш	=		VVOIV 10	3	טס	14		
				Ш			MOD/40!	١.				
33.0			34.0		▎▋		WOR/18"	4	DS	15		
	Dark gray, wet, very soft, SILT	eiastic			35		MOD/10"					
- <u>35.5</u>			<u>36.5</u>		-		WOR/18"	5	DS	15		\vdash
1	Gray, wet, very soft, elas	tic SILT			-							
]		WOR/18"	6	DS	15		
					40							
	SAMPLER TYPE	SAMPLE CO					NATER DEP	TH			RING METHOD	
PT - PRES CA - CONT	EN SPLIT SPOON SED SHELBY TUBE FINUOUS FLIGHT AUGER	D - DISINT I - INTACT U - UNDIST	Γ		AFTER AFTER	R R 24 HF	FION ft HRS RS ft	ft	CF/ DC	A - CON DRIN -	LOW STEM AUGERS NTINUOUS FLIGHT AUGERS VING CASING	
RC - ROCK	(CORE) PENETRATION TEST DRIVING	L - LOST	ᄭᄿᄭᄑᄓ	1⊿∩# ⊔^			ft	MADE			D DRILLING	

		RECO	RD OF	SOIL	_ / R	OCK	EXPLOR	ATIO	N			
Contracted										Borin		
Project Na		irt Loop Ch	annel De	eepeni	ing					Job#	18-0043	
Location ₋	Baltimore, MD											
					SAM	1PLEF	₹					
DatumML	LLW	_ Hammer W	/t140	lb	Ho	le Dian	neter 8 in		For	eman _	M. Fletcher	
Surf. Elev	1.0 ± ft	_ Hammer D		in		ck Core				ector _	D. Patterson	
Date Started _	12/10/18	_ Spoon Size	2 in		Bo	ring Me	thod HSA		Dat	e Compl	eted12/10/18	
5.5 7	SOIL DESCRIPTION	N	STRA	그리	Ξщ		SAM	MPLE			DODING A GALIDI E	\neg
ELEV. (ft)	Color, Moisture, Density, Plas Proportions	ticity, Size	DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
_	Gray, wet, very soft, elastic (continued)	SILT			-		WOR/18"	7	DS	18		
							WOR/18"	8	DS	14		
					<u>45</u> –		WOR/18"	9	DS	18		
					-		WOR/18"	10	DS	18		
_					50		WOR/18"	11	DS	18		
							WOR/18"	12	DS	18		
_					<u>55</u>		WOR/18"					_
					-			13	DS	18		
-58.0	Bottom of Boring at 59.0 ft		59.0		60		WOR/18"	14	DS	15		
_					65							F
												\perp
_												_
-					70							\vdash
					10							
					75							
_												\vdash
_												\vdash
\dashv												\vdash
-					90							\vdash
S	SAMPLER TYPE	SAMPLE C	ONDITIO) NS	80 GRO	UND	NATER DEP	TH		BOF	RING METHOD	
DS - DRIVE PT - PRES	EN SPLIT SPOON ISED SHELBY TUBE TINUOUS FLIGHT AUGER	_	TEGRATED T	_	AT CC AFTER AFTER	OMPLE ^T R R 24 HF	TION ft HRS RS ft		CF/	A - HOL A - CON	LOW STEM AUGERS TINUOUS FLIGHT AUGERS VING CASING	
	RC - ROCK CORE L - LOST CAVED AT											

Contracted Project Nar	meTask 17 - Sea	girt Loop Cha		eepeni	ng					Borin Job #		
_ocation _	Baltimore, MD)					_					
					SAM	PLEF	₹					
Jataiii	_LW 1.0 ± ft	Hammer Wt.	00			le Diam	A1/A			eman _	M. Fletcher D. Patterson	
Surf. Elev Date Started _	12/10/18	Hammer DropSpoon Size _	2 in			ck Core ring Me	, Dia		InspectorD. Patterson Date Completed12/10/18			
											1	
ELEV. (ft)	SOIL DESCRIPTI Color, Moisture, Density, Pl Proportions		STRA DEPTH (ft)	SYMBOL	DEPTH SCALE	Cond	SAN Blows/6"	MPLE No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 2	
											2. 577206.57 N 1440904.41 E	
					5							
_					10							_
] -							
					15 —							
												_
-21.0			22.0		_							L
-22.5	Gray, wet, very soft, elas		<u>23.5</u>		-		WOR/18"	1	DS	14		
	SILT, (MH)				<u>25</u> _		WOR/18"	2	DS	18		
					-		WOR/18"	3	DS	18		
_					<u>30</u> _		WOR/18"	4	DS	18		
-32.5	Gray, wet, very soft, elas	tic SILT,	<u>33.5</u>				WOR/18"	5	DS	18		
_	(MH)	ŕ			<u>35</u>		WOR/18"	6	DS	18		
					T		WOR/18"	7	DS	18		
	AMPLER TYPE	SAMDI E CO	MDITIC	IIII Ne	40 ■	יטואוו	NATED DED	TH		BO.	 RING METHOD	
DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT PT - PRESSED SHELBY TUBE I - INTACT AF						GROUNDWATER DEPTH AT COMPLETION ft						

	<u>JT</u>	REC	ORD OF	SOIL	_ / R	OCK	EXPLOR	ATIO	N			
Contract		agan & Bryant Asso								Borin		
-		k 17 - Seagirt Loop (Channel De	epeni	ing					Job#	18-0043	
Location	nBalti	imore, MD										
					SAM	1PLEF	₹					
Datum	4.0 . 6	Hammer	00			le Dian				eman _	M. Fletcher	
Surf. Elev. Date Starte		Hammer Spoon S		in		ck Core				ector _ e Comple	D. Patterson	
Date Starte		Opodii d	126						Dat	e Compi	1	
ELE	V. Color Moisture	DESCRIPTION e, Density, Plasticity, Size	STRA DEPTH	SOIL	DEPTH SCALE		SAM	MPLE		Rec	BORING & SAMPLE	
(ft)		Proportions	(ft)	SX.	SC	Cond	Blows/6"	No.	Туре	(in)	NOTES	
+	Gray, wet, ver	ry soft, elastic SILT ,		Ш	1-1		WOR/18"	8	DS	18		
	(MH) (continue	ed)										
					_		WOR/18"	9	DS	18		_
\dashv					15							\vdash
					45_		WOR/18"	10	DS	18		
_					_		WOR/18"	11	DS	18		-
-					50 ■							\vdash
							WOR/18"	12	DS	18		
					_							
-					_		WOR/18"	13	DS	18		-
					 55 ■							
							WOR/18"	14	DS	18		
4					1		14/05/40!!					\vdash
\dashv					-		WOR/18"	15	DS	18		\vdash
					60		WOR/18"	40	D0	40		
-60.	.0 Bottom of Bor	ing at 61.0 ft	61.0				WOIN/10	16	DS	18		-
+	Bottom of Bot	ing at 01.0 it			_							\vdash
					<u>65</u>							<u> </u>
-					_							\vdash
					_							
					70							-
					-							
_												\vdash
$\overline{}$					<u>75</u>							-
_												-
\dashv					80							\vdash
	SAMPLER TYPE	SAMPLE	CONDITIO) NS		UND	NATER DEP	TH		BOF	RING METHOD	
	RIVEN SPLIT SPOON RESSED SHELBY TUBE	D - DIS	INTEGRATED		AT CC	MPLE	TION ft			A - HOL	LOW STEM AUGERS	
CA - CC	ONTINUOUS FLIGHT A		DISTURBED		AFTER	R 24 HF	HRS RS ft ft	_ "	DC	- DRIV	/ING CASING	
	OCK CORE ARD PENETRATION TE	EST DRIVING 2" OD SAMP		140# HA				MADE			DRILLING S	

	TE

	RECORD OF SOIL / ROCK EXPLORATION											
Contracted										Borin		
Project Nar		rt Loop Cha	innel De	eepeni	ng					Job #	<u> 18-0043</u>	
Location _	Baltimore, MD											
					SAM	1PLEF	₹					
DatumML	LW	Hammer Wt.	140	lb	_ Ho	ole Dian	neter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	1.0 ± ft	Hammer Dro		in		ck Core				ector _	D. Patterson	
Date Started _	12/14/18	Spoon Size	2 in		_ Bo	ring Me	thod HSA		Date	e Comp	leted12/14/18	
	SOIL DESCRIPTION STRA JO			II II SAMPLE								
ELEV. (ft)	Color, Moisture, Density, Plast Proportions		DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 2	
				Luu	lacksquare						2. 577067.3 N	
				Juu	 						1441281.03 E	
4					1 -							_
_					5							
\dashv				Luu	-							_
-				Juu	-							
					1 7							
					10							
				Luu								
_				Juu								
-					1 -							
\dashv					15							_
				Juu	ļ <u> </u>							
				Juu	$1 \Box$							
4] _							_
-				Juu	20							
-				<u> </u>	-							
7												
				Luu	$oxed{}$							
				Juu	25_							
4					1 4							
-] -							_
-				l								
-				Juu	30							
					1							
				l	_							
4				Juu								
-					35							_
\dashv] -							-
-				Jun								
				ļ								
				<u> </u>	40							
		SAMPLE CO					NATER DEP	PTH			RING METHOD	
PT - PRES	EN SPLIT SPOON SED SHELBY TUBE 'INUOUS FLIGHT AUGER (CORE	D - DISINTI I - INTACT U - UNDIST L - LOST	•		AFTE!	R R 24 HF	FION ft HRS RS ft ft	ft	CF <i>A</i> DC	- CON DRIV -	LOW STEM AUGERS NTINUOUS FLIGHT AUGERS VING CASING D DRILLING	
STANDARD	STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS											

	TE

		RECO	RD OF	SOIL	. / R0	OCK	EXPLOR	ATIO	N			
Contracted	WithGahagan & E	Bryant Associa	ates							Borin	g# <u>PR-9</u>	
Project Nar		agirt Loop Ch	annel D	eepeni	ng					Job#		
Location _	Baltimore, Mi	D										
					SAM	PLEF	₹					
DatumML	LW	Hammer W	140	lb	Hol	le Diam	neter 8 in		For	eman	M. Fletcher	
Surf. Elev	1.0 ± ft	Hammer Dr	00	in		ck Core				ector _	D. Patterson	
Date Started _	12/14/18	Spoon Size	2 in		_ Bor	ring Me	thod HSA		Dat	e Compl	eted12/14/18	
	SOIL DESCRIPT	ION .	STRA	٦. ٦	ΞШ		SAI	MPLE				
ELEV. (ft)	Color, Moisture, Density, F Proportions		DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER (continued)				-							
				Jun	$\lfloor \ \ \rfloor$							
				ļ	1 4							L
					45							-
\dashv				uu] -							\vdash
-				Jun								\vdash
7				ļ								
					50							
				Luu.								L
<u>-51.0</u>	Black, wet, very soft, ela	notic CILT	52.0	<u> </u>								\vdash
-52.5	•		53.5	Ш	_		WOR/18"	1	DS	6		\vdash
-	Gray, wet, very soft, ela	stic SILT ,			55 ■							\vdash
	(IVII I)			Ш	<u> 55_</u>		WOR/18"	2	DS	10		
				Ш	_							
				Ш			WOR/18"	3	DS	12		
				Ш	_							L
			1	Ш	<u>60</u>		WOR/18"	4	DS	18		<u> </u>
-60.0	Bottom of Boring at 61.0) ft	61.0	11111								\vdash
\exists					_							\vdash
					65							
												L
_					_							\vdash
_					_							-
-					70							\vdash
					10_							
4												\vdash
_					<u>75</u>							_
-					-							\vdash
												\vdash
7 1												
					80							
S	AMPLER TYPE	SAMPLE C	ONDITIO				WATER DEP	тн		BOI	RING METHOD	·
PT - PRESS CA - CONT	EN SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER CORE	D - DISINT I - INTAC U - UNDIS L - LOST	Т		AFTEF AFTEF	R R 24 HF	FION ft HRS RS ft		CF/ DC	A - CON DRIN -	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING	
	RC - ROCK CORE L - LOST CAVED ATft MD - MUD DRILLING STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS											

	TE

RECORD OF SOIL / ROCK EXPLORATION

	_	0-1-			JUIL	. / 🔨	UUN	EXPLOR	A110	14		DD 40	
Contract		Gahagan & Brya Task 17 - Seagir			eneni	na					Borin Job #	•	
Project N Location		Baltimore, MD	LOOP ONA	IIIICI D	серст	iig_					JOD #		
Location		,				SAN	/IPLEI	₹					
Datum	MLLW		Llamanaar \\/t	140				0.		Fa.		M. Fletcher	
Surf. Elev	1.7 ± ft		Hammer Wt. Hammer Dro				ole Dian ock Cor	10101			eman _ bector _	D. Patterson	
Date Starte	d12/14/1	8	Spoon Size	2 in			oring Me				e Comp	leted12/14/18	
								911	MPLE				7
ELEV (ft)	/. Color	SOIL DESCRIPTION , Moisture, Density, Plastic Proportions	city, Size	STRA DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATE	R			L							1. Area 1	
					Juu	_						2. 576427.13 N	L
					Jun	_						1441383.55 E	F
$\overline{}$						5 —							\vdash
					Jun	\ -							
					fuu								
						_							L
\dashv					Jun								\vdash
					Jun	10							<u> </u>
\Box					Jun								
_					Jun								L
						15_							_
\exists					Jun	–							
					fuu	_							
					m	<u>20</u>							
\dashv					Jun	-							\vdash
\exists						_							-
] _							
					Jun	<u>25</u>							
_													-
\dashv] —							\vdash
-					Jun	_							
					<u> </u>	30							
													L
_					Jun	_							\vdash
\dashv					Juu	_							H
-						I							\vdash
						\ <u> </u>							
					Juu	\							
_						_							
\perp					Jun	40							\vdash
	SAMPLER	R TYPE S	AMPLE CO	NDITIC	DNS		UND	WATER DEP	· PTH		BO	│ RING METHOD	
	IVEN SPLIT S	POON	D - DISINTE	GRATED)	AT CO	OMPLE	TION ft			A - HOL	LOW STEM AUGERS	
CA - CO	ESSED SHELI NTINUOUS FI ICK CORE	BY TUBE LIGHT AUGER	I - INTACT U - UNDIST L - LOST			AFTE	R 24 HI	HRS RS ft ft	ft	DC	- DRI	ITINUOUS FLIGHT AUGERS VING CASING D DRILLING	
		TION TEST DRIVING 2" (1' WITH	140# HA				Γ MADE				
S., 111D/1							, ۱۲۲			>		:=	

TE

		RECO	RD OF	SOIL	. / R0	CK	EXPLOR	ATIO	N			
Contracted	WithGahagan & B	ryant Associa	ates							Borin	g# PR-10	
Project Nar	meTask 17 - Sea	agirt Loop Ch	annel D	eepeni	ing					Job#	·	
Location _	Baltimore, MI)										
					SAM	IPLEF	₹					
DatumML	LLW	Hammer W	t 140	lb	Но	le Diam	neter 8 in		For	eman _	M. Fletcher	
Surf. Elev	1.7 ± ft	Hammer Dr				ck Core	10to1			ector _	D. Patterson	
Date Started _	12/14/18	Spoon Size	2 in		Boi	ring Me	thod HSA		Date	e Compl	eted12/14/18	
	OOU DECODINE		0.704	٦	T		SAM	MPLE				
ELEV. (ft)	SOIL DESCRIPT Color, Moisture, Density, P Proportions		STRA DEPTH (ft)	SYMBOL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER (continued)				-							-
												_
				Jun	lacksquare							
				Jun	\ _							
					45							
] -							
-				Jun	$\mid - \mid$							
-47.3			49.0		1 -							
	Black, wet, very soft, ela	stic SILT		Ш	50		WOR/18"	1	DS	6		
				Ш	_							
				Ш	-		WOR/18"	2	DS	8		
<u>-51.3</u>	Gray, wet, very soft, elas	stic SILT	<u>53.0</u>	╂╂╂╂								
-	- , , , , ,			Ш	55		WOR/18"	3	DS	14		_
				Ш	30_		***************************************	3	03	14		
				Ш			WOR/18"		D0	4.4		
				Ш	_		WUR/10	4	DS	14		
-				Ш	-		14.00.4.00					
-58.8			60.5	ШЦ	<u>60</u>		WOR/18"	5	DS	14		_
	Bottom of Boring at 60.5	π										
					_							
_					65							
_					_							_
-					_							
					70							
_												
-					-							\vdash
\dashv												\vdash
					75							
												L
4												L
					00							\vdash
	AMPLER TYPE	SAMPLE C	ONDITIO	ONS	GRO	וחאטי	WATER DEP	TH		ROI	RING METHOD	
DS - DRIVE	EN SPLIT SPOON	D - DISINT	EGRATE)	AT CC	MPLET	ΓΙΟΝ ft			A - HOL	LOW STEM AUGERS	
	SED SHELBY TUBE INUOUS FLIGHT AUGER CORE	I - INTAC U - UNDIS L - LOST			AFTEF AFTEF	R R 24 HF	HRS RS ft ft		DC	- DRI\	ITINUOUS FLIGHT AUGERS /ING CASING) DRILLING	
STANDARD	PENETRATION TEST DRIVING	3 2" OD SAMPLE	R 1' WITH	140# HA	MMER	FALLI	NG 30": COUNT	MADE	AT 6" INT	TERVAL	S	

Location DatumMLLV Surf. Elev1 Date Started ELEV. (ft)	Tidiffii	STRA e DEPTH	in	_ Ho _ Ro	IPLER	0 :					
Surf. Elev1 Date Started	1.4 ± ft Hamm 12/11/18 Spoor SOIL DESCRIPTION Color, Moisture, Density, Plasticity, Size Proportions	ner Drop 30 1 Size 2 in STRA DEPTH	in	_ Ho _ Ro	le Diam	0 :					
Surf. Elev1 Date Started ELEV.	1.4 ± ft Hamm 12/11/18 Spoor SOIL DESCRIPTION Color, Moisture, Density, Plasticity, Size Proportions	ner Drop 30 2 in Size 2 in STRA		_ Ro				Fore	eman _	M. Fletcher	
ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Plasticity, Size	STRA DEPTH		Bo	ck Core	Dia. N/A			ector _	D. Patterson	
	Color, Moisture, Density, Plasticity, Size Proportions	e DEPTH		_ 50	ring Met	thod HSA		Date	e Compl	eted12/11/18	
	Proportions	e DEPTH	⊣%	王 _믜		SAN	ИPLE			BORING & SAMPLE	
- - - - - - - - - - - - - - - - - - -	WATER	(ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
- - - - - - - - - - - - - - - - - - -										1. Area 1	_
										2. 576187.01 E	
- - - - - - - - -			m							1441274.66 N	
											_
				5							-
- - - -											
<u>-</u>											_
			Jun	10							\vdash
			Jun	\dashv							-
											-
			Jun	15_							
											-
-] $-$							
				20							_
-			Jun	\vdash							-
-21.6		23.0									
_	Black, wet, very soft, elastic SILT		Ш	_		WOR/18"	1	DS	6		
			Ш	<u>25</u>							
			Ш	_		WOR/18"	2	DS	8		
			Ш								
_			Ш	30		WOR/18"	3	DS	15		-
			Ш	<u>50</u>		1440 D / 401					
			Ш]		WOR/18"	4	DS	18		
_			Ш			WOR/18"	_	D0			-
			Ш	- 35		WOR/16	5	DS	3		
				-		WOR/18"	6	DS	15		
-35.6	Gray, wet, very soft, fat CLAY	37.0							10		\vdash
	,, , , , , 					WOR/18"	7	DS	18		
				40		-					
_	MIDLED TVDE										
PT - PRESSE CA - CONTIN	_	LE CONDITION DISINTEGRATEI			_	VATER DEP	TH	ЦС/		RING METHOD LOW STEM AUGERS	

	TE

		RECO	RD OF	SOIL	_ / R0	OCK	EXPLOR	ATIO	N			
Contracted										Boring		
Project Nan		irt Loop Ch	annel D	eepen	ing					Job#	18-0043	
_ocation	Baltimore, MD											
					SAM	IPLEF	₹					
DatumMLI		_ Hammer W			Ho	le Diam			For	eman	M. Fletcher	
Oui i. Licv	1.4 ± ft	_ Hammer Di		in		ck Core				ector _	D. Patterson	
Date Started _	12/11/18	_ Spoon Size	2 in		Bo	ring Me	thod HSA		Dat	e Comple	eted12/11/18	
51.57	SOIL DESCRIPTION	١	STRA	_ <u>_</u>	ୂ프		SAM	MPLE			DODING & GAMPLE	
ELEV. (ft)	Color, Moisture, Density, Plas Proportions	ticity, Size	DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	Gray, wet, very soft, fat CL (continued)	AY			1		WOR/18"	8	DS	18		
					45		WOR/18"	9	DS	18		
					1		WOR/18"	10	DS	18		
					50 _		WOR/18"	11	DS	18		
					_ _		WOR/18" WOR/18"	12	DS	18 18		
_					<u>55</u> -		WOR/18"	14	DS	18		_
-58.1			59.5		60		WOR/18"	15	DS	18		
	Bottom of Boring at 59.5 ft											
					<u>65</u>							_
					70							F
					75 —							
S	AMPLER TYPE	SAMPLE C	ONDITIO	ONS			VATER DEP	TH		BOF	RING METHOD	
PT - PRESS CA - CONTI RC - ROCK	N SPLIT SPOON SED SHELBY TUBE NUOUS FLIGHT AUGER CORE PENETRATION TEST DRIVING 2'	D - DISIN' I - INTAC U - UNDIS L - LOST	T STURBED		AFTER AFTER CAVE	R R 24 HF ED AT _	TION ft ft ft ft ft		CFA DC MD	A - CON - DRIV - MUD	LOW STEM AUGERS TINUOUS FLIGHT AUGERS ING CASING DRILLING	

Contracted		Bryant Associate		ononi	n a					Borin		
Project Nar ocation _		eagirt Loop Char ID	inei De	epeni	ng					Job #	#18-0043	
ocation _					SAM	IPLEF						
atura MI	LW	Llowers or \A/t	140	lb			0.		Гот.		M. Fletcher	
atum ^{ML} urf. Elev	1.2 ± ft	Hammer Wt Hammer Drop				le Diam ck Core	N1/A			eman _ pector _	D. Patterson	
ate Started _	12/12/18	Spoon Size _	2 in			ring Me				e Comp	leted12/12/18	
	OOU DECODIE	TION	OTDA	٦	T.III		SAM	MPLE				\neg
ELEV. (ft)	SOIL DESCRIP Color, Moisture, Density, Proportion:	Plasticity, Size	STRA DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 1	H
											2. 575994.1 N	
_				uu	-						1441432.01 E	
4				uu	-							L
_					5							
\perp] -							\vdash
-				uu	-							\vdash
-				m	-							\vdash
-				uu	10							\vdash
7					10_							
]												
				uu								
				uu	_							L
				ww	15							
-] —							\vdash
-					-							\vdash
-				ww	-							\vdash
				uu	20							
-21.8			23.0	~~~								L
_	Black, wet, very soft, e	lastic SILI		Ш	_		WOR/18"	1	DS	7		-
-				Ш	25_							-
-				Ш	_		WOR/18"	2	DS	10		\vdash
\dashv				Ш	_							\vdash
1				Ш			WOR/18"	3	DS	10		
				Ш	30		WOITIO			10		
				Ш			MOD/401		D0	40		
-30.8			<u>32.0</u>	Ш			WOR/18"	4	DS	10		\vdash
4	Brown, dark gray, wet, elastic SILT ,	very soil,										-
-	(MH)				٦-		WOR/18"	5	DS	10		\vdash
\dashv					35							-
7					-		WOR/18"	6	DS	12		F
							WOR/18"	7	DS	12		
	AMBI ED 3/0-	041151 = 05	ND:		40						DINO METUOT	
	AMPLER TYPE EN SPLIT SPOON	SAMPLE CO D - DISINTE					VATER DEP	1H	пе		RING METHOD LOW STEM AUGERS	
PT - PRESS	SED SHELBY TUBE	I - INTACT			AFTER	₹	HRS	ft	CFA	A - CON	NTINUOUS FLIGHT AUGERS	
RC - ROCK	INUOUS FLIGHT AUGER	U - UNDISTU L - LOST	UKDED		AFIE	\	RS ft				VING CASING D DRILLING	

		RECORD	OF	SOIL	. / R0	OCK	EXPLOR	ATIO	N			
Contracted										Boring	-	
Project Nar		Loop Chann	nel De	epeni	ng					Job#	18-0043	
Location _	Baltimore, MD											
					SAM	IPLEF	₹					
Datairi	1.2 ± ft	Hammer Wt	140 I 30 i			le Diam				eman	M. Fletcher D. Patterson	
Surf. Elev Date Started _		Hammer Drop _ Spoon Size	2 in	11		ck Core				ector e Comple		
		opoon oize				inig ivic				Oompi		
ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Plastic	ity Sizo	STRA EPTH)L BOL	DEPTH SCALE		SAM	/IPLE			BORING & SAMPLE	
(ft)	Proportions	ity, Size	(ft)	SOIL SYMBOL	SC/	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
	Brown, dark gray, wet, very s elastic SILT, (MH) (continued)	soft,					WOR/18"	8	DS	18		
					45		WOR/18"	9	DS	18		
					_		WOR/18"	10	DS	18		
				Ш	50		WOR/18"	11	DS	18		
-				Ш	_		WOR/18"	12	DS	18		
				Ш	<u>55</u> _		WOR/18" WOR/18"	13	DS	18		
				Ш			WOR/18"	15	DS	18		
<u>-58.3</u>	Bottom of Boring at 59.5 ft	;	<u>59.5</u>		60							
					_							
_					<u>65</u> —							
												<u> </u>
					70							-
7												\vdash
]												
					<u>75</u>							<u> </u>
4												\vdash
+					-							\vdash
\dashv					$\mid \; \dashv$							\vdash
					80							
_		AMPLE CON	_	_			WATER DEP	TH		_	RING METHOD	
PT - PRESS	EN SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER CORE PENETRATION TEST DRIVING 2" C	D - DISINTEGI I - INTACT U - UNDISTUF L - LOST	RBED		AFTEF AFTEF CAVE	R R 24 HF ED AT	FION ft HRS RS ft ft		CF <i>A</i> DC MD	A - CON - DRIV - MUD	LOW STEM AUGERS TINUOUS FLIGHT AUGERS /ING CASING DRILLING	

	TE

Contracted	With Gahagan & Bry	<u>'ant Associa</u>	tes							Borin	ng # PR-13	
Project Nar		irt Loop Cha	nnel De	eepeni	ng					Job #	T	
Location _	Baltimore, MD											
					SAN	1PLEF	₹					
DatumML	LW	_ Hammer Wt.	140	lb	Нс	ole Diam	neter 8 in		For	eman _	M. Fletcher	
Surf. Elev.	1.2 ± ft	_ Hammer Dro				ck Core	10tol			eman _ ector _	D. Patterson	
Date Started _	12/12/18	_ Spoon Size	2 in		_ Bo	ring Me	thod HSA		Dat	e Comp	leted12/12/18	
	OOU DECODIDATION		OTD4	٦	-		SAM	MPLE				\neg
ELEV. (ft)	SOIL DESCRIPTIOI Color, Moisture, Density, Plas Proportions	N sticity, Size	STRA DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 1	
											2. 575717.76 N 1441578.68 E	
-					5							H
				Juu	\ <u> </u>							
-				l	-							\vdash
1					10							
4				Juu	_							-
-] —							\vdash
\dashv] — 15							
				Juu								
4					_							F
-				l	_							\vdash
-					20							
4				Juu	_							-
-22.8			24.0		-							\vdash
-22.0	Black, wet, very soft, elast	ic SILT	24.0		25		WOR/18"	1	DS	8		

4					-		WOR/18"	2	DS	10		\vdash
-					-		WOIV 10	_				\vdash
					30		WOR/18"	3	DS	12		
							WOIV 10			12		
					-		WOR/18"	4	DS	10		
-					4		WOR/10	4	53	10		H
\dashv					35		WOR/18"	5	DS	12		\vdash
-34.3	Gray, wet, very soft, elastic	SIIT	<u>35.5</u>	Ш			VVOIV/10			12		
	(MH)	J CILI,					WOR/18"	6	DS	14		
-							WOR/10	"	53	14		\vdash
\dashv					40		WOR/18"	7	DS	18		\vdash
S	AMPLER TYPE	SAMPLE CO	ONDITIO	DNS		UND	WOR/18" VATER DEP		נט		RING METHOD	
DS - DRIVE PT - PRESS	N SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER	D - DISINTI I - INTACT U - UNDIST	EGRATED)	AT CO	OMPLET	TION ft HRS RS ft		CF/	A - HOL A - CON	LOW STEM AUGERS NTINUOUS FLIGHT AUGERS VING CASING	

		RECO	RD OF	SOIL	_ / ROC	CK EXPLORA	ATIO	N			
Contracted									Boring		
Project Nar		t Loop Ch	annel De	eepen	ing				Job#	18-0043	
Location _	Baltimore, MD										
					SAMPI	LER					
Datum	LW				Hole [Diameter 8 in			eman	M. Fletcher	
Surf. Elev Date Started _	1.2 ± ft 12/12/18	Hammer Di Spoon Size		in		Core Dia. N/A Method HSA			ector e Comple	D. Patterson	
Date Started _	12, 12, 10	Spoort Size			BOIIIQ	, would		Dati	e Compi		
ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Plast	icity Size	STRA DEPTH	SF B	DEPTH SCALE	SAM	MPLE			BORING & SAMPLE	
(ft)	Proportions	ioity, oize	(ft)	SOIL	SC E	ond Blows/6"	No.	Туре	Rec (in)	NOTES	
	Gray, wet, very soft, elastic	SILT,		ш							
7	(MH) (continued)			Ш							
				Ш		WOR/18"	8	DS	18		
				Ш							L
				Ш	<u>45</u>	WOR/18"	9	DS	18		
-				Ш							\vdash
					1	WOR/18"	10	DS	18		
				Ш							
				Ш	<u>50</u> _	WOR/18"	11	DS	18		-
-				Ш							\vdash
-				Ш	-	WOR/18"	12	DS	18		
				Ш							
				Ш	<u>55</u> _	WOR/18"	13	DS	18		
-				Ш							\vdash
-				Ш	-	WOR/18"	14	DS	18		
				Ш							
-59.3			60.5	Ш	<u>60</u> _	WOR/18"	15	DS	18		
_	Bottom of Boring at 60.5 ft		33.3								\vdash
-											
					<u>65</u>						
_											\vdash
-											\vdash
					70						
											-
-											\vdash
											
					<u>75</u>						
_											_
_											-
-											-
					80						
		SAMPLE C				NDWATER DEP	TH			RING METHOD	
PT - PRESS	EN SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER CORE	D - DISIN ⁻ I - INTAC U - UNDIS L - LOST	T)	AFTER _	PLETION ft HRS 4 HRS ft AT ft	ft	CF <i>A</i> DC	A - CON - DRIV	LOW STEM AUGERS TINUOUS FLIGHT AUGERS 'ING CASING DRILLING	
	PENETRATION TEST DRIVING 2"		R 1' WITH	140# HA			MADE				

	TE

			RECOF	RD OF	SOIL	. / R	оск	EXPLOR/	OITA	N			
Con	ıtracted	With Gahagan & Brya	nt Associa	tes							Borin	g# <u>PR-14</u>	
Proj	ect Na		t Loop Cha	nnel De	eepeni	ng					Job#	18-0043	
Loc	ation ₋	Baltimore, MD											
						SAM	IPLEF	₹					
Datu	mM	LLW	Hammer Wt.			_ Ho	le Diam			For	eman _	M. Fletcher	
	Elev	1.2 ± ft 12/11/18	Hammer Dro	p 30 2 in	in		ck Core				ector _	D. Patterson eted 12/11/18	
Date	Started ₋	12/11/10	Spoon Size	2111		_ во	ring Me	thod		Dat	e Compl	eted	
	ELEV.	SOIL DESCRIPTION	-it - Ci	STRA	BOL	Ë H		SAM	1PLE			BORING & SAMPLE	
	(ft)	Color, Moisture, Density, Plastic Proportions	oity, Size	DEPTH (ft)	SYMBOL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
_		WATER										1. Area 1	_
\exists						_							
\exists												2. 575400.7 N 1441670.31 E	
					Juu								
						5							_
\dashv					uu	_							
					ļ	_							
					luu	10							
\exists						_							\vdash
					Juu								
						<u>15</u>							
\exists					uu	_							
					ļ	_							
					uu	<u>20</u>							
\dashv					ļ	_							
	-21.8			23.0									
		Black, wet, very soft, elastic	SILT		Ш			WOR/18"	1	DS	18		
					Ш	<u>25</u>							
\dashv					Ш	_		WOR/18"	2	DS	18		
					Ш	_							
					Ш			WOR/18"	3	DS	12		
					Ш	30							_
\exists	-30.8			32.0	Ш	_		WOR/18"	4	DS	12		-
	<u>50.0</u> _	Gray, wet, very soft, elastic	SILT		Ш	_							
					Ш			WOR/18"	5	DS	18		
					Ш	35_							
\exists						-		WOR/18"	6	DS	18		
+						_							
								WOR/18"	7	DS	18		
		AMDI ED TVDE	AMDI E CO)		40		MATER RES				DINO METHOD	
D:S		AMPLER TYPE S EN SPLIT SPOON	AMPLE CO D - DISINTI		_			VATER DEP	ΙH	HSA		RING METHOD LOW STEM AUGERS	
PT CA	- PRES	SED SHELBY TUBE INUOUS FLIGHT AUGER	I - INTACT U - UNDIST L - LOST	•		AFTER AFTER	R R 24 HF		_ ft	CF/ DC	A - CON - DRIN	ITINUOUS FLIGHT AUGERS /ING CASING DRILLING	
		PENETRATION TEST DRIVING 2" (1' WITH	140# HAI				MADE A				

	TE

		RECOF	RD OF	SOIL	/ RO	CK E	EXPLORA	OITA	N			
Contracted										Boring	•	
Project Na		t Loop Cha	annel De	epeni	ng					Job#	18-0043	
ocation .	Baitimore, MD				CAME							
N 41	1110/		140		SAMF		Q i.m.				M Flatabox	
Datum ^{MI} Burf. Elev	LLW 1.2 ± ft	Hammer Wt Hammer Dro				Diamet				eman oector	M. Fletcher D. Patterson	
Date Started	12/11/18	Spoon Size	•			ng Meth				e Comple	eted12/11/18	
	SOIL DESCRIPTION		STRA	7	тш		SAN	//PLE				\neg
ELEV. (ft)	Color, Moisture, Density, Plasti Proportions		DEPTH (ft)	SYMBOL	SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	Gray, wet, very soft, elastic (continued)	SILT			_		WOR/18"	8	DS	18		
				Ш	45		WOR/18"	9	DS	18		
				Ш	1		WOR/18"	10	DS	18		
_				Ш	50		WOR/18"	11	DS	18		_
				Ш			WOR/18"	12	DS	18		
				Ш	<u>55</u>		WOR/18" WOR/18"	13 14	DS DS	18		
-58.3			59.5	Ш			WOR/18"	15	DS	18		
	Bottom of Boring at 59.5 ft		00.0		60 -							_
					65							
					70							
$\frac{1}{2}$												
\dashv					80							\vdash
DS - DRIVE PT - PRES CA - CONT RC - ROCK	EN SPLIT SPOON SSED SHELBY TUBE TINUOUS FLIGHT AUGER	D - DISINT I - INTACT U - UNDIST L - LOST	EGRATED TURBED		GROU AT COM AFTER AFTER 2 CAVED	MPLETIO 24 HRS DAT	ATER DEP DN ft _ HRS ft ft	_ ft	CF/ DC MD	A - HOLL A - CONT - DRIVI - MUD	RING METHOD LOW STEM AUGERS TINUOUS FLIGHT AUGERS ING CASING DRILLING	

	10

	UT		RECO	RD OF	SOIL	. / ROC	K EXPLOR	ATIO	N			
Cor	ntracted	l WithGahagan	& Bryant Associa	tes						Borin	g# PR-15	
Proj	ject Na		Seagirt Loop Ch	annel De	eepeni							
Loc	ation ₋	Baltimore,	MD									
						SAMPLE	ER					
Datu	mM	_LW	Hammer Wi	140	lb	_ Hole Dia	ameter 8 in		For	eman _	M. Fletcher	
Surf.	Elev	1.6 ± ft	Hammer Dr	•	in	_ Rock Co				ector _	D. Patterson	
Date	Started _	12/13/18	Spoon Size	2 in		_ Boring N	Method HSA		Dat	e Compl	eted 12/13/18	
		SOIL DESCF	RIPTION	STRA	٦,	ΞW	SAI	MPLE				7
	ELEV. (ft)	Color, Moisture, Densi Proporti	ty, Plasticity, Size	DEPTH (ft)	SYMBOL	SCALE Cond	d Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
		WATER			Luu.						1. Area 1	
					Juu						2. 575376.43 N	
_					luu.						1441841.45 E	-
\dashv						5						\vdash
					Jun	3						_
					Juu							
_] _						_
					Juu	10						-
\exists						-						\vdash
					Juu							
						<u>15</u>						
-												\vdash
\dashv					l	-						
\exists					Juu							
						20						
_												_
4					Juu	$\parallel \parallel$						-
-					<u> </u>	-						\vdash
-						25						
					Juu							
					ļ							
_												-
\dashv						30						-
					Juu	30						
					uu							
\dashv					Juu							-
	-33.4	Black, wet, very soft,	elastic SILT.	35.0		35	WOD/40"	_		•		_
\dashv		(MH)	,			-	WOR/18"	1	DS	3		
							MO2445	_		_		
							WOR/18"	2	DS	3		L
	_				ШЦ	40		<u></u>			 	
חס		SAMPLER TYPE EN SPLIT SPOON	SAMPLE CO D - DISINT				DWATER DEP ETION ft	'IH	μομ		RING METHOD LOW STEM AUGERS	
PT	- PRES	SED SHELBY TUBE	I - INTAC U - UNDIS	Γ		AFTER	HRS HRS ft	ft	CFA	A - CON	ITINUOUS FLIGHT AUGERS /ING CASING	
	C - ROCK		L - LOST	IONDED		CAVED A	пкъ π Г ft) DRILLING	
ST	ANDARD	PENETRATION TEST DRIV	VING 2" OD SAMPLEF	R 1' WITH	140# HA	MMER FALI	LING 30": COUNT	MADE.	AT 6" IN	FERVAL	S	

	10

		RECORD OF	SOIL	_ / R0	OCK	EXPLORA	ATIO	N			
Contracted									Borin		
Project Na		Loop Channel De	eepeni	ing					Job#	18-0043	
Location ₋	Baltimore, MD										
				SAM	IPLE	₹					
DatumM	LLW	Hammer Wt140	lb	Ho	le Dian	neter 8 in		For	eman	M. Fletcher	
Surf. Elev		Hammer Drop30	in	Ro	ck Core			Insp	ector _	D. Patterson	
Date Started ₋	12/13/18	Spoon Size 2 in		Bo	ring Me	ethod HSA		Dat	e Compl	eted12/13/18	
	SOIL DESCRIPTION	STRA	٦.	тш		SAN	MPLE				\neg
ELEV. (ft)	Color, Moisture, Density, Plastici Proportions	ty, Size DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	Black, wet, very soft, elastic \$ (MH) (continued)	BILT,				WOR/18"	3	DS	14		
						WOR/18"	4	DS	15		
_				45		WOR/18"	5	DS	18		
						WOR/18"	6	DS	15		
<u>-48.4</u> _	Gray, wet, very soft, fat CLA	50.0		50		WOR/18"	7	DS	18		
				1		WOR/18"	8	DS	18		
				<u>55</u> –		WOR/18"	9	DS	18		
-57.4		59.0				WOR/18"	10	DS	18		
	Bottom of Boring at 59.0 ft			<u>60</u>							-
-				-							\vdash
-											
				65							
_				_							L
4				_							\vdash
-				_							\vdash
-				70							\vdash
				10							
				<u>75</u>							<u> </u>
_											L
4											\vdash
-											\vdash
+				80							\vdash
S	SAMPLER TYPE SA	MPLE CONDITION	ONS		UND	NATER DEP	TH	I	BOF	RING METHOD	
DS - DRIVE	EN SPLIT SPOON	D - DISINTEGRATED		AT CC	MPLE	TION ft			A - HOL	LOW STEM AUGERS	
	TINUOUS FLIGHT AUGER	I - INTACT U - UNDISTURBED L - LOST		AFTER	R 24 HF	HRS RS ft ft	_ 11	DC	- DRIV	ITINUOUS FLIGHT AUGERS /ING CASING) DRILLING	
STANDARD	PENETRATION TEST DRIVING 2" O	D SAMPLER 1' WITH	140# HA	MMFR	FALLII	NG 30" COUNT	MADE	AT 6" IN	ΓFR\/AI :	S	

	TE

	Cohemen On			JOIL	. / IN	OCK	EXPLOR	AIIO	1		" DD 16	
Contracted Project Na				eepeni	na					Borin Job #	·	
Location				орот	9					JOD #		
					SAM	1PLEI	₹					
DatumM	ILLW	Hammer Wt.	140	lb	Ho	le Dian	neter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	0.7 ± ft	Hammer Dro		in		ck Core				ector _	D. Patterson	
Date Started	12/20/18	Spoon Size	2 in		_ Bo	ring Me	ethod HSA		Date	e Comp	leted12/20/18	
	COIL DECODING	ON	CTDA	٦	T		SAI	MPLE				
ELEV. (ft)	SOIL DESCRIPTI Color, Moisture, Density, Pl Proportions		STRA DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER			uu							1. Area 1	
				Juu							2. 575143.1 N	
				L	1 -						1442012.05 E	
\dashv					5							
				Juu	13-							
				Juu								
4				Lim								_
				Juu	10							_
				uu								
				Juu	\							
					<u>15</u>							
-] -							
				Juu								
					<u>20</u>							
4				Juu								
-				L								
				Juu	25_							
				luu.								
4] -							_
_					$\mid \; \dashv$							
				L	30							
_												
_				ļ	$\mid \; \; \mid$							_
+					35							
					=====================================							
				Juu	$\mid \; $							
]							
\dashv				Jun	40							-
	SAMPLER TYPE	SAMPLE CO	ONDITIO) NS		UND	NATER DEP	· PTH		BO	LING METHOD	
DS - DRIV	EN SPLIT SPOON	D - DISINTI	EGRATED)	AT CC	MPLE	TION ft			A - HOL	LOW STEM AUGERS	
CA - CON	SSED SHELBY TUBE TINUOUS FLIGHT AUGER	I - INTACT U - UNDIST			AFTER	R 24 HF	HRS RS ft	ft	DC	- DRI	ITINUOUS FLIGHT AUGERS /ING CASING	
RC - ROCI		L - LOST			CAVI	ED AT	ft				D DRILLING	
STANDARI	D PENETRATION TEST DRIVING	2" OD SAMPLER	1' WITH	140# HAI	MMER	FALLII	NG 30": COUNT	I MADE	AT 6" INT	IERVAL	S	

	16

		RECO	RD OF	SOIL	. / RC	CK	EXPLOR/	OITA	N				
Cor	ıtracted	With Gahagan & Bryant Associa	ates							Borin	g# <u>PR-16</u>		
-	ect Na		annel D	eepen	ing					Job#	18-0043		
Loc	ation ₋	Baltimore, MD											
					SAM	PLEF	र						
Datu	" ——	LLW Hammer W				e Diam				eman _	M. Fletcher		
	Elev Started _	0.7 ± ft Hammer Dr 12/20/18 Spoon Size	•	ın		ck Core				ector _ e Compl	D. Patterson		
										Date completed			
	ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Plasticity, Size	STRA DEPTH	SYMBOL	DEPTH			/IPLE		Rec	BORING & SAMPLE		
	(ft)	Proportions	(ft)	S.Y.S	ES C	Cond	Blows/6"	No.	Туре	(in)	NOTES		
		WATER (continued)		L.									
				Jun	\downarrow								
-					45							-	
				Jun	45								
_]							_	
\exists				Jun	50								
	-50.3		51.0										
4		Black, wet, very soft to soft, SILT			_		WOR/18"	1	DS	4			
-					1 -								
\exists	-54.3		55.0		_ 55		WOH/12"-2	2	DS	6		-	
		Gray, wet, very soft, CLAY											
_							WOH/18"	3	DS	12		_	
-													
					60		WOH/12"-6	4	DS	10			
4	-60.8		61.5										
\dashv		Brown, wet, medium dense, clayey SAND, and fine Gravel					7-7-6	5	DS	10		\vdash	
-	-63 <u>.3</u>	SAND, and line Graver	64.0										
		Gray, wet, loose to medium dense, fine to coarse, SAND , and fine			65		7-6-4	6	DS	10			
_		Gravel										-	
-	-66.8	Bottom of Boring at 67.5 ft	67.5	*****	4		6-4-4	7	DS	10			
		Bottom of Boring at 67.5 it											
					<u>70</u>								
-													
					<u>75</u>							_	
-													
4													
	-	AMPLER TYPE SAMPLE C)NG	GROI	יטואו	WATER DEP	TH		BOI	 RING METHOD		
	- DRIVE	EN SPLIT SPOON D - DISINT	EGRATE		AT CO	MPLE ¹	ΓΙΟΝ ft			A - HOL	LOW STEM AUGERS		
CA		SED SHELBY TUBE I - INTAC INUOUS FLIGHT AUGER U - UNDIS CORE L - LOST			AFTER	24 HF	HRS RS ft ft	_ ft	DC	- DRI\	ITINUOUS FLIGHT AUGERS /ING CASING) DRILLING		
ST	ANDARD	PENETRATION TEST DRIVING 2" OD SAMPLE	R 1' WITH	140# HA	MMER	FALLI	NG 30": COUNT	MADE	AT 6" IN	TERVAL	S		

T	-	RECO	RD OF	SOIL	. / R	OCK	EXPLOR	ATIO	N			
Contracted		Bryant Associa								Borin		
Project Na		eagirt Loop Cha	annel D	eepeni	ng					Job #	18-0043	
Location	Baltimore, M	D										
					SAM	IPLEF	₹					
DatumM	LLW	Hammer Wt	t140	lb	_ Ho	le Diam	neter 8 in		For	eman _	M. Fletcher	
Surf. Elev	0.7 ± ft	Hammer Dro	•	in						nspector D. Patterson		
Date Started	12/10/18	Spoon Size	2 in		_ Bo	ring Me	thod HSA		Dat	e Comp	leted12/10/18	
	SOIL DESCRIP	TION	STRA	٦.	J тш SAMPL			MPLE				
ELEV. (ft)	Color, Moisture, Density, Proportions	Plasticity, Size	DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER			tu							1. Area 2	
				uu	$\downarrow \ \ $						2. 577624.52 N	
				Jun							1440418.84 E	L
												\vdash
					5							-
\dashv				Jun	$\mid \; \dashv$							H
				<u></u>	\rfloor							
				Jun	10							<u> </u>
\dashv				Jun	\dashv							\vdash
-												\vdash
]							
				Jun	15							
												L
4												L
\dashv				Jun	\downarrow \dashv							\vdash
				Jun	20							
					1 = -							
-21.8			22.5									
-21.0	Black, wet, very soft, fa	t CLAY	22.5				WOR/18"	1	DS	8		L
_							***************************************	'	53	0		H
					25		WOR/18"	2	DS	40		-
					+		VVOIVIO	2	טס	10		
							WOR/18"	3	DS	14		L
					30							<u> </u>
\dashv							WOR/18"	4	DS	15		\vdash
\dashv												\vdash
-33.3			34.0				WOR/18"	5	DS	18		
	Dark gray, black, wet, v	ery soft, fat			35							
_	(CH)						WOR/18"	6	DS	18		\vdash
\dashv												\vdash
\dashv					-		WOR/18"	7	DS	18		-
\dashv					40							<u> </u>
	SAMPLER TYPE	SAMPLE CO	ONDITIO	ONS	GRO	UND	NATER DEP	TH	1	BO	RING METHOD	
DS - DRIV PT - PRES	EN SPLIT SPOON SSED SHELBY TUBE TINUOUS FLIGHT AUGER	D - DISINT I - INTAC' U - UNDIS'	Т)	AT CC	MPLET	TION ft HRS RS ft		CF/	A - HOL A - CON	LOW STEM AUGERS NTINUOUS FLIGHT AUGERS	
RC - ROCH		L - LOST	IOKBED		CAVE	ED AT	κs π ft				VING CASING D DRILLING	
STANDARI	D PENETRATION TEST DRIVIN	IG 2" OD SAMPLEF	R 1' WITH	140# HA	MMER	FALLIN	NG 30": COUNT	MADE	AT 6" IN	ΓERVAL	S	

	UT	RE	CORD OF	SOIL	_ / R0	OCK	EXPLOR	ATIO	N			
Cont	tracted	WithGahagan & Bryant As	sociates							Borin	g# <u>PR-17</u>	
Proje	ect Naı	meTask 17 - Seagirt Loo	Channel D	eepen	ing					Job#	18-0043	
Loca	ition _	Baltimore, MD										
					SAM	IPLEF	₹					
Datum	1ML	_LW Hamr	ner Wt140	lb	Ho	le Dian	neter 8 in		For	eman _	M. Fletcher	
Surf. E			nei biop	in		ck Core				ector _	D. Patterson	
Date S	Started _	12/10/18 Spoo	n Size 2 in		Boi	ring Me	thod HSA		Dat	e Compl	eted12/10/18	
Γ		SOIL DESCRIPTION	STRA	٦,	Ξщ		SAM	MPLE				
	ELEV. (ft)	Color, Moisture, Density, Plasticity, Siz Proportions		SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
1		Dark gray, black, wet, very soft, fa CLAY, (CH) (continued)	t		-		WOR/18"	8	DS	15		
+	<u>-43.3</u>	Dark gray, wet, very soft, elastic	44.0		-		WOR/18"	9	DS	18		
		SILT, (MH)			45 - -		WOR/18"	10	DS	18		
					50		WOR/18"	11	DS	18		
							WOR/18"	12	DS	18		
+					- - 55		WOR/18"	13	DS	18		
					33		WOR/18"	14	DS	18		
1	-58.3	Bottom of Boring at 59.0 ft	59.0	Ш			WOR/18"	15	DS	18		
\dashv		Bottom of Borning at 39.0 ft			60							-
\exists												
_					<u>65</u>							<u> </u>
-					_							-
\dashv												\vdash
-					-							
					70							
4					_							_
-												\vdash
					75							_
7					_							
\exists												
					80							
		_	LE CONDITION	_			NATER DEP	TH			RING METHOD	
PT CA	- PRES	SED SHELBY TUBE I - I INUOUS FLIGHT AUGER U - I	DISINTEGRATEI NTACT JNDISTURBED LOST	ט	AFTER AFTER	R R 24 HF	TION ft HRS RS ft ft	ft	CF/ DC	A - CON DRIN -	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING) DRILLING	
	STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS											

		RECOR	RD OF	SOIL	. / R	оск	EXPLOR	ATIO	N			
Contracted										Borin		
Project Nar		rt Loop Cha	nnel D	eepeni	ing					Job #	18-0043	
Location _	Baltimore, MD											
					SAM	1PLEF	₹					
DatumML	LW	. Hammer Wt.	140	lb	_ Ho	le Diam	neter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	2.4 ± ft	. Hammer Dro	•	in	Rock Core Dia. N/A					Inspector D. Patterson		
Date Started _	12/21/18	Spoon Size .	2 in		Bo	ring Me	thod HSA		Date	e Compl	leted12/21/18	
5, 5,	SOIL DESCRIPTION	1	STRA		т ш SAMPLE			MPLE				
ELEV. (ft)	Color, Moisture, Density, Plast Proportions		DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER			-							1. Area 4	_
-	WAILK				1 -							\vdash
-											2. 578230.52 N 1439625.1 E	H
				Jun	$\downarrow \ \dashv$							
				Jun	5							
_												
-]							\vdash
-				Jun	$\mid - \mid$							\vdash
					10							
				Jun	$\downarrow $ \perp							L
_				Jun	\dashv							-
-					15							\vdash
				luu.	13							
				Jun	$ar{}$							
]							F
_				Jun	<u>20</u>							-
-19.6			22.0									
10.0	Black, dark gray, wet, very	soft,					WOR/18"	1	DS	14		
	elastic SILT , with sand, (MH)			Ш								
	, ,			Ш	<u>25</u>		WOR/18"	2	DS	18		<u> </u>
_				Ш				_		10		\vdash
-				Ш			WOR/18"	3	DS	18		\vdash
				Ш	_		VVOIV, 10	3	טט	10		
				Ш	30		MOD/49"		D0	40		
_				Ш			WOR/18"	4	DS	18		
_				Ш			14/05//08					\vdash
-				Ш	-		WOR/18"	5	DS	18		
					 35_							
				Ш			WOR/18"	6	DS	18		
-36.1			38.5		_		WOR/18"	7	DS	15		H
					40							\vdash
S	AMPLER TYPE S	SAMPLE CO	NDITIO	ONS	40 ■ GRO	UND	NATER DEP	TH		BOI	LING METHOD	
DS - DRIVE	N SPLIT SPOON	D - DISINTE	EGRATED)	AT CC	MPLE	ΓΙΟΝ ft			A - HOL	LOW STEM AUGERS	
	SED SHELBY TUBE INUOUS FLIGHT AUGER CORE	I - INTACT U - UNDIST L - LOST			AFTER	R 24 HF	HRS RS ft ft	ft	DC	- DRI\	ITINUOUS FLIGHT AUGERS /ING CASING) DRILLING	
	STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS											

	TE

			RECO	RD OF	SOIL	_ / R0	ЭСК	EXPLOR	ATIO	N			
Contra	acted		& Bryant Associ								Borin		
-			Seagirt Loop Ch	annel D	eepen	ing					Job#	18-0043	
Location	on _	Baltimore	, MD										
						SAM	IPLEF	₹					
Datum _	MLI	_W 2.4 ± ft		0.0) lb) in		le Diam				eman _	M. Fletcher D. Patterson	
Surf. Ele Date Sta	, v	12/21/18	Hammer D Spoon Size		,		ck Core ring Me	, ыа			oector _ e Compl		
				T		Ī .		SAN	ИPLE				\neg
	LEV. (ft)	SOIL DESC Color, Moisture, Dens Proport	sity, Plasticity, Size	STRA DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
		Gray, brown, wet, ve	ery soft, fat					WOR/18"	8	DS	18		
		CLAY, (CH) (continued)											
4						-		WOR/18"	9	DS	18		_
-						— 45 ■							
								WOR/18"	10	DS	18		
-								WOD/40"		D0	40		
-						1		WOR/18"	11	DS	18		
						<u>50</u>		WOR/18"	12	DS	18		
+								***************************************	12		10		
								WOR/18"	13	DS	18		
						<u>55_</u>		WOR/18"	14	DS	18		_
						-		WOR/18"	15	DS	18		
-						60							
-5	58.6			61.0				WOR/18"	16	DS	18		
4		Bottom of Boring at	61.0 ft										_
+						_							
						65							
_						_							
-						_							
						70							
-													
\exists													
-						75							
\exists						<u>75</u>							
\exists													
-													
						80							
	_	AMPLER TYPE	SAMPLE C	_			_	VATER DEP	TH			RING METHOD	
PT - CA -	PRESS CONTI	N SPLIT SPOON SED SHELBY TUBE NUOUS FLIGHT AUGER	D - DISIN' I - INTAC U - UNDIS L - LOST	T STURBED	D	AFTER AFTER	R R 24 HF	FION ft HRS RS ft	_ ft	CF/ DC	A - CON DRIN -	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS //ING CASING	
		RC - ROCK CORE L - LOST CAVED AT ft MD - MUD DRILLING STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS											

	TE

	ontracted With Gahagan & Bryant Associates Boring #PR-19											
Contracted Project Na				epeni	ng					Borin Job #	· · · · · · · · · · · · · · · · · · ·	
Location _		,		'						000 7		
					SAM	1PLE	₹					
DatumMI	LLW	Hammer Wt.	140	lb	_ Hc	ole Dian	neter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	2.0 ± ft	Hammer Dro	•	in		ck Core	e Dia. N/A		Insp	ector _	D. Patterson	
Date Started _	12/17/18	Spoon Size	2 in		_ Bo	ring Me	thod HSA		Date	e Comp	leted12/17/18	
	SOIL DESCRIPTION)N	STRA	٦,	ΞЩ		SAI	MPLE				
ELEV. (ft)	Color, Moisture, Density, Pla Proportions		DEPTH (ft)	SYMBOL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER			uu							1. Area 5	
				Juu	_						2. 578539.11 N	
_					_						1440002.23 E	
-					5							
				m	<u> </u>							
				l								
] _							
_				m								
				l	10							_
				l	_							
					15_							
\dashv] —							
-				l	_							
				l	-							
					20_							
				m	_							
_				l	_							_
_					_							
					25							
				l								
				l	_							
4] -							
\dashv					30							-
				ļ	30							_
				l	_							
					35_							
\dashv] -							
7					-							
			<u> </u>		40							
	AMPLER TYPE	SAMPLE CO					NATER DEP	PTH			RING METHOD	
PT - PRES	EN SPLIT SPOON SED SHELBY TUBE	D - DISINTI I - INTACT	•		AFTE	R	ΓΙΟΝ ft HRS	ft	CF/	4 - CON	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS	
CA - CONT RC - ROCK	TINUOUS FLIGHT AUGER CORE	U - UNDIST L - LOST	TURBED		AFTEI CAVI	R 24 HF ED AT	RS ft				VING CASING DDRILLING	
	STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS											
	STANDARD FENETRATION TEST DRIVING 2 OD SAMFLER T WITH 140# HAMMER FALLING 30 . COUNT MADE AT 0 INTERVALS											

	TE

Contracted With Calagan & Bryant Associates Boring # PR-19 Industrial Task 17 - Seagiff Loop Channel Despening SAMPLER Task 17 - Seagiff Loop Channel Despening Seagiff Loop Channel Despening Sample			R	ECORD OF	SOIL	. / ROCI	K EXPLORA	ATIO	N			
SAMPLER SAMPLER SAMPLE	Contra	acted								Boring	g.,	
SAMPLER Type SAMPLE CONDITIONS SROUNDWATER DEPTH SAMPLER Type SAMPLE CONDITIONS SROUNDWATER DEPTH SAMPLER Type	-			op Channel De	eepeni	ng				Job#	18-0043	
Design MiLLY Hammer Origon 2011 Hole Diameter Sin Forman Mile Max Impeded Diameter Dia	Locati	on _	Baltimore, MD									
Surf Eq. 20 th Hemmit Drop 30 in Started 1217/18 Solit Description 1217/18 Solit Conjunction 1217/18 Sol						SAMPLE	R					
SAMPLER TYPE SAMPLE CONDITIONS SSAMPLE CONDITIONS SSAMPLE TYPE SAMPLE CONDITIONS SSAMPLE TYPE TYPE TYPE TYPE TYPE TYPE TYPE TYP			riai									
SOLD ESCRIPTION Color, Ministrius, Dereith, Pleasticity, Size DEPTH 0.5			1101	ппст втор	in		ле Біа					
Color, Mosibure Density, Pleatesty, Size DEPTH City City Color, Mosibure Density, Pleatesty, Size DEPTH City Cit		arteu _	.=,,.о	JOH SIZE					Date	Compi	eteu	
### ATTION WATER (continued) ### ATTION WATER (continued) ### ATTION WORVIR** 1 DS 15 ### WORVIR** 2 DS 18 ### WORVIR** 3 DS 18 ### WORVIR** 4 DS 18 ### WORVIR** 4 DS 18 ### ATTION WORVIR** 4 DS 18 ### ATTION WORVIR** 4 DS 18 ### ATTION WORVIR** 4 DS DS DS DS ### ATTION WORVIR** 4 DS DS DS ### ATTION WORVIR** 4 DS ### A	E	LEV.	SOIL DESCRIPTION	STRA	BOL	 	SAN	/IPLE				
### ATTION WATER (continued) ### ATTION WATER (continued) ### ATTION WORVIR** 1 DS 15 ### WORVIR** 2 DS 18 ### WORVIR** 3 DS 18 ### WORVIR** 4 DS 18 ### WORVIR** 4 DS 18 ### ATTION WORVIR** 4 DS 18 ### ATTION WORVIR** 4 DS 18 ### ATTION WORVIR** 4 DS DS DS DS ### ATTION WORVIR** 4 DS DS DS ### ATTION WORVIR** 4 DS ### A		(ft)	Proportions	(ft)	SYM	当分 Cond	Blows/6"	No.	Туре		NOTES	
45 47.0 Dark gray, wet, very soft, fat CLAY, (CH) Dark gray, wet, very soft, fat CLAY, (CH) WOR/18* 1 DS 16 WOR/18* 2 DS 18 WOR/18* 3 DS 18 S50 WOR/18* 4 DS 18 S50 Bottom of Boring at 58.0 ft S8.0 Bot			WATER (continued)									_
47.0 Dark gray, wet, very soft, fat CLAY, (CH) WOR/18* 1 DS 15 WOR/18* 2 DS 18 WOR/18* 3 DS 18 WOR/18* 4 DS 18 WOR/18* 4 DS 18 SOft Software Softwa	-		(,									
45]						
49.0 Dark gray, wet, very soft, fat CLAY, (CH) S0 WOR/18* 1 DS 15 WOR/18* 2 DS 18 S5 WOR/18* 3 DS 18 S6 WOR/18* 4 DS 18 S6 S S S S S S S S S S S S S S S S S S					m	$\downarrow \ $						
Dark gray, wet, very soft, fat CLAY, (CH)					Juu	45						
Dark gray, wet, very soft, fat CLAY, (CH)												L
Dark gray, wet, very soft, fat CLAY, (CH)	_											-
Dark gray, wet, very soft, fat CLAY, (CH)	\dashv	47.0		40.0	Juu	↓						\vdash
SAMPLER TYPE SAMPLE CONDITIONS D ISINTEGRATED FEE A FREE WINNOWS PLICHT SPOON PT - PRESSED SHELBYTUBE CA - RONK OCK CA - CONTINUOUS PLICHT AUGERS CA - CONTINUOUS PLICHT AUGER		47.0	Dark gray, wet, very soft, fat CL	49.0 AY ,		50	WOP/18"	4	De	15		-
55 WOR/18* 3 DS 18 -56.0 Bottom of Boring at 58.0 ft -60 -70 -70 -70 -70 -70 -70 -70						30	VVOIV/18	'	08	15		
55 WOR/18* 3 DS 18 -56.0 Bottom of Boring at 58.0 ft -60 -70 -70 -70 -70 -70 -70 -70							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_				
SAMPLER TYPE SAMPLE CONDITIONS SOUNDWATER DEPTH SOUNDWATER DEP							WOR/18"	2	DS	18		
SAMPLER TYPE SAMPLE CONDITIONS SOUNDWATER DEPTH SOUNDWATER DEP	4					_						-
SAMPLER TYPE SAMPLE CONDITIONS GROUNDWATER DEPTH BORING METHOD HSA - HOLLOW STEM AUGERS CFA - CONTINUOUS FLIGHT AUGERS						<u>55_</u>	WOR/18"	3	DS	18		-
SAMPLER TYPE SAMPLE CONDITIONS GROUNDWATER DEPTH BORING METHOD HSA - HOLLOW STEM AUGERS CFA - CONTINUOUS FLIGHT AUGERS	\dashv											\vdash
SAMPLER TYPE SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE SOUND TO THE SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER CA - CONTINUOUS FLIGHT AUGERS CA - CONTINUOUS FLIGH		56.0		58.0		-	WOR/18"	4	DS	18		F
SAMPLER TYPE SAMPLE CONDITIONS FOR CONDITIONS SOUNDWATER DEPTH SAMPLE SEED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER CA - CONTINUOUS FLIGHT AU			Bottom of Boring at 58.0 ft									
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST AT COMPLETION AT COMPLETION AT COMPLETION AT ERE 24 HRS. CAYED ATft MD - MUD DRILLING						<u>60</u>						
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST AT COMPLETION AT COMPLETION AT COMPLETION AT ERE 24 HRS. CAYED ATft MD - MUD DRILLING	4											\vdash
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST AT COMPLETION AT COMPLETION AT COMPLETION AT ERE 24 HRS. CAYED ATft MD - MUD DRILLING	-											-
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST AT COMPLETION AT COMPLETION AT COMPLETION AT ERE 24 HRS. CAYED ATft MD - MUD DRILLING	\dashv											\vdash
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST AT COMPLETION AT COMPLETION AT COMPLETION AT ERE 24 HRS. CAYED ATft MD - MUD DRILLING	-					65						
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE SAMPLE CONDITIONS BORING METHOD HSA - HOLLOW STEM AUGERS CFA - CONTINUOUS FLIGHT AUGER L - LOST AFTER 24 HRS ft CAVED AT ft CAVED AT ft CAVED AT ft MD - MUD DRILLING												
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE SAMPLE CONDITIONS BORING METHOD HSA - HOLLOW STEM AUGERS CFA - CONTINUOUS FLIGHT AUGER L - LOST AFTER 24 HRS ft CAVED AT ft CAVED AT ft CAVED AT ft MD - MUD DRILLING												_
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE SAMPLE CONDITIONS BORING METHOD HSA - HOLLOW STEM AUGERS CFA - CONTINUOUS FLIGHT AUGER L - LOST AFTER 24 HRS ft CAVED AT ft CAVED AT ft CAVED AT ft MD - MUD DRILLING	_											-
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE SAMPLE CONDITIONS BORING METHOD HSA - HOLLOW STEM AUGERS CFA - CONTINUOUS FLIGHT AUGER L - LOST AFTER 24 HRS ft CAVED AT ft CAVED AT ft CAVED AT ft MD - MUD DRILLING	-					70						\vdash
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE SAMPLE CONDITIONS GROUNDWATER DEPTH AT COMPLETION ft AFTER HRS ft AFTER 24 HRS ft AFTER 24 HRS ft CAVED AT ft MD - MUD DRILLING						10						
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE SAMPLE CONDITIONS GROUNDWATER DEPTH AT COMPLETION ft AFTER HRS ft AFTER 24 HRS ft AFTER 24 HRS ft CAVED AT ft MD - MUD DRILLING												
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE SAMPLE CONDITIONS GROUNDWATER DEPTH AT COMPLETION ft AFTER HRS ft AFTER 24 HRS ft AFTER 24 HRS ft CAVED AT ft MD - MUD DRILLING												
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE SAMPLE CONDITIONS GROUNDWATER DEPTH AT COMPLETION ft AFTER HRS ft AFTER 24 HRS ft AFTER 24 HRS ft CAVED AT ft MD - MUD DRILLING												\vdash
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE D - DISINTEGRATED D - DISINTEGRATED D - DISINTEGRATED AT COMPLETION						75						
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE D - DISINTEGRATED D - DISINTEGRATED D - DISINTEGRATED AT COMPLETION	\dashv											\vdash
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE D - DISINTEGRATED D - DISINTEGRATED D - DISINTEGRATED AT COMPLETION	\dashv											\vdash
SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE D - DISINTEGRATED D - DISINTEGRATED D - DISINTEGRATED AT COMPLETION												
DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETIONft HSA - HOLLOW STEM AUGERS PT - PRESSED SHELBY TUBE I - INTACT AFTERHRSft CFA - CONTINUOUS FLIGHT AUGERS U - UNDISTURBED RC - ROCK CORE L - LOST CAVED ATft MD - MUD DRILLING						80						
PT - PRESSED SHELBY TUBE I - INTACT AFTER HRS. ft CFA - CONTINUOUS FLIGHT AUGERS CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED AFTER 24 HRS. ft DC - DRIVING CASING RC - ROCK CORE L - LOST CAVED AT ft MD - MUD DRILLING												
	PT - CA -	PRESS CONT	SED SHELBY TUBE I - INUOUS FLIGHT AUGER U -	INTACT UNDISTURBED		AFTER AFTER 24 H	HRS HRS ft	_ ft	CF <i>A</i> DC	A - CON - DRIV	TINUOUS FLIGHT AUGERS /ING CASING	

	TE

	_	0-1 0-5			JUIL	. / 八	UUN	EXPLOR	A110	11			
Contracte		Gahagan & Brya Task 17 - Seagirt			eneni	na					Borin Job #		
Project N Location		Baltimore, MD	Loop Ona	IIIICI D	серст	iig_					JOD #	10 00 40	
Location		,				SAN	1PLEI	₹					
Datum	MLLW		Hammer Wt.	140				0 :		Fa.,	eman _	M. Fletcher	
Surf. Elev	1.4 ± ft		Hammer Dro			Tole Blameter Tol			eman _ pector _	D. Patterson			
Date Started	12/17/18	3	Spoon Size	2 in			ring Me				e Comp	leted12/17/18	
					٦	-		SAI	MPLE				\neg
ELEV (ft)	. Color,	SOIL DESCRIPTION Moisture, Density, Plastic Proportions	city, Size	STRA DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER	र			tuu							1. Area 5	
					Juu	_						2. 578798.45 N	L
4					Jun	_						1439933.66 E	-
\dashv						5							-
					Jun	\ <u> </u>							
					Jun								
						_							L
\dashv					Jun								\vdash
					Jun	10							-
					Jun								
					Jun	_							\vdash
						15_							_
\dashv						_							
					fuu								
					m	<u>20</u> _							
\dashv					Jun	_							\vdash
\dashv						_							-
					Jun	<u>25</u>							
4						_							-
\dashv						_							\vdash
					Jun	_							\vdash
					<u> </u>	30							
						_							L
4					Jun	_							-
\dashv					Juu	_							\vdash
						I							\vdash
\perp					Juu								
\dashv						_							-
\dashv					Jun	40							
	SAMPLER	TYPE S	AMPLE CO	NDITIC	DNS		UND	WATER DEP	· PTH		BO	LING METHOD	
	VEN SPLIT SE	POON	D - DISINTE	GRATED)	AT CO	OMPLE:	TION ft			A - HOL	LOW STEM AUGERS	
CA - CO	ESSED SHELE NTINUOUS FL CK CORE	BY TUBE LIGHT AUGER	I - INTACT U - UNDIST L - LOST			AFTE	R 24 H	HRS RS ft ft	ft	DC	- DRI	ITINUOUS FLIGHT AUGERS /ING CASING) DRILLING	
		TION TEST DRIVING 2" (1' WITH	140# HA				Γ MADE				
J., 1110/11	STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS												

	TE

	•	RECO	RD OF	SOIL	. / ROCK	(EXPLORA	ATIO	N			
Contracted									Boring		
Project Na			annel D	eepeni	ing				Job#	18-0043	
Location .	Baltimore, MI)									
					SAMPLE	R					
DatumM	LLW	Hammer W	t140	lb	_ Hole Dia			For	eman	M. Fletcher	
Surf. Elev	1.4 ± ft	Hammer Dr	•	in	_ Rock Co				ector _	D. Patterson	
Date Started .	12/17/18	Spoon Size	2 in		Boring M	ethod HSA		Dat	e Comple	eted12/17/18	
ELE) (SOIL DESCRIPT	ION	STRA	_q	王 백	SAN	MPLE			DODING & GAMPLE	\neg
ELEV. (ft)	Color, Moisture, Density, P Proportions	lasticity, Size	DEPTH (ft)	SOIL	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER (continued)			Lun							
				him	\downarrow						
_				Juu	1						-
-					1_						\vdash
				Lui.	45						_
				Jun	1						
-46.6			48.0	<u> </u>							
_	Dark gray, wet, very soft SILT ,	, elastic		Ш	-	WOR/18"	1	DS	18		-
	(MH)			Ш	50						_
\dashv				Ш	-	WOR/18"	2	DS	18		\vdash
				Ш	-						
				Ш		WOR/18"	3	DS	18		
				Ш	55						
4				Ш	-	WOR/18"	4	DS	18		\vdash
-				Ш	-■						-
-				Ш		WOR/18"	5	DS	18		
-58.1	Bottom of Boring at 59.5	i ft	59.5	ш	60						
											_
_											\vdash
\dashv											\vdash
_					65						
											_
4					-						\vdash
-					70						\vdash
					10						
4											_
\dashv											\vdash
					75						-
-											\vdash
											L
		04			80	 					
	SAMPLER TYPE EN SPLIT SPOON	SAMPLE C				WATER DEP TION ft	TH	пс		RING METHOD LOW STEM AUGERS	
PT - PRES	SSED SHELBY TUBE FINUOUS FLIGHT AUGER	U - UNDIS L - LOST	Т		AFTER AFTER 24 H	. ΠΟΝ π HRS ft ft	ft	CFA DC	A - CON - DRIV	TINUOUS FLIGHT AUGERS ING CASING DRILLING	
	PENETRATION TEST DRIVING		R 1' WITH	140# HA			MADE				

	TE

	RECORD OF SOIL / ROCK EXPLORATION												
Con	ntracted With Gahagan & Bryant Associates Boring #PR-21												
	ect Na		irt Loop Cha	nnel De	eepeni	ng					Job #	·	
-	ation .	Baltimore, MD											
						SAM	1PLEI	₹					
	M	LLW		140	lh					_		M. Fletcher	
Datui Surf	mw Elev	1.3 ± ft	Hammer Wt.Hammer Dro				ole Dian ock Cor				eman _ pector _	D. Patterson	
	Started _	12/17/18	Spoon Size	2 in			ring Me	. Dia			e Comp		
ſ		Г										T	_
	ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Plas	V ticity Size	STRA DEPTH	BQL BQL	DEPTH SCALE		SAM	MPLE			BORING & SAMPLE	
	(ft)	Proportions	doity, Oizo	(ft)	SOIL	DE!	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
\dashv		WATER										1. Area 5	_
\dashv		WAILK			ļ	_							\vdash
\exists] —						2. 579027.67 N 1439621.84 E	\vdash
] —						1400021.04 E	
					Juu	5							
					Juu								
						_							
_] _							
\dashv					Juu								\vdash
					Juu	10							-
\exists						_							\vdash
\exists													
					Lui	_							
					Juu	15							
					ļ	_							
4						Ì _							_
\dashv] _							_
\dashv					Juu								-
					Juu	<u>20</u>							-
						-							
] -							
					Juu								
					Juu	<u>25</u>							
_					m								_
\dashv] —							-
\dashv					uu	_							\vdash
\dashv					Juu	30							\vdash
					Juu	30							
						_							
					l								
					ļ	35_							<u></u>
4						-							\vdash
\dashv] —							\vdash
\dashv						_							\vdash
\exists					fuu	40 40							
	S	SAMPLER TYPE	SAMPLE CO	NDITIC	DNS		UND	NATER DEP	TH		ВО	RING METHOD	
	- DRIVE	EN SPLIT SPOON	D - DISINTI	EGRATED)			TION ft	r.		A - HOL	LOW STEM AUGERS	
CA	A - CONT	SED SHELBY TUBE INUOUS FLIGHT AUGER	I - INTACT U - UNDIST			AFTE	R 24 H	HRS RS ft	π	DC	- DRI	ITINUOUS FLIGHT AUGERS /ING CASING	
RC	- ROCK	CORE	L - LOST			CAVI	ED AT	ft		MD	- MUI	DIRILLING	
ST	ANDARD	NDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS											

	10

	<u> </u>	RECO	RD OF	SOIL	. / RO	CK	EXPLOR/	OITA	N			
Contrac		& Bryant Associa								Borin	g # <u>PR-21</u>	
Project		Seagirt Loop Ch	annel D	eepeni	ng					Job#		
Location	n Baltimore,	MD										
					SAMP	PLER						
Datum	MLLW	Hammer W	t140	lb	_ Hole	Diame	eter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev.		Hammer Dr	op	in		Core				ector _	D. Patterson	
Date Start	ed12/17/18	Spoon Size	2 in		_ Borin	ng Metl	nod <u>HSA</u>		Date	e Comple	eted12/17/18	
ELE	SOIL DESCR		STRA	٦ğ	=		SAN	/IPLE			BORING & SAMPLE	
(ft	Color, Moisture, Densi Proporti	ty, Plasticity, Size ons	DEPTH (ft)	SOIL	SCALE	ond	Blows/6"	No.	Туре	Rec (in)	NOTES	
	WATER (continued)			I								
				Jun								
4				Jun								
4					1							\vdash
$\overline{}$					45							-
\dashv				Jun								F
-46	5.7		48.0	Jun								
	Gray, dark greenish very soft, fat CLAY ,	brown, wet,					WOR/18"	1	DS	9		
_	(CH)				50							<u> </u>
\dashv					-		WOR/18"	2	DS	18		\vdash
\dashv												\vdash
\exists							WOR/18"	3	DS	18		
					- 55		WOI 0 10	3		10		
							WOR/18"	4	DC	40		
55	Bottom of Boring at 5	-7 O #	57.0				WOR/10	4	DS	18		L
\dashv	Bottom of Boring at t	57.0 IL			_							\vdash
\dashv					60							-
					00							
4												-
-					65							-
\dashv												
_					70							
4					-							\vdash
\dashv												\vdash
7												
\Box					75							
4												\perp
\dashv												\vdash
\dashv												\vdash
\dashv					80							
	SAMPLER TYPE	SAMPLE C	ONDITIO	ONS		NDW	ATER DEP	TH		BOF	RING METHOD	
PT - PI CA - C	RIVEN SPLIT SPOON RESSED SHELBY TUBE ONTINUOUS FLIGHT AUGER	D - DISIN ^T I - INTAC U - UNDIS	Т		AFTER 2	 24 HRS	ON ft HRS S ft	_ ft	CFA DC	A - CON - DRIV	LOW STEM AUGERS TINUOUS FLIGHT AUGERS (ING CASING	
	OCK CORE	L - LOST	D 41.14.11-11	440#***			ft				DRILLING	
STAND	ARD PENETRATION TEST DRIV	VING 2" OD SAMPLE	K T WITH	14U# HA	IVIIVIER FA	ALLIN	30": COUNT عن ق	MADE	41 6" INT	EKVAL\$	>	

	TE

	_				JUIL	. / 八	OUN	EXPLOR	A1101	11				
Contracte		nagan & Bryaı k 17 - Seagirt			eneni	na					Boring # PR-22 Job # 18-0043			
Project N Location		imore, MD	Loop Ona	illici De	срет	iig_					JOD #	10-00-10		
Location		,				SAN	1PLEF	₹						
Datum	MLLW		Llamomar \\\/	140				0 :		Гот.		M. Fletcher		
Datuml Surf. Elev	2.3 ± ft		Hammer Wt. Hammer Dro				ole Diam ock Core				eman _ bector _	D. Patterson		
Date Started	12/17/18		Spoon Size _	2 in			ring Me				e Comp	leted12/17/18		
					ب			911	MPLE				7	
ELEV (ft)		L DESCRIPTION re, Density, Plastic Proportions	ity, Size	STRA DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES		
	WATER				uu							1. Area 5		
					Juu	_						2. 578650.62 N	_	
4						_						1439547.35 E	\vdash	
-						5							\vdash	
					m	<u> </u>								
					l									
] _							L	
-					l								\vdash	
_					l	10							-	
\exists						_								
					m									
					l	_								
						<u>15</u> _							-	
\dashv						_							\vdash	
					l	_								
						<u>20</u>							_	
-					Juu	_							\vdash	
\dashv						_							\vdash	
						_								
					m	25_								
						_							L	
-] —							\vdash	
\dashv					l	_								
					l	30								
					l	_							L	
\dashv					l	_							-	
\dashv						35							\vdash	
						55_								
					l									
\dashv						_								
\dashv					Jun	40 40							\vdash	
	SAMPLER TYPI	E S	AMPLE CC	NDITIC) NS		UND	NATER DEP	TH		BO	LING METHOD		
DS - DRI	VEN SPLIT SPOON		D - DISINTE	GRATED)	AT CC	OMPLE	ΓΙΟΝ ft			A - HOL	LOW STEM AUGERS		
	ESSED SHELBY TUBI NTINUOUS FLIGHT A CK CORF		I - INTACT U - UNDIST L - LOST			AFTE	R 24 HF	HRS RS ft ft	ft	DC	- DRI	ITINUOUS FLIGHT AUGERS /ING CASING) DRILLING		
	RD PENETRATION TE	EST DRIVING 2" (1' WITH 1	140# HAI				MADE :					
S., 1110/11										5 1141				

		RECOR	D OF	SOIL	. / R	OCK	EXPLOR	ATIO	N			
Contracte										Boring		
Project Na		Loop Char	nnel De	eepeni	ng					Job#	18-0043	
Location	Baltimore, MD											
					SAM	IPLEF	₹					
DatumN	MLLW	Hammer Wt.			_ Ho	le Diam			Fore	eman	M. Fletcher	
Surf. Elev	2.3 ± ft	Hammer Drop		in		ck Core				ector _	D. Patterson	
Date Started	12/17/18	Spoon Size _	2 in		Bo	ring Me	thod HSA		Date	e Comple	eted12/17/18	
ELEV/	SOIL DESCRIPTION		STRA	٦٩	王끡		SAN	MPLE			DODING & CAMPLE	
ELEV. (ft)	Color, Moisture, Density, Plastic Proportions	city, Size	DEPTH (ft)	SYMBOL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER (continued)			Lu.								
				Lui.	$\downarrow \ $							
				fuu	\vdash							
\perp					١. ا							
-43.7			46.0		45							_
	Black, wet, very soft, elastic	SILT		Ш			WOR/18"	1	DS	6		
<u>-45.2</u>	Dark gray, wet, very soft, ela	stic	<u>47.5</u>		. 1			'				
	SILT,			Ш			WOR/18"	2	DC	4.5		
	(MH)			Ш	50		WOIVIO	2	DS	15		
-49.7			52.0	Ш			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		D0	40		
-49.7	Dark gray, wet, very soft, fat	CLAY,	_52.0	////	-		WOR/18"	3	DS	18		
	(CH)											
					55		WOR/18"	4	DS	18		
4					-		WOR/18"	5	DS	18		\vdash
					\exists							
-57.7			60.0		- 60		WOR/18"	6	DS	18		
	Bottom of Boring at 60.0 ft											
_					\vdash							
_					65							
					65							
4												
					70							_
7												
\perp												L
					<u>75</u>							<u> </u>
\dashv					$\mid \cdot \mid$							\vdash
\dashv					$\mid \; \dashv$							
					80							
		AMPLE CO		_			VATER DEP	TH			RING METHOD	
PT - PRES	/EN SPLIT SPOON SSED SHELBY TUBE ITINUOUS FLIGHT AUGER	D - DISINTE I - INTACT U - UNDISTU			AFTEF AFTEF	R R 24 HF	TION ft HRS RS ft	ft	CF <i>A</i> DC	A - CON - DRIV	LOW STEM AUGERS TINUOUS FLIGHT AUGERS 'ING CASING	
RC - ROC STANDAR	CK CORE D PENETRATION TEST DRIVING 2" (L - LOST DD SAMPLER ²	1' WITH	140# HA			ft NG 30": COUNT	MADE			DRILLING S	

		RECOR	D OF	SOIL	. / R	оск	EXPLOR	ATIO	N			
Contracted										Borin		
Project Nar		t Loop Cha	nnel D	eepeni	ing					Job#	18-0043	
Location _	Baltimore, MD											
					SAM	1PLEF	₹					
DatumML	LW	Hammer Wt.			_ Ho	le Dian	neter 8 in		For	eman _	M. Fletcher	
Surf. Elev	1.3 ± ft	Hammer Dro	•	in		ck Core				ector _	D. Patterson	
Date Started _	12/26/18	Spoon Size _	2 in		Bo	ring Me	thod HSA		Dat	e Compl	eted12/26/18	
ELEV.	SOIL DESCRIPTION		STRA	آر ود	王끡		SAN	//PLE			BORING & SAMPLE	
(ft)	Color, Moisture, Density, Plastic Proportions	city, Size	DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
	·		()	S						(111)		
_	WATER			Jun	┥ _						1. Area 4	
-				ļ	\						2. 578528.9 N	\vdash
-] —						1439393.75 E	
					5							
				Jun	\							
] _							-
-				Jun	10							\vdash
					10_							
				Jun								
_				ļ								_
					15_							-
-] —							
				Jun	-							
					20							
_				Jun	┥							-
-				ļ	\							\vdash
												\vdash
					I —							
				Jun								
] _							\vdash
-26.7	Black, wet, very soft, SILT		28.0				MOD/401					-
-	Black, well, very colk, CILI				30		WOR/18"	1	DS	6		\vdash
					<u> </u>							
							WOR/18"	2	DS	8		
_					_							
-					_		WOR/18"	3	DS	10		_
34.7			36.0		<u>35</u>							
-34.7 -35.2	Brown, wet, loose, Silty SAN	ID	_36.5	,,,,,	-		WOR/6"-2-3	4	DS	12		
	Brown, dark gray, wet, very CLAY,	soft, fat										
	(CH)						WOR/18"	5	DS	12		
	414D1 ED EVO	444D1 = 6 =			40							
	AMPLER TYPE S EN SPLIT SPOON	AMPLE CO D - DISINTE					NATER DEP	ſĦ	ПС		RING METHOD LOW STEM AUGERS	
PT - PRESS	SED SHELBY TUBE INUOUS FLIGHT AUGER	I - INTACT U - UNDIST L - LOST			AFTEI AFTEI	R R 24 HF		ft	CF/ DC	A - CON DRIN -	IOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING DRILLING	
	PENETRATION TEST DRIVING 2" (1' WITH	140# HA				MADE				

	UT	RE	CORD OF	SOIL	_ / R	OCK	EXPLOR	ATIO	N			
Cor	ntracted	WithGahagan & Bryant As	sociates							Borin	g# PR-23	
Pro	ject Na	meTask 17 - Seagirt Loop	Channel D	eepen	ing						T	
Loc	ation ₋	Baltimore, MD										
					SAM	1PLEF	₹					
Datu	mM	_LW Hamr	ner Wt140	lb	Ho	ole Dian	neter 8 in		For	eman _	M. Fletcher	
Surf.	Elev		псі віор	in	Ro	ck Core			Insp	pector _	D. Patterson	
Date	Started _	12/26/18 Spool	n Size 2 in		Bo	ring Me	ethod HSA		Dat	e Compl	eted12/26/18	
		SOIL DESCRIPTION	STRA	٦, ٦	Ξщ		SAM	MPLE				
	ELEV. (ft)	Color, Moisture, Density, Plasticity, Siz Proportions		SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
		Brown, dark gray, wet, very soft, fa CLAY, (CH) (continued)	at		1		WOH/18"	6	DS	5		
_					45		WOR/18"	7	DS	9		
_	47.0		10.5		1		WOR/18"	8	DS	18		-
	<u>-47.2</u> _	Dark gray, wet, very soft, elastic SILT, (MH)	48.5		<u>50</u>		WOR/18"	9	DS	5		
		, ,			_		WOR/18"	10	DS	18		
_					_ 55		WOR/18"	11	DS	18		_
							WOR/18"	12	DS	18		
_	-58.2	Bottom of Boring at 59.5 ft	59.5		60		WOR/18"	13	DS	18		-
_												
_												_
					65							
_												_
					70							_
_												
					<u>75</u>							
_					$\mid \; \dashv$							_
_					$\mid \; \dashv$							-
_												
					80							
	S	SAMPLER TYPE SAMPI	E CONDITION	ONS		UND	NATER DEP	TH	•	BOI	RING METHOD	
PT C/	- PRES	SED SHELBY TUBE I - I INUOUS FLIGHT AUGER U - U	DISINTEGRATEI NTACT JNDISTURBED OST	0	AFTER AFTER	R R 24 HF	TION ft HRS RS ft ft	ft	CF/ DC	A - CON DRIN -	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING D DRILLING	
		PENETRATION TEST DRIVING 2" OD SAI		140# HA				MADE				

	TE

	_	0 1 0 7			JUIL	. / 八	OUN	EXPLOR	A110	11		DD C t	
	ed With _	Gahagan & Brya Task 17 - Seagir			anani	na					Borin		
Project N Location		Baltimore, MD	LOOP CHA	IIIICI D	Берепі	iig					Job #	10-0043	
Location		Balanioro, MB				SVI	1PLEI	-					
	N 41 1 1 1 1 1			440				0 :				M. Flatakan	
Datum Surf. Elev.	0.2 ± ft		Hammer Wt. Hammer Dro				ole Dian ock Cor				eman _ pector _	M. Fletcher D. Patterson	
Suri. Elev. Date Starte		8	Spoon Size	2 in			ring Me	. Dia			e Compl		
				ı								I	_
ELE ¹		SOIL DESCRIPTION , Moisture, Density, Plastic Proportions	city, Size	STRA DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	MPLE No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATE	R										1. Area 5	
					lui.							2. 578981.14 N	
					ļ	_						1439396.94 E	L
_													\vdash
					Luu	5							-
					Juu	_							
													L
					Juu	10							-
-						_							
					Juu	_							
						<u>15</u> _							
-] –							\vdash
-					Juu	_							
						<u>20</u>							<u></u>
_					Juu	_							\vdash
-					<u> </u>	_							-
						_							
					l	<u>25</u>							
					<u> </u>	_							
_						_							\vdash
-					l	_							
					ļ	30							
					Juu	_							L
\dashv					Juu	_							_
\dashv						I							
					Juu								Ĺ
\dashv						_							
\dashv													\vdash
	SAMPLER	R TYPE S	AMPLE CO	NDITIO	DNS		UND	NATER DEP	TH	1	BO	RING METHOD	
	RIVEN SPLIT S	POON	D - DISINTE	GRATED)	AT CO	MPLE	TION ft			A - HOL	LOW STEM AUGERS	
CA - CC		BY TUBE LIGHT AUGER	U - INTACT			AFTE	R 24 H	HRS RS ft	nt	DC	- DRI	ITINUOUS FLIGHT AUGERS /ING CASING	
	OCK CORE	TION TEST DOWNS OF	L - LOST	4! \A/I T ! !	140# ! ! ^			ft	- M^ D-			D DRILLING	
STANDA	IVD LENE I KA	TION TEST DRIVING 2" (JU SAWIPLEK	ı vvIIH	140# MA	IVIIVIER	ralli	NG 30 : COUNT	I WADE	AI O IN	ICKVAL	.o	

TE

			RECORD (F SOI	L / RC	OCK	EXPLOR	ATIO	N			
Cont	racted	With Gahagan & Bryan								Borin	g# <u>PR-24</u>	
•	ct Nar		Loop Channe	Deeper	ning					Job#	18-0043	
Loca	tion _	Baltimore, MD										
					SAM	PLEF	₹					
Datum		00.0	- Idilililoi VVI	140 lb		e Diam				eman _	M. Fletcher	
Surf. E Date S			Hammer Drop Spoon Size2	30 in in		ck Core				ector e Comple	D. Patterson eted 12/18/18	
Date 3	ital teu _		3p00ii 3ize			ii ig ivie			Dati	Compi	eleu	
	ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Plasticit	y, Size STF	SOIL SOIL SYMBOL	DEPTH		SAM	MPLE		Rec	BORING & SAMPLE	
	(ft)	Proportions	(fi	SYN SYN	SS	Cond	Blows/6"	No.	Туре	(in)	NOTES	
		WATER (continued)			$\exists - \exists$							_
7												
				Jun	4]							
_					<u> </u>							
					<u></u>							-
	-46.8		47	o hu	4 -							
丁		Dark gray, wet, very soft, elas					WOR/18"	1	DS	18		
4		SILT, (MH)										
_					<u>50</u>		WOR/18"	2	DS	18		
\dashv	- <u>51.8</u>		52		-							
	. <u>0 1.0</u>	Dark gray, wet, very soft, fat 0	CLAY	<u> </u>			WOR/18"	3	DS	15		
					<u>55</u>		WOR/18"	4	DS	18		
-										10		-
\exists							WOR/18"	5	DS	16		
<u> </u>	-58.3	Bottom of Boring at 58.5 ft	58	5]		10		
		2010111 01 2011119 01 0010 11			60							
-					-							_
+					$\mid - \mid$							
7												
					65							
_												
\dashv					-							
-												
					70							
4												_
4												
\dashv												
					75							
4												_
\dashv					$ \cdot $							\vdash
\dashv					80							
	S	AMPLER TYPE SA	MPLE CONDI	TIONS		UNDV	VATER DEP	TH	1	BOF	RING METHOD	
PT ·	- DRIVE - PRESS - CONT	N SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER	D - DISINTEGRA I - INTACT U - UNDISTURBE	TED	AT CO AFTER AFTER	MPLET R R 24 HF	TION ft HRS RS ft		CFA DC	A - HOL A - CON - DRIV	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING	
	- ROCK		L - LOST	TU 140#!!			ft	MADE			DRILLING	
SIA	INDAKD	PENETRATION TEST DRIVING 2" O	JOHIVIPLEK T WI	т⊓ 140# Н.	~iviivi⊏K	LALLI	NO JU : COUNT	IVIADE	NI O IN	EK VAL	J	

	TE

	-			JUIL	. / 八	UUN	EXPLOR	~110	IA		DD 05	
Contracte				ononi	na					Borin		
Project Na Location		JIT LOOP CHE	aririer De	среп	iig					Job #	10-0043	
Location	Baltimoro, IMB				SVI	1PLEI						
	41.1747		440				0.				NA Flatalian	
Datum ^{IV} Surf. Elev	1LLW 0.6 ± ft	Hammer WtHammer Dro				ole Dian ock Cor				eman _ bector _	M. Fletcher D. Patterson	
Suri. Elev Date Started		Hammer Dro Spoon Size	2 in			oring Me	. Dia			e Comp		
		· '									T	_
ELEV. (ft)	SOIL DESCRIPTIO Color, Moisture, Density, Pla Proportions		STRA DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	MPLE No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 5	
				Lin							2. 579033.53 N	
				l	_						1439109.98 E	L
-					_							\vdash
				L	5							
				Juu	_							
4												L
_				l	10							<u> </u>
\exists					_							
				l	_							
					<u>15</u> _							
\exists					_							\vdash
+				l	_							
					<u>20</u>							<u></u>
4				l	_							\vdash
\dashv					_							-
					_							
				l	25							
				m	_							
+					_							\vdash
\dashv				l	_							
7				luu	30							
4					_							-
+				l	_							_
\dashv					35							
4				l								Ĺ
\perp					_							
\dashv				ļ	 40							\vdash
	SAMPLER TYPE	SAMPLE CO) NS		UND	WATER DEP	· PTH		BO	│ RING METHOD	
DS - DRIV	/EN SPLIT SPOON	D - DISINT	EGRATED)	AT CO	OMPLE	TION ft			A - HOL	LOW STEM AUGERS	
	SSED SHELBY TUBE ITINUOUS FLIGHT AUGER EK CORE	I - INTACT U - UNDIST L - LOST			AFTE	R 24 HI	HRS RS ft ft	ft	DC	- DRI	ITINUOUS FLIGHT AUGERS VING CASING D DRILLING	
	D PENETRATION TEST DRIVING 2		2 1' WITH 1	140# HA				ΓMADE				
									- "1			

	TO

			RECOF	RD OF	SOIL	_ / RC	OCK	EXPLOR/	ATIO	N			
Cont	racted	With Gahagan & Brya									Borin	g # <u>PR-25</u>	
Proje	ct Nar		t Loop Cha	nnel D	eepeni	ing					Job#	18-0043	
Loca	tion _	Baltimore, MD											
						SAM	PLEF	₹					
Datum	ML	LW	Hammer Wt			Hol	e Diam				eman _	M. Fletcher	
Surf. E		0.6 ± ft 12/18/18	Hammer Dro		in		ck Core				ector _	D. Patterson eted 12/18/18	
Date S	tarted _	12/10/10	Spoon Size			Bor	ing Me	thod		Dat	e Compl	eted	
	ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Plasti		STRA DEPTH	BOL	HH		SAN	/IPLE		_	BORING & SAMPLE	
	(ft)	Proportions	icity, Size	(ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
_		WATER (continued)											_
+		THE (Sommada)											
					Jun	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $							
_					ļ	45							<u> </u>
4													H
\dashv					Jun	1							\vdash
\exists					Jun	4 -							
	-49.4			50.0		50							
		Dark gray, wet, very soft, fa (CH)	t CLAY ,					WOR/18"	1	DS	15		
4		(011)											\vdash
+								WOR/18"	2	DS	15		-
\exists						_ _ 55							\vdash
						30		WOR/18"	3	DS	18		
_								WOR/18"	4	DS	18		
-	-58.4	Bottom of Boring at 59.0 ft		59.0					7		10		-
$\overline{}$		zonom or zomig at colo it				60							-
7													
_													
_						<u>65</u>							-
+						$\mid \cdot \mid$							-
1													
						70							
-						-							\vdash
+													\vdash
-													
						<u>75</u>							
\perp													L
4													H
\dashv						-							\vdash
\dashv						80							\vdash
	S	AMPLER TYPE S	SAMPLE CO	ONDITIO	ONS		UND	VATER DEP	TH		BOF	RING METHOD	-
PT ·	- DRIVE	N SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER	D - DISINT I - INTACT U - UNDIST	EGRATEI)	AT CO AFTER AFTER	MPLET R R 24 HF	TION ft HRS RS ft		CFA	A - HOL A - CON	LOW STEM AUGERS TINUOUS FLIGHT AUGERS VING CASING	
RC ·	- ROCK	CORE	L - LOST			CAVE	D AT	ft		MD	- MUD	DRILLING	
STA	NDARD	PENETRATION TEST DRIVING 2"	OD SAMPLER	1' WITH	140# HA	MMER	FALLI	NG 30": COUNT	MADE	AT 6" IN	TERVAL:	S	

	TO

		RECOF	RD OF	SOIL	. / R	OCK	EXPLOR/	ATIO	N			
Contracted										Borin		
Project Na		t Loop Cha	nnel D	eepeni	ing					Job #	18-0043	
Location	Baltimore, MD											
					SAM	1PLE	₹					
Datum	LLW	Hammer Wt.				ole Dian				eman _	M. Fletcher	
Surf. Elev Date Started .	1.2 ± ft 12/27/18	Hammer Dro	pp30 2 in	in		ck Core				ector _ e Compl	D. Patterson	
Date Started	12,21710	Spool Size				ing we	#IIIOU		Dati	e Comp	eted	
ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Plasti	city, Size	STRA DEPTH	SOIL	DEPTH SCALE	01		/IPLE	T	Rec	BORING & SAMPLE NOTES	
(11)	Proportions		(ft)	S	S	Cond	Blows/6"	No.	Туре	(in)	110125	
	WATER			Jun	_						1. Area 4	
-				Jun	\ _						2. 578724.72 N	
-] —						1438875.95 E	
=				m	5							
				Jun								
4] _							
\dashv				Jun								_
_				<u></u>	10							
				Jun	\rfloor							
				Jun	\ _							
					15_							
-				I] —							
				Jun	-							_
					20_							
_				Jun	↓ _							_
-			22.0	Jun	\							_
-21.8	Black, wet, very soft, fat CL	AY	23.0				WOR/18"	1	DS	9		_
	·				25		VVOIV 10	'	DS	9		
							WOD/40"					
							WOR/18"	2	DS	15		
\dashv												_
-					20		WOR/18"	3	DS	12		
_					30_							
							WOR/18"	4	DS	15		
_					_		WOR/18"	5	DS	12		_
$\overline{}$					35							-
\dashv					-		WOR/18"	6	DS	18		\vdash
\dashv												
							WOR/18"	7	DS	15		
			<u> </u>		40							
		AMPLE CO					NATER DEP	TH			RING METHOD	
PT - PRES	EN SPLIT SPOON ISED SHELBY TUBE INUOUS FLIGHT AUGER	D - DISINTI I - INTACT U - UNDIST L - LOST	•		AFTEI AFTEI	R R 24 HF	TION ft HRS RS ft ft	_ ft	CF <i>A</i> DC	A - CON DRIN -	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING D DRILLING	
	OPENETRATION TEST DRIVING 2" (1' WITH	140# HA				MADE				

			RECO	RD OF	SOIL	_ / ROC	K EXPLOR	ATIO	N			
Contr	acted	WithGahagan &	Bryant Associ	ates						Borin	g# PR-26	
Proje			Seagirt Loop Ch	nannel D	eepen	ing				Job#	-	
Locat	ion _	Baltimore, I	MD									
						SAMPL	ER					
Datum	ML	LW	Hammer V	vt 140	lb	Hole Di	_{ameter} 8 in		For	eman	M. Fletcher	
Surf. El		1.2 ± ft	Hammer D		in		ore Dia. N/A			ector _	D. Patterson	
Date St	arted _	12/27/18	Spoon Size	e2 in		Boring	Method HSA		Dat	e Comple	eted12/27/18	
		COUL DECOR	DTION	OTD4	7	TIII	SAI	MPLE				
E	LEV. (ft)	SOIL DESCRI Color, Moisture, Density Proportion	, Plasticity, Size	STRA DEPTH (ft)	SYMBOL	SCALE Con		No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
		Black, wet, very soft, f (continued)	fat CLAY			1	WOR/18"	8	DS	18		
	43.8			45.0		45	WOR/18"	9	DS	18		
		Dark gray, wet, very s SILT, (MH)	oft, elastic				WOR/18"	10	DS	18		
	<u>48.8</u>		E	<u>50.0</u> _		50	WOR/18"	11	DS	15		
		Black, wet, very soft, f	rat CLAY			1	WOR/18"	12	DS	18		
							WOR/18"	13	DS	14		
=						1	WOR/18"	14	DS	18		
<u> </u>	58.3	Bottom of Boring at 59	9.5 ft	59.5		<u>60</u>	WOR/18"	15	DS	18		_
\dashv												
						<u>65</u>						
_												_
-												-
						70						
_												_
\dashv						75						
						13						
												L
												F
	-	AMPLER TYPE	SAMPLE C	ידוחואטי	JN6	GPOLINI	_ DWATER DEP			BOL	RING METHOD	
PT - CA - RC -	DRIVE PRESS CONT ROCK	N SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER	D - DISIN I - INTAC U - UNDI: L - LOST	TEGRATEI CT STURBED	0	AT COMPL AFTER AFTER 24 CAVED A	ft HRS ft HRS ft T ft	ft	CF/ DC MD	A - HOLI A - CON - DRIV - MUD	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING I DRILLING	

			REC	CORD OF	SOIL	/ ROC	K EXPLORA	ATIOI	N			
Con	ıtracted	With Gahag	gan & Bryant Ass	ociates						Borin	a# PR-27	
	ect Nar		17 - Seagirt Loop	Channel De	eepeni	ng				Job #		
Loca	ation _	Baltim	ore, MD									
						SAMPL	ER					
Datur	m ML	LW	Hamm	er Wt 140	lb	Hole Di	iameter8 in		For	eman _	M. Fletcher	
	Elev	1.1 ± ft		er Drop 30	in		Core Dia. N/A			pector _	D. Patterson	
Date	Started _	12/27/18	Spoon	Size 2 in		_ Boring	Method HSA		Dat	e Compl	eted12/27/18	
[SOIL D	ESCRIPTION	STRA	٦.	тш	SAN	ИPLE				
-	ELEV. (ft)	Color, Moisture,	Density, Plasticity, Size	DEPTH (ft)	SYMBOL	Cor SCALE	nd Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
		WATER			uu						1. Area 4	
					l						2. 578555.9 N	
4					luu.						1439086.09 E	-
\dashv						5						\vdash
					m	3						
					luu.							
_												L
\dashv					m							\vdash
-					l	10						_
\exists												
					Livin							
4					m	$\parallel \perp \parallel$						
						15						
\dashv					uu							\vdash
\exists					Juu							
						20						_
+	-19.9	Black, wet, very	soft CLAY	21.0			MOD/40"					-
\exists		2.00., 1.01, 10.,	33.1, 32.11			-	WOR/18"	1	DS	9		\vdash
							1440 7740	_				
	<u>-23.9</u>			25.0		25	WOR/18"	2	DS	12		
4		Dark gray, black	, wet, very soft, fat			-						-
\dashv						-	WOR/18"	3	DS	14		\vdash
\exists												
						30	WOR/18"	4	DS	15		
						_						L
\dashv						_	WOR/18"	5	DS	14		\vdash
\dashv												
\dashv						- 35	WOR/18"	6	DS	15		
\perp	-36.4			37.5		_	WOR/18"	7	DS	15		
4	_ 55		very soft, elastic									_
\dashv		SILT, (MH)				40	WOR/18"	8	DS	15		
	S	AMPLER TYPE	SAMPL	E CONDITIO	DNS	GROUN	DWATER DEP	TH	1	BOI	RING METHOD	
PT	- DRIVE	EN SPLIT SPOON SED SHELBY TUBE	D - DI I - IN	ISINTEGRATED)	AT COMPI	LETION ft HRS HRS ft		CF/	A - HOL A - CON	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS	
	A - CONT C - ROCK	INUOUS FLIGHT AUG CORE	GER U - UI L - LO	NDISTURBED OST		AFTER 24 CAVED A	HRS ft \T ft				/ING CASING) DRILLING	
ST	ANDARD	PENETRATION TEST	DRIVING 2" OD SAM	IPLER 1' WITH	140# HAI	MMER FAL	LING 30": COUNT	MADE	AT 6" IN	ΓERVAL	S	

	TE

	R	RECORD OF	SOIL	. / RO	CK EXPLORA	ATIO	N			
Contracted								Boring		
Project Nar		oop Channel De	eepeni	ing				Job#	18-0043	
Location _	Baltimore, MD									
				SAMPI	LER					
Datam		ammer Wt140			Diameter 8 in			eman	M. Fletcher	
Surf. Elev Date Started _		ammer Drop <u>30</u> boon Size <u>2 in</u>	ın		Core Dia. N/A g Method HSA			ector e Comple	D. Patterson	
Date Started _	Ор	Joon Size			g Wether		Dat	Compi	steu	
ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Plasticity,	STRA DEPTH	SIL	SCALE	SAN	/IPLE			BORING & SAMPLE	
(ft)	Proportions	(ft)	SYMBOL	E S C	ond Blows/6"	No.	Туре	Rec (in)	NOTES	
-	Dark gray, wet, very soft, elastic	2	ш	+						
	SILT, (MH) (continued)		Ш		WOR/18"	9	DS	18		
	(IIII I) (GG/III/IGGG)		Ш							
4			Ш	-	WOR/18"	10	DS	15		L
_			Ш	<u>45</u>	1.014.10	10	53	13		_
-			Ш		WOR/18"	11	DC	10		\vdash
			Ш	-	WOIVIO	11	DS	18		
			Ш		WOR/18"	40	D0	40		
			Ш	<u>50</u>	WOR/18	12	DS	18		
-			Ш		1110 7110					\vdash
-			Ш	-	WOR/18"	13	DS	18		\vdash
			Ш							
			Ш	<u>55</u>	WOR/18"	14	DS	18		
			Ш	_						\vdash
-			Ш	-	WOR/18"	15	DS	18		\vdash
-			Ш							\vdash
-58.9		60.0	Ш	60	WOR/18"	16	DS	18		
	Bottom of Boring at 60.0 ft									
										\perp
-										\vdash
-				65						\vdash
				00						
4										
-				70						-
_				70						
4										\vdash
				<u>75</u>						-
\dashv										\vdash
										_
				80						
		IPLE CONDITION			NDWATER DEP	TH			RING METHOD	
PT - PRESS	SED SHELBY TUBE I INUOUS FLIGHT AUGER U	DISINTEGRATEDINTACTUNDISTURBEDLOST		AFTER _	PLETION ft HRS 4 HRS ft AT ft	_ ft	CF/ DC	A - CON - DRIV	LOW STEM AUGERS TINUOUS FLIGHT AUGERS ING CASING DRILLING	
	PENETRATION TEST DRIVING 2" OD S		140# HA			MADE				

	TE

Contract		n & Bryant Associa		/IL / R	JUCK	EXPLOR	AIIO	14	Bori-	ng # PR-28	
Project N		- Seagirt Loop Cha		ening					Borir Job #	J	
Location		e, MD								,	
				SAI	MPLE	R					
Datum	MLLW	Hammer Wt	140 lb	н	ole Dian	neter 8 in		For	eman _	M. Fletcher	
Surf. Elev.	0.6 ± ft	Hammer Dro	op30 in		ock Cor	e Dia. N/A		Insp	ector_	D. Patterson	
Date Starte	d <u>12/18/18</u>	Spoon Size	2 in	В	oring Me	ethod HSA		Dat	e Comp	oleted12/18/18	
	, SOIL DESC	CRIPTION	STRA _	ا ا		SA	MPLE				
ELEV (ft)	Color, Moisture, Den	sity, Plasticity, Size	STRA DEPTH (ft)	SYMBOL DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER			\Box						1. Area 5	
				~ _						2. 579334.71 N	
				₩ _						1439198.76 E	
_				· · -	-						-
				\mathcal{M}^{5}	-						
-				~ -	1						\vdash
\dashv				~ Т	1						\vdash
]						
				10_							
				~ _	-						\vdash
_				~ _	-						\vdash
_					1						\vdash
_				15	1						
			\w								
				~ <u> </u>							
					_						\perp
_					1						\vdash
_				~~\ <u>20_</u>	-						-
-				<u> </u>	1						
					1						
				~ _							
				مرہ <u>25</u>							
_				_	1						\vdash
_				_	-						\vdash
-			Lu	~ -	1						\vdash
				30	1						
				\sim							
\dashv			\[\[\]	~ _	-						\vdash
\dashv					-						\vdash
$\overline{}$				<u>√√</u> <u>35</u>	1						-
\dashv				-	1						\vdash
\dashv				~	1						
				_]						
				40_							
	SAMPLER TYPE	SAMPLE CO				WATER DEF	PTH			RING METHOD	
	IVEN SPLIT SPOON ESSED SHELBY TUBE	D - DISINT I - INTAC		AFTE	R	TION ft HRS	ft			LLOW STEM AUGERS NTINUOUS FLIGHT AUGERS	
CA - CO	NTINUOUS FLIGHT AUGER			AFTE	R 24 H	RS ft		DC	- DRI	VING CASING D DRILLING	
	RD PENETRATION TEST DF		? 1' WITH 14∩#				T MADE				
_ CITANDA	I LIVETIVE TON TEOT DI			. 17 STRIPTE	/ NELI		. 1711 100	O IIN	\ V / \L		

TE

	ــــــــا ا		KECOF	אט טר	SOIL	. / R	UCK	EXPLOR	AIIO	N			
Cont	racted	With Gahagan & Brya									Boring		
-		meTask 17 - Seagi	rt Loop Cha	annel D	eepen	ing					Job#	18-0043	
Loca	tion _	Baltimore, MD											
						SAM	1PLEF	₹					
Datum	M	LW	Hammer Wt			Ho	le Dian			For	eman _	M. Fletcher	
Surf. E		0.6 ± ft 12/18/18	Hammer Dro	·	in		ck Core				ector _	D. Patterson eted 12/18/18	
Date S	Started _	12/10/10	Spoon Size	2 111		_ во	ring Me	etnod		Dat	e Comple	eted	
	ELEV.	SOIL DESCRIPTION		STRA	1L 30L	王끸		SAM	MPLE			BORING & SAMPLE	
	(ft)	Color, Moisture, Density, Plast Proportions	icity, Size	DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
_		WATER (continued)				-							1
-		WATER (Continued)			ļ	\dashv							-
\dashv													\vdash
7						$\downarrow \ \dashv$							
					Jun	45							
													L
\dashv				40.0]							\vdash
+	-47.4	Dark gray, wet, very soft, el	astic	48.0	ш	1		WOR/18"	1	DC	7		\vdash
\exists		SILT, (MH)			Ш	50		VVOIVIO	'	DS	7		
		(1411 1)			Ш			WOD/40"			40		
_					Ш			WOR/18"	2	DS	18		
4					Ш								-
\dashv	-54 <u>.4</u>			55.0	Ш	_ 55		WOR/18"	3	DS	14		\vdash
	<u>-54.4</u> _	Dark gray, wet, very soft, fa	t CLAY			35							
								WOR/18"	4	DS	16		
_													L
_	-58.9			59.5				WOR/18"	5	DS	18		-
		Bottom of Boring at 59.5 ft				60							-
\dashv													
_						<u>65</u>							_
\dashv													\vdash
\exists													\vdash
						70							
4													-
\dashv						$\mid \cdot \mid$							\vdash
\dashv													\vdash
\neg						75							
\Box													
													\vdash
\dashv						$\mid \cdot \mid$							\vdash
\dashv						80							\vdash
	S	AMPLER TYPE S	SAMPLE CO	ONDITIO	ONS		UND	NATER DEP	TH	1	BOF	RING METHOD	
	- DRIVE	EN SPLIT SPOON	D - DISINT	EGRATE	_	AT CC	OMPLE	TION ft			A - HOLI	LOW STEM AUGERS	
CA	- CONT	SED SHELBY TUBE INUOUS FLIGHT AUGER	I - INTACT U - UNDIST			AFTE	R 24 HF	HRS RS ft	ft	DC	- DRIV	TINUOUS FLIGHT AUGERS /ING CASING	
	- ROCK		L - LOST			CAVI	ED AT	ft		MD	- MUD	DRILLING	
STA	NDARD	PENETRATION TEST DRIVING 2"	OD SAMPLER	R 1' WITH	140# HA	MMER	FALLI	NG 30": COUNT	MADE	AT 6" IN	ΓERVAL	S	

	10

		RECOF	RD OF	SOIL	/ R	OCK	EXPLOR	ATIO	N			
Contracted										Borin	ng # <u>PR-29</u>	
Project Nar		rt Loop Cha	nnel De	eepeni	ng					Job #	<u> 18-0043</u>	
Location _	Baltimore, MD											
					SAM	1PLEF	₹					
DatumML	LW	Hammer Wt.	140	lb	_ Ho	le Dian	eter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	0.4 ± ft	Hammer Dro		in		ck Core			Insp	ector _	D. Patterson	
Date Started _	12/19/18	Spoon Size	2 in		_ Bo	ring Me	thod HSA		Date	e Comp	leted12/19/18	
	SOIL DESCRIPTION		STRA	٦,	Ŧщ		SAI	MPLE				
ELEV. (ft)	Color, Moisture, Density, Plast Proportions		DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 5	
				uu							2. 579628.66 N	
				Juu							1438708.3 E	
4					_							L
_					5							_
-				uu	_							-
				Juu	_							
					10							
				L.	_							L
_				Juu	_							L
-					_							\vdash
\dashv					 15							-
				m	10_							
				luu.								
					_							L
_					_							L
_				Juu	20							-
\dashv				luu.	_							\vdash
-					_							
				Juu	25							
				luu.	_							
-					_							-
-				m	_							-
\dashv				Juu	30							
				uu								L
_				Juu	_							-
_				<u> </u>	35							
4					_							\vdash
+					_							
7				Juu								
				μιι	40							
		SAMPLE CO					VATER DEP	PTH			RING METHOD	
PT - PRES	EN SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER I CORE	D - DISINTI I - INTACT U - UNDIST L - LOST	-		AFTER AFTER	R R 24 HF	TION ft HRS RS ft	ft	CF <i>A</i> DC	- CON DRI	LOW STEM AUGERS NTINUOUS FLIGHT AUGERS VING CASING D DRILLING	
STANDARD	PENETRATION TEST DRIVING 2"	OD SAMPLER	1' WITH	140# HAI	MMER	FALLI	NG 30": COUNT	Γ MADE .	AT 6" INT	TERVAL	.S	

	TE

			RECOF	RD OF	SOIL	. / RO	CK	EXPLOR/	ATIO	N			
Con	tracted	With Gahagan & Brya	nt Associa	tes							Borin	g# <u>PR-29</u>	
Proje	ect Nar		t Loop Cha	annel D	eepen	ing					Job#	-	
Loca	ation _	Baltimore, MD											
						SAME	PLEF	₹					
Datun	nML	LW	Hammer Wt.	140	lb	Hole	e Diam	eter 8 in		Fore	eman	M. Fletcher	
Surf. I		0.4 ± ft	Hammer Dro		in		k Core				ector _	D. Patterson	
Date S	Started _	12/19/18	Spoon Size	2 in		Bori	ng Me	thod HSA		Date	e Comple	eted12/19/18	
	ELEV.	SOIL DESCRIPTION		STRA	٦ %			SAN	//PLE			BORING & SAMPLE	
	(ft)	Color, Moisture, Density, Plasti Proportions	city, Size	DEPTH (ft)	SOIL	SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
		WATER (continued)			Lu.								
					Jun								
4					ļ	\							
4],							\vdash
-	-45.6			46.0	I	45							_
T	-40.0	Black, wet, very soft, SILT		70.0	Ш	1 1		WOR/18"	1	DS	6		
\Box					Ш								
4						-		WOR/18"	2	DS	4		
-						<u>50</u>			_		7		
+								WOR/18"	3	DS	5		
7	<u>-52.1</u>	Dark gray, wet, very soft, fai	CLAY	<u>52.5</u>]]]]	-		WOIVIO	3	DS	5		
		(CH)	OLAI,					WOR/18"	,	D0	40		
_						<u>55</u>		WOR/16	4	DS	18		
+								14/OD/40#					-
\exists						-		WOR/18"	5	DS	15		\vdash
┪													
\Box	-59.6			60.0		60		WOR/18"	6	DS	18		
4		Bottom of Boring at 60.0 ft											
\dashv													\vdash
\exists													
┪						65							
4													
+													\vdash
\exists						70							\vdash
4													-
\dashv						75							\vdash
\dashv						75							_
4													\vdash
	-	AMPLER TYPE S	AMPLE CO	ן אידוחואר)NG	GROI	ואוטי	VATER DEP	TH		RO	RING METHOD	
DS		EN SPLIT SPOON	D - DISINTI			AT CON	MPLE1	ION ft		HSA		LOW STEM AUGERS	
PT CA	- PRES	SED SHELBY TUBE INUOUS FLIGHT AUGER	I - INTACT U - UNDIST L - LOST	_		AFTER AFTER	 24 HF	HRS RS ft	_ ft	CFA DC	A - CON - DRIV	ITINUOUS FLIGHT AUGERS /ING CASING DRILLING	
STA	ANDARD	PENETRATION TEST DRIVING 2"	OD SAMPLER	1' WITH	140# HA	MMER F	-ALLIN	IG 30": COUNT	MADE A	AT 6" INT	TERVALS	S	

	TE

	-			JUIL	. / 八	UUN	EXPLOR	A110	IA		PP 00	
Contracte				ononi	na					Borin		
Project Na Location		iit Loop One	illiel De	Берепі	iig					Job #	10-0043	
Location	Baitimore, WB				SVI	/IPLEI						
	41.1.47		440				0.				M. Flatalian	
Datum ^{IV} Surf. Elev	1LLW 0.3 ± ft	Hammer Wt.Hammer Dro				ole Dian ock Cor				eman _ bector _	M. Fletcher D. Patterson	
Su⊓. ⊑iev Date Started	12/19/19	_ Hammer Dro _ Spoon Size	2 in			oring Me	. Dia			e Comp		
											T	_
ELEV. (ft)	SOIL DESCRIPTION Color, Moisture, Density, Plas Proportions		STRA DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	MPLE No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 5	
				Juu							2. 579207.97 N	
_					_						1438917.54 E	F
\dashv					5							\vdash
_				Juu	3							
				ļ								
					_							L
-												F
_				Juu	10							-
				Juu	_							L
					<u>15</u> _							
\dashv					_							\vdash
				ļ	_							
					<u>20</u> _							_
-				Juu	_							\vdash
\dashv					_							\vdash
] -							
				Juu	25_							
					_							L
\dashv] —							\vdash
-				m	_							-
				ļ	30							
				Juu	_							L
\dashv				Juu	_							-
\dashv					I							\vdash
					55_							
				Juu								
4					_							
\dashv					40							\vdash
	SAMPLER TYPE	SAMPLE CO	ONDITIO) NS		UND	WATER DEP	· PTH		BO	LING METHOD	
DS - DRIV	'EN SPLIT SPOON	D - DISINTI	EGRATED)	AT CO	OMPLE	TION ft			A - HOL	LOW STEM AUGERS	
	SSED SHELBY TUBE TINUOUS FLIGHT AUGER K CORF	I - INTACT U - UNDIST L - LOST			AFTE	R 24 HI	HRS RS ft ft	ft	DC	- DRI	NTINUOUS FLIGHT AUGERS VING CASING D DRILLING	
	N CORE D PENETRATION TEST DRIVING 2		1' WITH 1	140# HA				T MADE				
									- "1			

	<u> </u>	RECOR	RD OF	SOIL	. / RO	CK EXPLO	DRATIC	N			
Contrac	ted WithGahagan & B								Boring	g# <u>PR-30</u>	
Project I	NameTask 17 - Sea		annel D	eepen	ing				Job#	18-0043	
Location	n Baltimore, MD)									
					SAMP	LER					
Datum	MLLW	Hammer Wt	140	lb	_ Hole	Diameter8	in	For	eman	M. Fletcher	
Surf. Elev.		Hammer Dro	^{υρ} ——	in		Core Dia.	N/A		pector	D. Patterson	
Date Starte	ed12/19/19	Spoon Size	2 in		Borin	g MethodH	SA	Dat	e Comple	eted12/19/19	
ELE	SOIL DESCRIPTI		STRA	J Z	프		SAMPLE	1		BORING & SAMPLE	
(ft)		lasticity, Size	DEPTH (ft)	SOIL	SCALE	ond Blows/6	" No.	Туре	Rec (in)	NOTES	
	WATER (continued)			tu							
				luu.	$\downarrow \ \ $						
				Jun	1						\vdash
\dashv],						-
					45						-
				Jun	1						
48.	.7 Dark gray, wet, very soft	alaatia	49.0] _						_
_	SILT, (MH)	, elastic			<u>50</u> —	WOR/1	8" 1	DS	7		
	.2		53.5			WOR/1	8" 2	DS	18		
	Dark gray, wet, very soft (CH)	, fat CLAY,			<u>55</u>	WOR/1	8" 3	DS	18		
					-	WOR/1	8" 4	DS	18		
						WOD/4	0" -				
-60.	.2 Bottom of Boring at 60.5	tı.	60.5		60_	WOR/1	8" 5	DS	18		
	Bollom of Boring at 60.5	IL									
_											
					65						-
-											
					70						-
\dashv											-
					75						
\perp											
-											
					80						
	SAMPLER TYPE	SAMPLE CO				NDWATER [RING METHOD	
PT - PF CA - CO	RIVEN SPLIT SPOON RESSED SHELBY TUBE DNTINUOUS FLIGHT AUGER DCK CORE	D - DISINT I - INTAC' U - UNDIS'	Γ	0	AFTER _	PLETION HRS 24 HRS AT ff	ft	CF/ DC	A - CON - DRIV	LOW STEM AUGERS TINUOUS FLIGHT AUGERS VING CASING DRILLING	
	C - ROCK CORE L - LOST CAVED AT ft MD - MUD DRILLING TANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS										

	TE

			RECOF	RD OF	SOIL	. / R	OCK	EXPLOR	ATIO	N						
Cor	itracted	I With Gahagan & Bry	/ant Associa	nt Associates								Boring # PR-31				
	ect Na		jirt Loop Cha	Loop Channel Deepening								Job #18-0043				
	ation .	Baltimore, MD														
						SAM	1PLEI	₹								
.	AND															
Datu Surf	mw Elev	1.0 ± ft		Hammer Wt. 140 lb Hammer Drop 30 in			A1/A				oreman M. Fletcher D. Patterson					
Date Started 12/19/18 Spoon S				2 in		Boring Method HSA				InspectorD. Patterson Date Completed12/19/18						
ı		Г														
	ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Plasticity, Size		STRA DEPTH	P Bo	DEPTH SCALE	A SAMP		MPLE	1		BORING & SAMPLE				
	(ft)	Proportions	Sticity, Oize	(ft)	SOIL	DE!	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES				
		WATER										1. Area 5				
\dashv		WAILK			ļ	_										
\exists] —						2. 579132.27 N 1438527.52 E				
						-						1100027.02 2				
					Juu	5										
					Juu											
						_										
_] _										
\dashv					Juu											
					Juu	10							_			
\exists						_										
\exists																
					Lui	_										
					Juu	15										
					ļ	_										
_						Ì _							_			
-] _										
\dashv					Juu								_			
					Juu	<u>20</u>							_			
\exists						-										
٦] =										
					Juu											
					Juu	<u>25</u>										
_					Luu.											
4] —							_			
\dashv					uu	_										
\exists					Juu	30										
					Juu	30										
\exists																
					luu											
					ļ	35_										
4						-							_			
\dashv						-										
\dashv					uu	_										
\exists					fuu	40 40										
	S	SAMPLER TYPE	SAMPLE CO	NDITIC	DNS		UND	WATER DEP	TH		BO	RING METHOD				
	DS - DRIVEN SPLIT SPOON D - DISINTEGRATED						OMPLE	TION ft			SA - HOLLOW STEM AUGERS					
PT - PRESSED SHELBY TUBE I - INTACT CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED											- DRI	ITINUOUS FLIGHT AUGERS /ING CASING				
RC - ROCK CORE L - LOST CAVED AT ft MD - MUD DRILLING																
STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS																

	TE

	•	KECOF	KD OF	5011	_ / K	UCK	EXPLOR	AHO	N					
Contracted										Boring				
Project Na		rt Loop Cha	annel D	eepen	ing					Job#	18-0043			
Location .	Baltimore, MD													
					SAN	1PLEF	₹							
Datain	LLW 10+ff	. Hammer Wt.	00			le Diam				eman	M. Fletcher D. Patterson			
Surf. Elev. 1.0 ± ft Hammer Drop 30 in Date Started 12/19/18 Spoon Size 2 in			' 111		ock Core oring Me	. Dia			InspectorD. Patterson					
										_ Date completed				
ELEV. (ft)	SOIL DESCRIPTION Color, Moisture, Density, Plast Proportions		STRA DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	MPLE No.	Туре	Rec (in)	BORING & SAMPLE NOTES			
	WATER (continued)			tu										
				Jun	<u> </u>									
				ļ	1 _							L		
_					<u> </u>							-		
_				u	^ <u>45_</u>							\vdash		
				fun	┥ ̄									
_					<u> </u>							\vdash		
			54.0	Jun	√ <u>50</u>							-		
-50.0	Black, wet, very soft, fat CL	AY	51.0				WOR/18"	1	DS	18		\vdash		
<u>-51.5</u>	Dark gray, wet, very soft, fa	t CLAY	<u>52.5</u>		-		WOIVIO	'	D3	10				
	(CH)	it OLAT,					WOR/18"		D0	40				
					<u>55</u>		VVOIVIO	2	DS	18				
-							WOD/40"					\vdash		
\dashv					-		WOR/18"	3	DS	18				
-59.0			60.0		60		WOR/18"	4	DS	18				
_	Bottom of Boring at 60.0 ft				_							\vdash		
-					-							\vdash		
-					-									
					65									
_					-							\vdash		
\dashv					-							\vdash		
					70							\vdash		
					_							-		
-					75							\vdash		
					<u>75</u>									
												L		
\perp												\vdash		
	SAMPLER TYPE	SAMPLE CO	יידורואר. מידורואר	ONG	80 GBO	יטואווי	NATER DEP			ROF	RING METHOD			
	EN SPLIT SPOON	D - DISINTI				_	NATER DEP TION ft	117	HSA	_	LOW STEM AUGERS			
PT - PRESSED SHELBY TUBE I - INTACT CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED					AFTE	R	HRS RS ft	ft	CFA	A - CON	TINUOUS FLIGHT AUGERS ING CASING			
RC - ROCK CORE L - LOST CAVED ATft MD - MUD DRILLING														
STANDARD	PENETRATION TEST DRIVING 2"	OD SAMPLER	1' WITH	140# HA	MMER	FALLI	NG 30": COUNT	MADE	AT 6" IN	TERVALS	3			

	TE

RECORD OF SOIL / ROCK EXPLORATION

	Cohogon 9 Da			JOIL	. / K	OUN	EXPLOR	A110	11		" DD 22	
Contracted Project Na				eepeni	na					Borin Job #	·	
Location										JOD #		
					SAN	1PLEI	₹					
DatumM	LLW	Hammer Wt.	140	lb	Ho	ole Dian	neter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	0.6 ± ft	Hammer Dro		in		ck Core				ector _	D. Patterson	
Date Started	12/20/18	Spoon Size	2 in		_ Bo	ring Me	thod HSA		Date	e Comp	leted12/20/18	
	SOIL DESCRIPTION	NI	STRA		ΞШ		SAI	MPLE				
ELEV. (ft)	Color, Moisture, Density, Pla Proportions		DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER			uu							1. Area 5	
				Juu	_						2. 579392.21 N	
_				L.	_						1438139.6 E	
-					5							_
				Juu	\							
				Juu								
] _							
4				Lin								_
				Juu	10							_
				Juu	_							
					15_							
-] —							
\dashv				Juu	_							
				Juu	-							
					20_							
4				Luu	_							
-				Juu	_							_
-					_							
					25							
				Juu								
				<u> </u>	_							
4] -							_
\dashv				liii	30							
_				L	30_							
\dashv				ļ								_
_					35_							
\dashv					-							
				Juu								
	<u> </u>				40			<u> </u>			<u> </u>	
	SAMPLER TYPE	SAMPLE CO					NATER DEP	PΤΗ	He		RING METHOD	
PT - PRES	DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETIONft HSA - HOLLOW STEM AUGERS PT - PRESSED SHELBY TUBE I - INTACT AFTER HRSft CFA - CONTINUOUS FLIGHT AUGERS											
CA - CONT RC - ROCK	TINUOUS FLIGHT AUGER < CORE	U - UNDIST L - LOST	URBED		AFTEI CAVI	K 24 HF ED AT	RS ft				VING CASING D DRILLING	
STANDARE	PENETRATION TEST DRIVING	2" OD SAMPLER	1' WITH	140# HA	MMER	FALLII	NG 30": COUNT	Γ MADE	AT 6" IN	ΓERVAL	.s	

	TE

Surf Elev		-	RECOF	RD OF	SOIL	. / RC	CK	EXPLORA	OITA	N			
SAMPLER SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMP	Contracted	d WithGahagan & Brya	ant Associa	tes							Borin	g# <u>PR-32</u>	
SAMPLER SAMPLE	Project Na		rt Loop Cha	annel D	eepen	ing					Job#	18-0043	
SAMPLER TYPE SAMPLE CONDITIONS Samples	Location	Baltimore, MD											
Surf Elev						SAM	PLEF	₹					
Source S	DatumM	LLW	Hammer Wt	140	lb	Hol	e Diam	neter 8 in		For	eman	M. Fletcher	
Solit Description Street	Surf. Elev		Hammer Dro	γ ——	in	_ Ro	ck Core	, Dia		Insp	ector _		
Color, Moleture, Density, Pleaticity, Size DEPTH CR CR CR CR CR CR CR C	Date Started	12/20/18	Spoon Size	2 in		Bor	ring Me	thod HSA		Dat	e Compl	eted12/20/18	
## WATER (continued) ## 44.4 Black, wet, very soft, elastic SILT ## 45.9 Black, wet, very soft, fat CLAY. (CH) WOR/18" 1 DS 4 ## WOR/18" 2 DS 9 ## WOR/18" 3 DS 15 ## WOR/18" 4 DS 18 ## WOR/18" 5 DS 18 ## WOR/18" 5 DS 18 ## WOR/18" 6 DS 18 ## WOR/18" 6 DS 18 ## Bottom of Boring at 59.0 ft ## BORING METHOD ## AT COMPLETION A AT COMPLETION BEARS ## BORING METHOD ## AT COMPLETION BEARS ## AT C		SOIL DESCRIPTION		STRA	٦,	ΞШ		SAN	//PLE				\neg
## Add ##		Color, Moisture, Density, Plast	icity, Size	DEPTH	SYMB	DEPT	Cond	Blows/6"	No.	Туре			
SAMPLER TYPE SAMPLE CONDITIONS SROUNDWATER DEPTH SAMPLER TYPE SAMPLE CONDITIONS SROUNDWATER DEPTH SROW STEM AUGGERS STEAT PLANE STEAT PLAN		WATER (continued)			I								
SAMPLER TYPE SAMPLE CONDITIONS SQUONDWATER DEPTH SAMPLER TYPE SAMPLE CONDITIONS SQUONDWATER DEPTH SAMPLE CONDITIONS SAMPLE CONDITIONS SAMPLE CONDITI					Jun								
SAMPLER TYPE SAMPLE CONDITIONS SQUONDWATER DEPTH SAMPLER TYPE SAMPLE CONDITIONS SQUONDWATER DEPTH SAMPLE CONDITIONS SAMPLE CONDITIONS SAMPLE CONDITI					Jun	\dashv							\vdash
SAMPLER TYPE SAMPLE CONDITIONS SQUONDWATER DEPTH SAMPLER TYPE SAMPLE CONDITIONS SQUONDWATER DEPTH SAMPLE CONDITIONS SAMPLE CONDITIONS SAMPLE CONDITI	-			45.0],							\vdash
SAMPLER TYPE SAMPLE CONDITIONS SQUUNDWATER DEPTH SAMPLER TYPE SAMPLE CONDITIONS SQUUNDWATER DEPTH SAMPLE CONDITIONS SAMPLE CONDITIONS SQUUNDWATER DEPTH SAMPLE CONDITIONS SAMPLE CONDITI	-44.4	Black, wet, very soft, elastic	SILT		Ш	45		\MOD/18"	4	DC	4		\vdash
WOR/18" 2 DS 9	45.9	Dork grov wet very ooft fo		<u>46.5</u>]]]]	-		VVOI\/ 10	1	סט	4		
SAMPLER TYPE SAMPLE CONDITIONS SOUNDWATER DEPTH SAMPLER TYPE Ds. DISNITEGRATED Ds. DISNITEGRAT			it CLAT,					WOD/40"	•	D0	•		
SAMPLER TYPE SAMPLE CONDITIONS SQUINDWATER DEPTH SAMPLER TYPE SAMPLE CONDITIONS SQUINDWATER DEPTH AT COMPLETION								WUR/18	2	DS	9		\vdash
SAMPLER TYPE SAMPLE CONDITIONS SQUINDWATER DEPTH SAMPLER TYPE SAMPLE CONDITIONS SQUINDWATER DEPTH AT COMPLETION	_					50		MOD/401					_
SAMPLER TYPE SAMPLE CONDITIONS GROUNDWATER DEPTH BORING METHOD HSA - HOLLOW STEM AUGERS FCFA - CONTINUOUS STEM AUGUS STE	-					-		WOR/18"	3	DS	15		\vdash
SAMPLER TYPE SAMPLE CONDITIONS GROUNDWATER DEPTH BORING METHOD HSA - HOLLOW STEM AUGERS FCFA - CONTINUOUS STEM AUGUS STE	\neg												
SAMPLER TYPE SAMPLE CONDITIONS GROUNDWATER DEPTH BORING METHOD HSA - HOLLOW STEM AUGERS FT. PRESSED SHELBY TUBE 1 - NINTEGRATED 1 - NINTEGRA								WOR/18"	4	DS	18		
SAMPLER TYPE SAMPLE CONDITIONS GROUNDWATER DEPTH BORING METHOD HSA - HOLLOW STEM AUGERS FT. PRESSED SHELBY TUBE 1 - NINTEGRATED 1 - NINTEGRA						55							
SAMPLER TYPE SAMPLE CONDITIONS SOUNDWATER DEPTH SOUNDWATER DEP	\dashv					-		WOR/18"	5	DS	18		\vdash
SAMPLER TYPE SAMPLE CONDITIONS SOUNDWATER DEPTH SOUNDWATER DEP	-					\exists							\vdash
SAMPLER TYPE SAMPLER TYPE SAMPLE CONDITIONS SAMPLER TYPE SAMPLE CONDITIONS BORING METHOD A T COMPLETION B T - PRESED SHELBY TUBE 1 - INTACT A TERR HIRS. A TERR	-58.4			59.0				WOR/18"	6	DS	18		\vdash
SAMPLER TYPE SAMPLE CONDITIONS BORING METHOD AT COMPLETION		Bottom of Boring at 59.0 ft				60							
SAMPLER TYPE SAMPLE CONDITIONS BORING METHOD AT COMPLETION													L
SAMPLER TYPE SAMPLE CONDITIONS BORING METHOD AT COMPLETION	4												\vdash
SAMPLER TYPE SAMPLE CONDITIONS BORING METHOD AT COMPLETION	-					-							\vdash
SAMPLER TYPE SAMPLE CONDITIONS BORING METHOD AT COMPLETION						65							
SAMPLER TYPE SAMPLE CONDITIONS BOUNDWATER DEPTH DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE D - DISINTEGRATED J - INTACT AT COMPLETION AT COMPLETION FT - PRESSED SHELBY TUBE AFTER FT - HRS. FT - CONTINUOUS FLIGHT AUGERS CFA - CONTINUOUS FLIGHT AUGERS													
SAMPLER TYPE SAMPLE CONDITIONS BOUNDWATER DEPTH DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE D - DISINTEGRATED J - INTACT AT COMPLETION AT COMPLETION FT - PRESSED SHELBY TUBE AFTER FT - HRS. FT - CONTINUOUS FLIGHT AUGERS CFA - CONTINUOUS FLIGHT AUGERS													\perp
SAMPLER TYPE SAMPLE CONDITIONS BOUNDWATER DEPTH DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE D - DISINTEGRATED J - INTACT AT COMPLETION AT COMPLETION FT - PRESSED SHELBY TUBE AFTER FT - HRS. FT - CONTINUOUS FLIGHT AUGERS CFA - CONTINUOUS FLIGHT AUGERS	4												\vdash
SAMPLER TYPE SAMPLE CONDITIONS BOUNDWATER DEPTH DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE D - DISINTEGRATED J - INTACT AT COMPLETION AT COMPLETION FT - PRESSED SHELBY TUBE AFTER FT - HRS. FT - CONTINUOUS FLIGHT AUGERS CFA - CONTINUOUS FLIGHT AUGERS	-					70							\vdash
SAMPLER TYPE SAMPLE CONDITIONS D - DISINTEGRATED D - DISINTEGRATED D - DISINTEGRATED D - DISINTEGRATED AT COMPLETION ft						10							
SAMPLER TYPE SAMPLE CONDITIONS D - DISINTEGRATED D - DISINTEGRATED D - DISINTEGRATED D - DISINTEGRATED AT COMPLETION ft													
SAMPLER TYPE SAMPLE CONDITIONS D - DISINTEGRATED D - DISINTEGRATED D - DISINTEGRATED D - DISINTEGRATED AT COMPLETION ft													L
SAMPLER TYPE SAMPLE CONDITIONS D - DISINTEGRATED D - DISINTEGRATED D - DISINTEGRATED D - DISINTEGRATED AT COMPLETION ft	\dashv												\vdash
SAMPLER TYPE SAMPLE CONDITIONS GROUNDWATER DEPTH BORING METHOD DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETION ft HSA - HOLLOW STEM AUGERS PT - PRESSED SHELBY TUBE I - INTACT AFTER HRS. ft CFA - CONTINUOUS FLIGHT AUGERS	\dashv					/5							-
SAMPLER TYPE SAMPLE CONDITIONS GROUNDWATER DEPTH BORING METHOD DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETION ft HSA - HOLLOW STEM AUGERS PT - PRESSED SHELBY TUBE I - INTACT AFTER HRS. ft CFA - CONTINUOUS FLIGHT AUGERS	\dashv												\vdash
SAMPLER TYPE SAMPLE CONDITIONS GROUNDWATER DEPTH BORING METHOD DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETION ft HSA - HOLLOW STEM AUGERS PT - PRESSED SHELBY TUBE I - INTACT AFTER HRS. ft CFA - CONTINUOUS FLIGHT AUGERS													
SAMPLER TYPE SAMPLE CONDITIONS GROUNDWATER DEPTH BORING METHOD DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETION ft HSA - HOLLOW STEM AUGERS PT - PRESSED SHELBY TUBE I - INTACT AFTER HRS. ft CFA - CONTINUOUS FLIGHT AUGERS	_												\perp
DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETIONft HSA - HOLLOW STEM AUGERS PT - PRESSED SHELBY TUBE I - INTACT AFTERHRSft CFA - CONTINUOUS FLIGHT AUGERS		AMDLED TVDE	NAME: 5 C				I III I	A/ATED DED			D0-	DING METUOD	
PT - PRESSED SHELBY TUBE I - INTACT AFTER HRS ft CFA - CONTINUOUS FLIGHT AUGERS					-				ΙΗ	HSH			
ON BOOK CODE	PT - PRES	PT - PRESSED SHELBY TUBE I - INTACT AFTER HRS ft CFA - CONTINUOUS FLIGHT AUGERS CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED AFTER 24 HRS ft DC - DRIVING CASING											
RC - ROCK CORE L - LOST CAVED AT ft MD - MUD DRILLING STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS				! 1' \\/IT⊔	14∩# ⊔^				MADE				

	TE

RECORD OF SOIL / ROCK EXPLORATION

	-			JUIL	. / 八	UUN	EXPLOR	A110	IA		DD 66	
Contracte				ononi	na					Borin		
Project Na Location		iiit Loop Cha	aririer De	среп	iig					Job #	10-0043	
Location	Baltimore, MB				SVI	1PLEI						
	41.1347		440				0.				M. Flatalian	
Datum ^N Surf. Elev	<u>ΛLLW</u> 1.5 ± ft	Hammer WtHammer Dro				ole Dian ock Cor				eman _ bector _	M. Fletcher D. Patterson	
Suri. Elev Date Started		_	2 in			oring Me	. Dia			e Comp		
	T										T	_
ELEV. (ft)	SOIL DESCRIPTIO Color, Moisture, Density, Plan Proportions		STRA DEPTH (ft)	SYMBOL	DEPTH SCALE	Cond	Blows/6"	MPLE No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 5	
				l	_						2. 579027.25 N	
				l	_						1437981.34 E	L
_					5							\vdash
				m	3							
				l								
					_							L
_												\vdash
				l	10							-
7					_							
				l	_							L
					<u>15_</u>							-
_					_							\vdash
				l	_							
					<u>20</u>							<u></u>
_				Juu	_							\vdash
+					_							\vdash
					_							
				h	25							
_					_							L
_					-							\vdash
-				m	_							-
				luu	30							
_					_							\vdash
_				l	_							
\dashv					35							
					00_							
				l								
					_							
\dashv												\vdash
	│ SAMPLER TYPE	SAMPLE CO) NS		UND	WATER DEP	· PTH		BO	LING METHOD	
DS - DRI\	DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETION ft HSA - HOLLOW STEM AUGERS											
CA - CON	PT - PRESSED SHELBY TUBE I - INTACT AFTER ft CFA - CONTINUOUS FLIGHT AUGERS CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED AFTER 24 HRS ft DC - DRIVING CASING RC - ROCK CORE L - LOST CAVED AT ft MD - MUD DRILLING											
	D PENETRATION TEST DRIVING 2		2 1' WITH 1	140# HA				Γ MADF				
S., 410, 41		. 35 5, WI LEI							5 114		:=	

TE

	•	KECOF	אט טר	SOIL	_ / K	UCK	EXPLOR	AHO	N			
Contracted										Borin		
Project Na		irt Loop Cha	innel D	eepen	ing					Job #	18-0043	
Location _	Baltimore, MD											
					SAN	1PLEI	₹					
Dataiii	LLW 1.5 ± ft		00	lb in		ole Dian				eman _	M. Fletcher D. Patterson	
Surf. Elev Date Started _		Hammer DroSpoon Size	p 2 in			ock Core oring Me	о ыа		-	ector _ e Comple		
	I											
ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Plas		STRA DEPTH	SOIL	DEPTH SCALE			MPLE		Rec	BORING & SAMPLE	
(ft)	Proportions		(ft)	SXI	SC	Cond	Blows/6"	No.	Туре	(in)	NOTES	
	WATER (continued)											
				Jun	<u>ا</u> ا							
4				ļ	`\ _							
_					45_							-
\dashv					↓ -							
-				Jun	√ —							
-47.5			49.0									
-49.0	Black, wet, very soft, elast	c SILT	50.5	Ш	50		WOR/18"	1	DS	7		
<u>-49.0</u> _	Dark gray, wet, very soft, f	at CLAY,										
-	(CH)				-		WOR/18"	2	DS	16		_
\dashv					_			_				
-					55 55		WOR/18"	3	DS	18		
									55	10		
							WOR/18"	,	DC	40		
4							WUR/16	4	DS	18		
-							WOD/40"					
-59.0	B # 18 1 100 5 6		60.5		<u>60</u>		WOR/18"	5	DS	15		_
	Bottom of Boring at 60.5 ft				-							
					_							
_					<u>65</u>							_
\dashv					-							_
\neg					_							
					-							
					70							
					_							
\dashv					-							
-					-							_
\neg					75							
					13_							
					_							
4												
	AMPLER TYPE	SAMPLE CO	ן ארדותואר) Ne	80 GPC	יכואו וי	WATER DEP	 T		BOL	RING METHOD	
_	EN SPLIT SPOON	D - DISINTI		_		_	TION ft	ın	HSA	_	LOW STEM AUGERS	
PT - PRES	SSED SHELBY TUBE	I - INTACT U - UNDIST			AFTE	R	HRS RS ft	ft	CFA	A - CON	ITINUOUS FLIGHT AUGERS /ING CASING	
RC - ROCK		L - LOST	JI (DED		CAV	ED AT	ft				DRILLING	
STANDARD	PENETRATION TEST DRIVING 2	OD SAMPLER	1' WITH	140# HA	MMER	FALLII	NG 30": COUNT	MADE	AT 6" IN	TERVAL:	S	

	TE

RECORD OF SOIL / ROCK EXPLORATION

Contracted	- - With Gahadan 8	RECOR Bryant Associa		JIL / N		EXPLOR	AIIO	14	Borin	na # PR-34	
Project Na		Seagirt Loop Cha		ening					Job #	·9 ·· —	
Location		MD								,	
				SAI	MPLEI	₹					
DatumM	ILLW	Hammer Wt	140 lb	н	ole Dian	neter 8 in		For	eman _	M. Fletcher	
Surf. Elev	2.4 ± ft	Hammer Dro	op30 in		ock Cor	e Dia. N/A		Insp	ector_	D. Patterson	
Date Started	12/28/18	Spoon Size	2 in	В	oring Me	ethod HSA		Dat	e Comp	leted12/28/18	
	SOIL DESCR	RIPTION	STRA _	7		SA	MPLE				
ELEV. (ft)	Color, Moisture, Densii Proportio	ty, Plasticity, Size	DEPTH O	SYMBOL DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER			\Box	1					1. Area 5	
				~ _						2. 579157.52 N	
			\w	₩ _						1437661.81 E	L
_				`.'. -	-						\vdash
				$\frac{5}{2}$	-						
\dashv				- h	1						\vdash
\dashv			\w	- w	1						
]						
				10							
_				<u> </u>							\vdash
-				~	-						\vdash
-				_	1						-
				15	1						
			\w		1						
				~ <u> </u>							
_				<u> </u>							\vdash
			\w	$\sim \frac{20}{}$	-						
\dashv				- W	1						\vdash
-					1						
			\w								
				₩ _							L
_					-						\vdash
-				<u> </u>	-						-
\dashv			\w	~~ ₃₀ -	1						\vdash
				\sim							
				<u> </u>							
				<u> </u>							
4				~ _							\vdash
\dashv				<u>35</u>	-						-
\dashv					-						\vdash
\dashv				<u> </u>	1						\vdash
7			\w	- h	1						
				40^{-}							
	SAMPLER TYPE	SAMPLE CO				WATER DEF	PTH			RING METHOD	
	DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETIONft HSA - HOLLOW STEM AUGERS PT - PRESSED SHELBY TUBE I - INTACT AFTER HRSft CFA - CONTINUOUS FLIGHT AUGERS										
CA - CON	CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED AFTER 24 HRS ft DC - DRIVING CASING										
		L - LOST) 11 \A/ITI I 4 40**				T MA DC				
STANDARL	D PENETRATION TEST DRIV	VIING Z OD SAMPLER	VVII⊞ 140#	HIVIIVIE	\ FALLI	NO OU : COUN	i IVIADE	AI O IN	ı ErtVAL	<u></u>	

			RECOF	RD OF	SOIL	. / RC	CK	EXPLOR/	ATIO	N			
Contr	racted	With Gahagan & Brya	ant Associa	tes							Borin	g# <u>PR-34</u>	
Proje	ct Nar		rt Loop Cha	annel D	eepen	ing					Job#	18-0043	
Locat	tion _	Baltimore, MD											
						SAM	PLEF	₹					
Datum	ML	LW	Hammer Wt	140	lb	_ Hole	e Diam	neter 8 in		For	eman	M. Fletcher	
Surf. E		2.4 ± ft	Hammer Dro	ν	in		ck Core				ector _	D. Patterson	
Date S	tarted _	12/28/18	Spoon Size	2 in		Bor	ing Me	thod HSA		Dat	e Comple	eted12/28/18	
Γ,	ELEV.	SOIL DESCRIPTION		STRA	کار	王비		SAN	MPLE			BORING & SAMPLE	
,	(ft)	Color, Moisture, Density, Plast Proportions	icity, Size	DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
		WATER (continued)			Lu.								
					Jun								
_					Jun	1							_
-						1,-							-
Н.	-43.6			46.0		45							-
		Black, wet, very soft, elastic	SILT		Ш			WOR/18"	1	DS	4		
ŀ	- <u>45.1</u>	Dark gray, wet, very soft, fa	t CLAY,	47.5							·		
4		(CH)	,					WOR/18"	2	DS	16		
-						50_			_		10		-
\exists								WOR/18"	3	DS	18		
								***************************************			10		
_								WOR/18"	4	DS	18		
						<u>55</u>		WOIW 10	4	טט	10		
-								WOR/18"	_	D0	40		H
_						-		WOR/10	5	DS	18		
								WOR/18"		D0	40		
	-57.6	Bottom of Boring at 60.0 ft		60.0		<u>60</u>		WOR/10	6	DS	18		
\dashv		Bottom of Borning at 00.0 it				-							\vdash
+													
						<u>65</u>							
_													
-						_							H
-						_							
						70							
_													L
-						_							\vdash
\exists						_							
						75							
4													L
\dashv													H
\dashv						80							
	S	AMPLER TYPE	SAMPLE CO	ONDITIO	ONS		UND	NATER DEP	TH	ı	BOF	RING METHOD	-
PT -	DRIVE	N SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER	D - DISINT I - INTACT U - UNDIST	EGRATEI		AT CO AFTER AFTER	MPLET R R 24 HF	TION ft HRS RS ft		CFA	A - HOLI A - CON	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING	
RC -	ROCK	CORE	L - LOST			CAVE	D AT	ft		MD	- MUD	DRILLING	
STA	NDARD	PENETRATION TEST DRIVING 2"	OD SAMPLER	1' WITH	140# HA	MMER	FALLI	NG 30": COUNT	MADE	AT 6" IN	TERVAL:	S	

	TE

RECORD OF SOIL / ROCK EXPLORATION

	-				JUIL	i K	JUN	EXPLOR	A 1 101	4		-	
Contracted With Gahagan & Bryant Associates Project Name Task 17 - Seagirt Loop Channel Deepening									Borin				
-		nore, MD	ор Спап	nei Dee	epenii	ig					Job #	18-0043	
Location	Baitiii	IOIE, IVID				C A B A	D. E.						
						SAIV	IPLEF						
Datairi	0.3 ± ft		ammer Wt	140 lb 30 in			le Diam				eman _	M. Fletcher D. Patterson	
Surf. Elev Date Started			ammer Drop ooon Size	2 in			ck Core	, ыа			ector _ e Compl		
		op					9						
ELEV. (ft)	Color, Moisture,	DESCRIPTION Density, Plasticity, roportions		STRA DEPTH (ft)	SYMBOL	DEPTH SCALE	Cond	SAN Blows/6"	MPLE No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER											1. Area 7	
					m							2. 579367.57 N	
				-	w	_						1437422.29 E	
\dashv													\vdash
				Ţ		5							
7				-	ww								
						_							L
				Ļ	m	10							<u> </u>
-				-		-							-
_						_							
				Ļ	m								
					w	<u>15</u>							
_					$\frac{1}{2}$	_							\vdash
_				L	w	_							\vdash
				-	w	_							
						20							
				Ţ		_							L
_				-	w	_							\vdash
\dashv					~ ~ ~ ~	_							\vdash
				Č	~~~	25							
				-	ww								
						_							L
_						_							H
-				Ļ	m	30							\vdash
				-		00_							
				L	ww	_							
\dashv						<u></u>							\vdash
						35							
					~~~	$\dashv$							
					ww								
_						ا							$\vdash$
	SAMPLER TYPE	CARA	IPLE CON		Ne 4	40 GPO	ואוטיי	VATER DEP	 		PO	 RING METHOD	
	VEN SPLIT SPOON	_	DISINTEG	_	_	-	_	TIONft	117	HSA		LOW STEM AUGERS	
PT - PRE	SSED SHELBY TUBE TINUOUS FLIGHT AUG	GER U	- INTACT - UNDISTUI - LOST		,	AFTEF AFTEF	R R 24 HF	HRS RS ft	ft	CF <i>A</i> DC	A - CON DRIN	ITINUOUS FLIGHT AUGERS /ING CASING D DRILLING	
	RD PENETRATION TES			WITH 14					MADE /				



T				SOIL	. / R	OCK	EXPLORA	OITA	N			
Contracted										Borin	<del>-</del>	
Project Na		Loop Cha	nnel De	eepeni	ng					Job #	18-0043	
Location ₋	Baltimore, MD											
					SAM	1PLE	R					
DatumML	LLW	Hammer Wt.			_ Hc	ole Diar			For	eman _	M. Fletcher	
Surf. Elev	0.3 ± ft	Hammer Drop		in		ck Cor				ector _	D. Patterson	
Date Started ₋	1/2/19	Spoon Size _	2 in		_ Bo	ring Me	ethod HSA		Dat	e Compl	eted1/2/19	
EL E) (	SOIL DESCRIPTION		STRA	79	Ξ백		SAN	/IPLE			DODING & GAMPLE	
ELEV. (ft)	Color, Moisture, Density, Plastic Proportions	ity, Size	DEPTH (ft)	SYMBOL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
			. ,	o o						()		乚
	WATER (continued)			Juu	_							
-41.7	Black, moist to wet, medium	stiff to	42.0									$\vdash$
$\rightarrow$	very stiff, elastic <b>SILT</b>	Juli 10			-		2-2-3	1	DS	18		-
+					45							
-45.7			46.0		10_		5-5-11	2	DS	12		
T1	Dark green, moist to wet, ver loose, fine to coarse, silty <b>SA</b>	ry ND										
-48.2	with gravel	111D,	48.5		_		2-1-1	3	DS	10		_
-	Gray, brown, moist to wet, ve	ery soft										-
	to soft, SILT, with sand, (ML)				<u>50</u>		WOH/6"-1-2	4	DS	18		
					_							
							WOH/18"	5	DS	18		
					<u>55</u> _		WOR/18"	6	DS	18		
55.7	Gray, moist to wet, soft to me	 edium	<u>56.0</u>		_			Ū		10		$\vdash$
+	stiff, elastic SILT, trace sand	, trace					WOH/6"-2-3	7	DS	18		
	mica				_		WO11/0 -2-3	,	03	10		
					60		14011/4011 4		D0	40		
-60.7	Bottom of Boring at 61.0 ft		61.0	Ш			WOH/12"-4	8	DS	16		
$\perp$	Bottom of Boring at 61.0 it				_							$\vdash$
-					_							$\vdash$
+					65							
4					_							L
+					70							$\vdash$
					70							
4					_							$\vdash$
					<u>75</u>							-
-					-							$\vdash$
1					-							$\vdash$
					80							
		AMPLE CO		_			WATER DEP	TH			RING METHOD	
PT - PRES	EN SPLIT SPOON ISED SHELBY TUBE TINUOUS FLIGHT AUGER	D - DISINTE I - INTACT U - UNDIST			<b>AFTE</b>	R	TION ft HRS RS ft	_ ft	CFA	A - CON	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING	
RC - ROCK		L - LOST	CINDED				ft				DRILLING	

STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS

TE

RECORD OF SOIL / ROCK EXPLORATION	
Contracted With Gahagan & Bryant Associates Boring # PR-36	
Project Name Task 17 - Seagirt Loop Channel Deepening Job # 18-0043	
Location Baltimore, MD	
SAMPLER	
Datum MLLW Hammer Wt. 140 lb Hole Diameter 8 in Foreman M. Fletcher	
Surf. Elev. 0.2 ± ft Hammer Drop 30 in Rock Core Dia. N/A Inspector D. Patterson  Date Started 1/2/19 Spoon Size 2 in Boring Method HSA Date Completed 1/2/19	<del></del>
ELEV. (ft) SOIL DESCRIPTION Color, Moisture, Density, Plasticity, Size Proportions STRA DEPTH (ft) SAMPLE S	LE
WATER   1. Area 7   2. 579039.74 N   1437071.29 E   15   16   17   17   18   19   19   19   19   19   19   19	
WOR/18" 8 DS 18	_
SAMPLER TYPE SAMPLE CONDITIONS GROUNDWATER DEPTH BORING METHOD	
DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETION	ERS

TO

	L	RECORD	OF	SOIL	. / R	OCK	EXPLORA	ATIO	N			
Contracte										Borin	g# <u>PR-36</u>	
Project Na		Loop Channe	el De	eepen	ing					Job#	18-0043	
Location	Baltimore, MD											
					SAN	/IPLE	₹					
DatumN	<b>ILLW</b>	Hammer Wt	140	lb	Ho	ole Dian	neter 8 in		For	eman	M. Fletcher	
Surf. Elev	0.2 ± ft	Hammer Drop _	30	in		ock Core	e Dia. N/A			ector _	D. Patterson	
Date Started	1/2/19	Spoon Size	2 in		Bo	oring Me	ethod HSA		Dat	e Compl	eted1/2/19	
	SOIL DESCRIPTION	9-	TRA	٦.	ΤШ		SAN	ИPLE				
ELEV. (ft)	Color, Moisture, Density, Plastici Proportions	ty, Size DE	PTH (ft)	SYMBOL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	Black, brown, dark gray, wet, soft, fat CLAY, (CH) (continued)	very			4		WOR/18"	9	DS	13		
					_ 		WOR/18"	10	DS	5		
<u>-46.3</u>	Dark greenish-brown, wet, loo	4	<u>6.5</u> _		-		WOR/18"	11	DS	7		
	medium dense, fine to coarse SAND, some silt and gravel	9,			50		6-9-10	12	DS	2		
3					30		5-10-12	13	DS	10		
					_		4-6-7	14	DS	6		
					<u>55</u>		3-3-7	15	DS	5		
-58.8	Bottom of Boring at 59.0 ft	5	9.0		_ 		1-3-5	16	DS	12		
	Bottom of Boring at 39.0 ft				60							-
					-							
					_							
					<u>65</u>							-
-					-							-
					-							
					70							_
_					_							-
$\dashv$					-							_
$\dashv$					-							$\vdash$
					75							
					_							L
_					_							$\vdash$
-					80							$\vdash$
	SAMPLER TYPE SA	AMPLE CONE	OITIC	DNS		UND	NATER DEP	TH	I	BOF	RING METHOD	
DS - DRIV	/EN SPLIT SPOON	D - DISINTEGR			AT C	OMPLE	TION ft			A - HOL	LOW STEM AUGERS	
	ITINUOUS FLIGHT AUGER	I - INTACT U - UNDISTURE L - LOST	BED		AFTE	R 24 HF	HRS RS ft ft	_ tt	DC	- DRIV	ITINUOUS FLIGHT AUGERS /ING CASING ) DRILLING	
STANDAR	D PENETRATION TEST DRIVING 2" O	D SAMPLER 1' V	VITH	140# HA	MMEF	R FALLII	NG 30": COUNT	MADE	AT 6" IN	TERVAL:	S	

	TE

# RECORD OF SOIL / ROCK EXPLORATION

	Cohogon ⁹ P			JUIL	. / 八	OUN	EXPLOR	A110	11	<b>.</b>	" DD 27	
Contracted Project Na				eepeni	ng					Borin Job #	T	
Location .		<u> </u>		•						000 #		
					SAM	1PLE	₹					
DatumMI	_LW	Hammer Wt.	140	lb	Ho	ole Dian	neter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	1.7 ± ft	Hammer Dro		in		ck Core				ector _	D. Patterson	
Date Started ₋	1/9/19	Spoon Size	2 in		_ Bo	ring Me	ethod HSA		Date	e Comp	leted1/9/19	
	SOIL DESCRIPTI	ON	STRA	٦.	ΙШ		SAI	MPLE				
ELEV. (ft)	Color, Moisture, Density, Pl Proportions		DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER			uu							1. Area 8	
				Juu							2. 579010.45 N	L
_				L							1437367.65 E	-
-					5							-
				Juu	—							
				ļ	1							
												L
_				Juu	1,_							$\vdash$
				ļ	10							-
					] =							
				Juu								
				ļ	_							-
					15							_
$\dashv$					-							
				Juu								
				uu	<u>20</u>							_
-				Juu	$\mid \; \; \mid$							$\vdash$
				Juu	25							
					1 4							-
$\dashv$					] -							$\vdash$
$\exists$				Juu	$\mid \; \dashv$							-
				ļ	30							
					1 ]							L_
$\dashv$				l	$\mid \; \; \mid$							-
$\dashv$					$\mid \; \dashv$							$\vdash$
$\exists$					35							-
				Juu	$\mid \;                                   $							L
$\dashv$					] -							-
$\dashv$				Li.	40							-
S	AMPLER TYPE	SAMPLE CO	ONDITIO	DNS		UND	NATER DEP	TH	1	BO	RING METHOD	
DS - DRIVE	EN SPLIT SPOON	D - DISINTI	EGRATED	)	AT CC	OMPLE	TION ft			A - HOL	LOW STEM AUGERS	
CA - CONT	SED SHELBY TUBE INUOUS FLIGHT AUGER	I - INTACT U - UNDIST			AFTER	R 24 HF	HRS RS ft	π	DC	- DRI	ITINUOUS FLIGHT AUGERS VING CASING	
RC - ROCK		L - LOST					ft				D DRILLING	
STANDARD	PENETRATION TEST DRIVING	i 2" OD SAMPLER	1' WITH	140# HA	MMER	HALLII	NG 30": COUNT	I MADE	A1 6" INT	IERVAL	S	

	TE

		RECO	RD OF	SOIL	. / RC	CK	EXPLOR	ATIO	N			
Contracted		•								Boring	g # <u>PR-37</u>	
Project Na			annel D	eepen	ing					Job#	18-0043	
Location _	Baltimore, MD	<u> </u>										
					SAME	PLEF	₹					
Datam	LLW	Hammer W			_ Hole	e Diam				eman	M. Fletcher	
Surf. Elev Date Started _	1.7 ± ft 1/9/19	Hammer Dr Spoon Size	<b>ор</b>	in		k Core				ector e Comple	D. Patterson	
Date Started _	1,0,10	Spoon Size				ing ivie			Dat	e Compie	sted	
ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Pla		STRA DEPTH	ESP.	DEPTH		SAM	/IPLE			BORING & SAMPLE	
(ft)	Proportions	astroity, Oize	(ft)	SOIL	SE	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
	WATER (continued)											-
7	, ,											
				Jun								
_												$\vdash$
					45							-
-45.3			47.0	Jun								$\vdash$
	Black, wet, very soft, elas	stic <b>SILT</b>	48.5	Ш			WOR/18"	1	DS	8		
<u>-46.8</u>	Dark gray, wet, very soft,	fat <b>CLAY</b> ,	48.5									
	(CH)				<u>50</u>		WOR/18"	2	DS	18		-
-					-							$\vdash$
							WOR/18"	3	DS	15		
					<u>55</u>		WOR/18"	4	DS	18		
-												$\vdash$
-							WOR/18"	5	DS	18		$\vdash$
					<u>60</u>		WOR/18"	6	DS	18		<u> </u>
-59.3	Bottom of Boring at 61.0	ft	61.0		4 4		1101110			10		$\vdash$
-	g at a ma				_							$\vdash$
					<u>65</u>							<u> </u>
_												$\vdash$
-												$\vdash$
					70							
_					_							F
-					_							$\vdash$
												$\vdash$
_]					<u>75</u>							
_												L
$\dashv$												$\vdash$
$\dashv$												$\vdash$
					80							
S	SAMPLER TYPE	SAMPLE C	ONDITIO	ONS	GROL	JNDV	VATER DEP	TH		BOF	RING METHOD	
PT - PRES	EN SPLIT SPOON SED SHELBY TUBE TINUOUS FLIGHT AUGER	D - DISINT I - INTAC U - UNDIS L - LOST	T		AFTER AFTER	 24 HR	TION ft HRS ts ft	_ ft	CF/ DC	A - CON - DRIV	LOW STEM AUGERS TINUOUS FLIGHT AUGERS 'ING CASING DRILLING	
	PENETRATION TEST DRIVING		R 1' WITH	140# HA				MADE				

	10

		RECOF	RD OF	SOIL	. / R	OCK	<b>EXPLOR</b>	ATIO	N			
Contracted										Boring # PR-38		
Project Nar		irt Loop Cha	annel D	eepen	ing					Job #18-0043		
Location _	Baltimore, MD											
					SAN	1PLE	₹					
DatumML	LW	_ Hammer Wt	140	lb	Нс	ole Dian	neter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	0.8 ± ft	_ Hammer Dro		in		ock Core				ector _	D. Patterson	
Date Started _	1/14/19	_ Spoon Size	2 in		Bo	ring Me	ethod HSA		Date	e Compl	leted1/14/19	
	SOIL DESCRIPTIO	NI	STRA		ΞШ		SAM	MPLE				
ELEV. (ft)	Color, Moisture, Density, Plas Proportions		DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 6	
					] _						2. 578408.06 N	
				Jun	lacksquare						1437491.71 E	
				fun	\ _							
					5							
_					] —							-
-				Jun	-							
				fun	-							
					10							
				Jun	_							
_				fun	۱ –							
-					1							
				I	15_							
				Jun	-							
				fuu	\							
				I	<u>20</u>							
-				Jun	┥ —							_
-				fun	_							-
					25							
				Jun	\							
-27.2	Black, wet, very soft, fat <b>C</b>	IAV	28.0									_
-	black, wet, very soit, lat C	LAI					WOR/18"	1	DS	5		
					30							
							WOR/18"	2	DS	7		
			34.5				WOR/18"	3	DS	10		
	Dark green, wet, very soft,	fat			<u>35</u>							<u> </u>
	CLAY, (CH)						WOR/18"	4	DS	18		$\vdash$
$\dashv$	\ <del></del> ,				_			'				$\vdash$
					I		WOR/18"	5	DS	18		<u> </u>
					40				الحال	10		
S	AMPLER TYPE	SAMPLE CO	ONDITIO	ONS			WATER DEP	тн		BOI	RING METHOD	
PT - PRESS CA - CONTI	IN SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER	D - DISINT I - INTACT U - UNDIST	Т	)	AFTE AFTE	R R 24 HF	TION ft HRS RS ft		CFA DC	A - CON DRIN -	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS VING CASING	
RC - ROCK		L - LOST					ft				DIRILLING	
STANDARD	PENETRATION TEST DRIVING 2	" OD SAMPLEF	R 1' WITH	140# HA	MMER	RFALLII	NG 30": COUNT	MADE	AT 6" INT	ΓERVAL	S	



			RECO	RD OF	SOIL	_ / ROC	K EXPLOR	ATIO	N			
Contra	cted	WithGahagan & Br	yant Associ	ates						Borin	g# PR-38	
Projec			girt Loop Cl	nannel D	eepen	ing				Job#	<del>-</del>	
Location	on _	Baltimore, MD	)									
						SAMPL	ER					
Datum _	ML	LW	Hammer V	vt 140	lb	Hole Di	ameter 8 in		For	eman	M. Fletcher	
Surf. Ele	v	0.8 ± ft	Hammer D		in		ore Dia. N/A			ector _	D. Patterson	
Date Sta	rted _	1/14/19	Spoon Size	e2 in		Boring	Method HSA		Dat	e Comple	eted1/14/19	
		COIL DECODIDE	ONI	OTD4	٦ ٦	Tul	SAI	MPLE				
EL	EV. (ft)	SOIL DESCRIPTION Color, Moisture, Density, Planting Proportions		STRA DEPTH (ft)	SYMBOL	SCALE Con		No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
		Dark green, wet, very sof CLAY, (CH) (continued)	t, fat			1	WOR/18"	6	DS	18		
	4.2			45.0		45	WOR/18"	7	DS	18		F
		Dark green, wet, very sof SILT, (MH)	t, elastic				WOR/18"	8	DS	18		
4	9.2			<u>50.0</u>		50	WOR/18"	9	DS	16		
		Dark gray, wet, very soft,	fat CLAY			1	WOR/18"	10	DS	18		
							WOR/18"	11	DS	18		
						1	WOR/18"	12	DS	18		_
	8.7	Bottom of Boring at 59.5	<i>t</i>	59.5		60	WOR/18"	13	DS	18		
		Bottom of Boring at 59.5	IL									
_												L
-												_
-						65						
						05						
_												
_						70						
$\exists$												-
$\exists$												
						75						
_												<u> </u>
$\dashv$						80						$\vdash$
	S	AMPLER TYPE	SAMPLE (	CONDITION	ONS		 DWATER DEP	TH		BOF	RING METHOD	
PT - CA - RC -	DRIVE PRES CONT ROCK	IN SPLIT SPOON IN SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER CORE PENETRATION TEST DRIVING	D - DISIN I - INTA( U - UNDI: L - LOST	TEGRATEI CT STURBED	)	AT COMPL AFTER AFTER 24 CAVED A	ft HRS ft HRS ft T ft	ft	CF/ DC MD	A - HOLI A - CON - DRIV - MUD	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING I DRILLING	

		RECO	RD OF	SOIL	. / R	OCK	<b>EXPLOR</b>	ATIO	N			
Contracted	WithGahagan & Br	yant Associa	ates		Boring #PR-39							
Project Nar		girt Loop Ch	annel D	eepeni	ng					Job #	<u> 18-0043</u>	
Location _	Baltimore, MD											
					SAM	1PLEF	₹					
DatumML	LW	_ Hammer W	t. 140	lb	На	le Dian	neter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	0.9 ± ft	Hammer Di		in		ck Core				ector _	D. Patterson	
Date Started _	1/3/19	_ Spoon Size	2 in		_ Bo	ring Me	thod HSA		Date	e Compl	leted1/3/19	
	SOIL DESCRIPTION	ıkı	STRA	٦	ΞШ		SAM	MPLE				$\neg$
ELEV. (ft)	Color, Moisture, Density, Pla Proportions		DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 7	
											2. 578726.69 N	
				Jun	$\downarrow \  \     $						1436798.21 E	
				Jun	$\mid \;                                   $							
					5							_
_					] -							$\vdash$
-				Jun	$\downarrow \; \dashv$							-
				Jun	$\dashv$							
					10							
				Jun	<b>↓</b> _							
_				Jun	\							<u> </u>
_					1,-							$\vdash$
					15_							-
				Jun	$\downarrow \ \dashv$							
				ļ	$\mid \;                                   $							
					20							
				Jun	$\dashv$							$\vdash$
21.1	Black, gray, wet, very soft	elastic	22.0				WOD/40"			4.0		$\vdash$
-	SILT,	,			-		WOR/18"	1	DS	12		$\vdash$
	(MH)				25 ■							
							WOR/18"	2	DS	18		
_					_		WOR/18"	3	DS	18		$\vdash$
												-
-30 <u>.1</u>			31.0		30_		WOR/18"	4	DS	18		-
-50.1	Dark gray, wet, very loose		<u>- -51.0</u> .									
	fine to coarse, <b>SAND</b> , sor trace silt, trace shells	ne gravel,					2-2-3	5	DS	9		
	trace ont, trace enoug											
					35_		6-2-1	6	DS	7		
35.1	Brown, wet, medium stiff,		<u>36.0</u>		4		0-2-1		53	,		$\vdash$
$\dashv$	SILT, trace mica	Januy					0.05	_				$\vdash$
			39.0		-		2-2-3	7	DS	11		$\vdash$
					40							
S	AMPLER TYPE	SAMPLE C	ONDITIO		GRO		NATER DEP	тн		BOI	RING METHOD	
	EN SPLIT SPOON SED SHELBY TUBE	D - DISIN I - INTAC		)	AT CC	MPLE	ΓΙΟΝ ft HRS	ft			LOW STEM AUGERS	
	INUOUS FLIGHT AUGER	U - UNDIS L - LOST			<b>AFTER</b>	R 24 HF	RS ft ft	_ "	DC	- DRI\	VING CASING D DRILLING	
	PENETRATION TEST DRIVING		R 1' \//ITL	1⊿∩# ⊔^				MADE				
017 11 ND/ 11 ND	IIVIIIOI ILOI DINVINO	- JD J/ (IVII LL		. 1011117	IV	. , ,	.5 55 . 555111	1111 UDL	🔾 🔰		.~	



		RECO	ORD OF	SOIL	_ / R	OCK	EXPLORA	OITA	N			
Cor	ntracted									Borin	g# <u>PR-39</u>	
Pro	ject Na	meTask 17 - Seagirt Loop C	Channel D	eepen	ing					Job#	18-0043	
Loc	ation ₋	Baltimore, MD										
					SAN	1PLE	R					
Datu		_LW Hammer				ole Dian				eman _	M. Fletcher	
	Elev Started	0.9 ± ft Hammer 1/3/19 Snoon Si	DI OP	in		ock Cor				ector _	D. Patterson eted 1/3/19	
Date	Started _	1/3/19 Spoon Si	ze <u>z m</u>		BC	oring ivie	ethod HSA		Dat	e Compl	eted	
	ELEV.	SOIL DESCRIPTION	STRA	BQL BQL	투끸		SAN	/IPLE			BORING & SAMPLE	
	(ft)	Color, Moisture, Density, Plasticity, Size Proportions	DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
_		Greenish-brown, wet, very loose, fine, silty <b>SAND</b> , ( <b>SM)</b> (continued)					WOH/6"-1-1	8	DS	18		
_	-42.6	Orange- brown, brown, wet,	43.5		-		WOH/12"-1	9	DS	18		
		medium dense, fine, silty <b>SAND</b> , some gravel, (SM)			45		28-7-6	10	DS	18		
_	<u>-47.6</u>		48.5	77777			8-12-17	11	DS	15		
_	<u>-49.6</u>	Brown, wet, soft, <b>CLAY</b>	<u>50.5</u>		<u>50</u>		5-2-2	12	DS	10		
_		Dark gray, wet, soft, <b>SILT</b> , with sand, ( <b>ML</b> )										
_	<u>-52.6</u>		<u>53.5</u>		_		6-2-2	13	DS	7		-
_		Orange-brown, wet, medium dense, fine, <b>SAND</b> , trace silt			55 <u> </u>		2-7-8	14	DS	15		
_							2-8-9	15	DS	9		
	-60.1		61.0		60		4-8-12	16	DS	10		
		Bottom of Boring at 61.0 ft	0.10									
_					_							-
-					65							-
					65							
					_							$\perp$
_												$\vdash$
					70							-
_												
_					_							
					<u>75</u>							
_					-							$\vdash$
_					-							$\vdash$
_					-							$\vdash$
_					80							$\vdash$
	S	SAMPLER TYPE SAMPLE	CONDITIO	ONS		UND	WATER DEP	TH		BOF	RING METHOD	
P [*] C/	Γ - PRES A - CONT	SED SHELBY TUBE I - INT/ INUOUS FLIGHT AUGER U - UND	DISTURBED	)	AFTE AFTE	R R 24 HI	TION ft HRS RS ft	_ ft	CFA DC	A - CON - DRIN	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING	
	C - ROCK FANDARD	CORE L - LOS PENETRATION TEST DRIVING 2" OD SAMPL		140# HA			ft NG 30": COUNT	MADE .			DRILLING S	

	TE

			RECOF	RD OF	SOIL	. / R	OCK	EXPLOR	ATIO	N			
Con	tracted	WithGahagan & Bry	ant Associa	tes							Borin	g # PR-40	
	ject Na		irt Loop Cha	nnel De	eepeni	ng					Job #		
Loc	ation .	Baltimore, MD											
						SAM	1PLEI	R					
Datui	MI	LLW	_ Hammer Wt.	140	lb	Uم	ole Dian	_{neter} 8 in		For	eman _	M. Fletcher	
	Elev	1.1 ± ft	_ Hammer Dro				ock Cor				eman _ pector _	D. Patterson	
	Started	1/9/19	Spoon Size	2 in			ring Me				e Comp	leted1/9/19	
ſ								041	MDI E				
	ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Plas	∖ ticitv. Size	STRA DEPTH	SOIL	DEPTH SCALE			MPLE		Rec	BORING & SAMPLE	
	(ft)	Proportions	,,	(ft)	SXI	SC	Cond	Blows/6"	No.	Туре	(in)	NOTES	
-		WATER										1. Area 8	_
$\exists$						_							
$\exists$						-						2. 578642.07 N 1437025.38 E	
					Juu	_							
					Juu	5							
4						_							
$\dashv$						] _							
$\dashv$					l	_							_
$\exists$					Juu	10							
						10							
$\exists$													
					Luu								
					Juu	_							
					ļ	<u>15</u> _							
$\dashv$						_							_
-						] —							
$\dashv$					Juu	_							
$\exists$					Juu	20							
					Juu	_							
4					Juu	_							
						<u>25_</u>							_
$\dashv$						] —							_
$\dashv$					l	_							
$\exists$					Juu	_							
						30							
						] _							
4					l	_							
4					Juu								
$\dashv$					ļ								
						35							_
$\dashv$						-							
$\exists$					l	_							
					ļ								
					<u> </u>	40							
_			SAMPLE CO					WATER DEP	TH			RING METHOD	
		EN SPLIT SPOON SED SHELBY TUBE	D - DISINTI I - INTACT			<b>AFTE</b>	R	TION ft HRS	ft			LOW STEM AUGERS ITINUOUS FLIGHT AUGERS	
CA		INUOUS FLIGHT AUGER	U - UNDIST L - LOST			AFTE	R 24 HI	RS ft		DC	- DRI	/ING CASING D DRILLING	
				1' \\\/\TU -	1/10# 🎞 🗥				MADE				
31	ANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS												

	TE

		RECO	RD OF	SOIL	. / ROC	CK EXPLOR	ATIO	N			
Contracte		Bryant Associa							Boring	g# <u>PR-40</u>	
Project Na			annel D	eepeni	ng				Job#	18-0043	
Location	Baltimore, M	D									
					SAMPL	ER.					
DatumN	<b>ILLW</b>	Hammer W	t140	lb	_ Hole [	Diameter <u>8 in</u>		For	eman	M. Fletcher	
Surf. Elev	1.1 ± ft	Hammer Dr	<b>ор</b>	in		Core Dia. N/A			ector	D. Patterson	
Date Started	1/9/19	Spoon Size	2 in		_ Boring	MethodHSA		Dat	e Comple	eted1/9/19	
ELEV.	SOIL DESCRIP		STRA	J Z	王비	SA	MPLE			BORING & SAMPLE	
(ft)	Color, Moisture, Density, Proportions		DEPTH (ft)	SOIL	DEPTH SCALE	nd Blows/6"	No.	Туре	Rec (in)	NOTES	
	WATER (continued)			Tun							
$\Box$				Jun							
4				Jum							$\vdash$
$\dashv$					  -						$\vdash$
					45						-
-45.9			47.0	Jum	-						
	Dark gray, wet, very so	ft, fat <b>CLAY</b> ,				WOR/18"	1	DS	18		
	trace sand, (CH)										$\vdash$
					<u>50</u>	WOR/18"	2	DS	18		-
$\dashv$					_		-				$\vdash$
<u>-</u> -51.9			53.0			WOR/18"	3	DS	18		
	Dark gray, wet, very so	ft, elastic		7111					.0		
	CLAY, (MH)			Ш	<u>55</u>	WOR/18"	4	DS	18		<u> </u>
$\perp$				Ш	_	WOIVIO	4	DS	10		$\vdash$
$\overline{}$				Ш		WOD/18"		D0	40		$\vdash$
$\neg$				Ш	-	WOR/18"	5	DS	18		$\vdash$
				Ш	60 <b>■</b>						
-59.9			61.0	Ш		WOR/18"	6	DS	18		
4	Bottom of Boring at 61.	O ft									$\vdash$
$\perp$											$\vdash$
+					65						$\vdash$
					00						
4					_						-
$\dashv$					70						$\vdash$
					70						
											L
_											$\vdash$
					<u>75</u>						<u> </u>
-											$\vdash$
					80		<u></u>				
	SAMPLER TYPE /EN SPLIT SPOON	SAMPLE C D - DISINT				IDWATER DEF PLETION ft	'TH	пе		RING METHOD LOW STEM AUGERS	
PT - PRES	SSED SHELBY TUBE ITINUOUS FLIGHT AUGER	U - DISINI I - INTAC U - UNDIS L - LOST	T		AFTER _ AFTER 24	'LETIONπ HRS ft 4 HRS ft	ft	CF/ DC	A - CON - DRIV	IOW STEM AUGERS FINUOUS FLIGHT AUGERS ING CASING DRILLING	
	D PENETRATION TEST DRIVIN	IG 2" OD SAMPLEI	R 1' WITH	140# HAI			T MADE	AT 6" IN	TERVALS	3	

TE

		RECOF	RD OF	SOIL	. / R	оск	EXPLOR	ATIO	N		, and the second	
Contracted										Borin		
Project Nan		rt Loop Cha	annel De	eepeni	ng					Job#	18-0043	
Location _	Baltimore, MD											
					SAM	1PLEF	?					
DatumMLI		. Hammer Wt	140	lb	_ Ho	le Diam	eter 8 in		For	eman _	M. Fletcher	
Curr. 2.07	1.5 ± ft	. Hammer Dro	•	in		ck Core				ector _	D. Patterson	
Date Started _	1/8/19	Spoon Size	2 in		_ Bo	ring Me	thod HSA		Dat	e Compl	eted1/8/19	
ELEV.	SOIL DESCRIPTION		STRA	30′L	표비		SAM	MPLE			BORING & SAMPLE	
(ft)	Color, Moisture, Density, Plast Proportions	icity, Size	DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
	WATER			0,						. ,	1. Area 6	
_	WATER			ļ	_							
-											2. 578181.16 N 1437432.76 E	$\vdash$
				l	_							
				Juu	5							
					] _							
-					_							
-				ļ	-							
					10_							
					_							
_				Juu	_							
-					] —							
					] — 15							
				Juu								
					_							
_					] —							-
-				Juu	20							
_				ļ	_							_
-					25							_
				uu	25_							
				Juu								
-26.5	Disclared comment for O	AV	28.0									
-	Black, wet, very soft, fat <b>CL</b>	.AY			_		WOR/18"	1	DS	4		
					30							_
					_		WOR/18"	2	DS	10		
-33.0			34.5		_		WOR/18"	3	DS	12		_
	Dark gray, wet, very soft, el	lastic			35							_
	SILI, (MH)				-		WOR/18"	4	DS	15		
							WOR/18"	5	DS	18		
				ШЦ	40			<u></u>				
_	AMPLER TYPE  N SPLIT SPOON	BAMPLE CO D - DISINT		_	-	_	VATER DEP TON ft	TH	μο		RING METHOD LOW STEM AUGERS	
PT - PRESS	SED SHELBY TUBE NUOUS FLIGHT AUGER	I - INTACT U - UNDIST L - LOST	Γ		AFTE!	R R 24 HR		ft	CF/ DC	A - CON DRIN -	IOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING DRILLING	
	PENETRATION TEST DRIVING 2"		R 1' WITH	140# HA				MADE				

	TE

	RECOI	RD OF S	OIL / ROCH	( EXPLORA	IOITA	N			
Contracted							Borin		
Project Na		annel Dee _l	pening				Job #	18-0043	
Location ₋	Baltimore, MD		CAMPLE	·D					
N / I	LW	140 lb	SAMPLE	0.1				M. Flatabay	
Datum ^{IVIL} Surf. Elev	_LW Hammer W 1.5 ± ft Hammer Dr		Hole Dia				eman _ pector _	M. Fletcher  D. Patterson	
Date Started _	1/8/19 Spoon Size	•	Boring M				e Compl	eted1/8/19	
	SOIL DESCRIPTION	STRA _	. 궁 모 = = = = = = = = = = = = = = = = = =	SAN	/IPLE				$\neg$
ELEV. (ft)	Color, Moisture, Density, Plasticity, Size Proportions	DEPTH (ft)	SYMBOL SCALE SCALE	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	Dark gray, wet, very soft, elastic SILT, (MH) (continued)		<b>T</b>	WOR/18"	6	DS	18		
			- - 45	WOR/18"	7	DS	18		
			<b>     1</b>	WOR/18"	8	DS	18		-
			50	WOR/18"	9	DS	16		
			1	WOR/18"	10	DS	18		-
			<u>55</u>	WOR/18"	11	DS	18		_
				WOR/18"	12	DS	18		
-58.0	Bottom of Boring at 59.5 ft	59.5	60	WOR/18"	13	DS	16		_
_									$\vdash$
-			<u></u>						
_									_
_									
			70						
_									_
_									
-			75						
			10						
4									$\vdash$
-			80						$\vdash$
S	AMPLER TYPE SAMPLE C			U WATER DEP	TH		BOF	RING METHOD	
DS - DRIVE PT - PRES	EN SPLIT SPOON D - DISINT SED SHELBY TUBE I - INTAC INUOUS FLIGHT AUGER U - UNDIS	EGRATED T	AT COMPLE AFTER AFTER 24 F	ETION ft HRS HRS ft		CF <i>A</i> DC	A - HOL A - CON - DRIV	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING D DRILLING	
	PENETRATION TEST DRIVING 2" OD SAMPLEF	R 1' WITH 140			MADE /				



	RECORD OF SOIL / ROCK EXPLORATION											
Contracted	WithGahagan & Brya	ant Associa	ites							Borin	g# PR-42	
Project Nar		irt Loop Cha	annel De	eepeni	ing					Job #	18-0043	
Location _	Baltimore, MD											
					SAM	1PLEF	₹					
DatumML	LW	_ Hammer Wt	140	lb	_ Ho	ole Diam	neter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	0.7 ± ft	_ Hammer Dro	•	in		ck Core				ector _	D. Patterson	
Date Started _	1/9/19	_ Spoon Size	2 in		Bo	ring Me	thod HSA		Date	e Comp	leted1/9/19	
E. E.	SOIL DESCRIPTION	1	STRA		Ξщ		SAN	MPLE			DODING 0 0444DLE	
ELEV. (ft)	Color, Moisture, Density, Plast Proportions	ticity, Size	DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER			tuu	1—						1. Area 7	
				Lui	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $						2. 578425.93 N	
				fuu	\						1436587.91 E	
-					۱_ ا							$\vdash$
$\overline{}$				uu	5							-
7 1				Jun	$\mid \; \dashv$							
4				m	<b>.</b>							$\vdash$
-				Jun	10							-
-					1 -							
				Jun	$\dashv$							L
_					15_							
-					] -							-
7				Jun	$\mid \; \dashv$							
				uu	<u>20</u>							<u> </u>
$\dashv$				Jun	$\dashv$							$\vdash$
-					1 -							-
				uu	$\rfloor$							
				Juu	<u>25</u>							
4					1 -							-
-				uu	] -							-
7 1				Jun	$\mid \;                                   $							
					30							
_					]							<u> </u>
$\dashv$				Jun	$\dashv$							$\vdash$
-33.3			34.0		1 -							
	Black, wet, very soft, elastic	c <b>SILT</b> ,	0	ĬĬĬĬ	35		WOR/18"	1	DS	4		
	trace fine sand											L
4					-		WOR/18"	2	DS	8		
-								_		•		
7					40		WOR/18"	3	DS	12		
S	AMPLER TYPE	SAMPLE CO	ONDITIO	ONS	GRO	UND	NATER DEP		, ,,,,		RING METHOD	
	N SPLIT SPOON SED SHELBY TUBE	D - DISINT		)	AT CC	OMPLET	ΓΙΟΝ ft	ft			LOW STEM AUGERS ITINUOUS FLIGHT AUGERS	
CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED AFTER 24 + RC - ROCK CORE L - LOST CAVED AT						R 24 HF	HRS RS ft	_ "	DC	- DRI	/ING CASING	
		L - LOST	) 4! \\/!\T! !	140# ! ! ^				. אאטר			D DRILLING	
STANDARD	PENETRATION TEST DRIVING 2"	OD SAIVIPLET	VI WIIH	14U# MA	ıvııvı⊏K	. FALLII	NG 30 : COUNT	IVIAUE	AI O INI	∟rtvAL	.o	

	TE

	ШΤ		RECO	RD OF	SOIL	_ / R	OCK	EXPLOR	ATIO	N			
Contra	acted	With Gahagan & Bry				_					Borin		
Projec			irt Loop Cl	nannel De	eepen	ing					Job#	18-0043	
Locati	on _	Baltimore, MD											
						SAM	1PLEF	₹					
Datum ₋		LW 0.7 L ft	_ Hammer V	00			ole Diam				eman _	M. Fletcher	
Surf. Ele Date Sta		0.7 ± ft 1/9/19	<ul><li>Hammer D</li><li>Spoon Siz</li></ul>		in		ock Core oring Me				ector _ e Comple	D. Patterson	
Date Sta	arteu _		_ 300011 312				ing we			Dat	e Compi	eleu	
E	LEV.	SOIL DESCRIPTION Color, Moisture, Density, Plas		STRA DEPTH	BOL	DEPTH SCALE		SAM	MPLE I		_	BORING & SAMPLE	
	(ft)	Proportions	licity, Size	(ft)	SOIL	DEF SC/	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
_		Black, wet, very soft, elasti	c SILT.										_
-		trace fine sand (continued)	- ,										
								WOR/18"	4	DS	15		
_						45_		WOR/18"	5	DS	15		
<del> </del>	<u> 45.3</u>	Dark gray, wet, very soft, fa	at CLAY.	<u>46.0</u>		┨							
$\dashv$		trace fine sand	,			-		WOR/18"	6	DS	15		
_						<u>50</u>		WOR/18"	7	DS	15		_
4													$\vdash$
$\dashv$						-		WOR/18"	8	DS	15		
$\Box$						<u>55</u>		WOR/18"	9	DS	15		
4													$\vdash$
-						-		WOR/18"	10	DS	12		_
-													$\vdash$
╝,	-			00.5		60		WOR/18"	11	DS	7		
	59.8	Bottom of Boring at 60.5 ft		60.5		1 4							
-						_							$\vdash$
$\dashv$						_							
						65							
4						_							_
+						_							-
-						70							
4						_							
4						_							-
$\dashv$						75							
						15							
$\dashv$													$\vdash$
$\dashv$						80							$\vdash$
	S	AMPLER TYPE	SAMPLE (	CONDITIO	) NS		UND	NATER DEP	TH	1	BOF	RING METHOD	
	DRIVE	N SPLIT SPOON	D - DISIN	TEGRATED		AT CC	MPLE	TION ft			A - HOL	LOW STEM AUGERS	
CA -	CONT	SED SHELBY TUBE INUOUS FLIGHT AUGER	U - INTA	STURBED		AFTE	R 24 HF	HRS RS ft	11	DC	- DRIV	ITINUOUS FLIGHT AUGERS /ING CASING	
		CORE PENETRATION TEST DRIVING 2"	L - LOST		140# 🎞 🗘			ft	MADE			DRILLING S	

	TE

		RECOR	RD OF	SOIL	. / R	OCK	<b>EXPLOR</b>	ATIO	N			
Contracted										Borin		
Project Nar		rt Loop Cha	innel De	eepeni	ng					Job #	<u> 18-0043</u>	
Location _	Baltimore, MD											
					SAM	1PLEF	₹					
DatumML	LW	Hammer Wt.	140	lb	_ Ho	le Dian	neter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	1.6 ± ft	Hammer Dro		in		ck Core			Insp	ector _	D. Patterson	
Date Started _	1/9/19	Spoon Size	2 in		_ Bo	ring Me	thod HSA		Date	e Comp	leted1/9/19	
	SOIL DESCRIPTION		STRA	٦,	ΞЩ		SAI	MPLE				
ELEV. (ft)	Color, Moisture, Density, Plast Proportions		DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 8	_
				Luu							2. 578666.37 N	
				Juu	-						1437370.13 E	
4					i _							-
_					5							-
$\dashv$				Luu	_							-
-				Juu	. —							
					10							
				Luu								L
_				Juu	-							$\vdash$
-					_							$\vdash$
-					15							$\vdash$
				Juu								
				ļ								
					Ì _							
4					] _							-
-				Juu	20							-
-				<u> </u>	_							$\vdash$
7												
				Juu								
				Juu	25							
4					i _							_
-					] -							-
-				Juu	. —							
-				Juu	30							
				Juu	_							
4				Juu	-							-
-					35							-
$\dashv$					-							$\vdash$
7												
				ļ								
				<u> </u>	40							
		SAMPLE CO					NATER DEP	TH			RING METHOD	
PT - PRES CA - CONT	DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETIONft HSA - HOLLOW STEM AUGERS PT - PRESSED SHELBY TUBE L - INTACT AFTER HRSft CFA - CONTINUOUS FLIGHT AUGERS CFA - CONTINUOUS FLIGHT AUGERS DC - DRIVING CASING RC - ROCK CORE L - LOST CAVED ATft MD - MUD DRILLING											
STANDARD	STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS											

	TE

	<u> </u>		RECOR	D OF	SOIL	. / ROCK	EXPLORA	ATIO	N			
Contrac	ted With _	Gahagan & Brya								Boring		
-	Name	Task 17 - Seagir	t Loop Cha	nnel D	eepeni	ng				Job#	18-0043	
Locatio	n	Baltimore, MD										
						SAMPLE	R					
Datum	MLLW		Hammer Wt.	140	lb	_ Hole Dia	meter 8 in		Fore	eman	M. Fletcher	
Surf. Elev.			Hammer Dro		in	_ Rock Co				ector _	D. Patterson	
Date Start	ed1/9/19		Spoon Size	2 in		_ Boring M	ethod HSA		Date	e Comple	eted1/9/19	
		SOIL DESCRIPTION		STRA	٦,	ΞЩ	SAN	ИPLE				
ELE (ft		, Moisture, Density, Plasti Proportions	city, Size	DEPTH (ft)	SYMBOL	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATE	R (continued)			Luu							
					him							
					Jum							
						45						
$\dashv$					Jum	-						
					Jum	-						
47	·.4			49.0								
	Dark g	ray, wet, very soft, fat	CLAY			<u>50</u>	WOR/18"	1	DS	18		
49	0.4	ray, wet, very soft, ela		<u>51.0</u>		-						_
_	SILT,	ray, wet, very sort, er	35110		Ш	-	WOR/18"	2	DS	18		
$\dashv$	(MH)				Ш	_						
					Ш	55	WOR/18"	3	DS	15		
					Ш			3		13		
					Ш		WOR/18"	,	D0	45		
56	i.4	f D - win t		58.0	Ш		WOR/16	4	DS	15		
_	DOLLOIT	of Boring at 58.0 ft										_
						60						
						<u>65</u>						
_												
-												
-												
						70						
_												
						75						-
$\dashv$												
7												
						80						
D0 -	SAMPLE		AMPLE CO				WATER DEP	TH			RING METHOD	
PT - PI CA - C	DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETIONft HSA - HOLLOW STEM AUGERS PT - PRESSED SHELBY TUBE I - INTACT AFTER HRSft CFA - CONTINUOUS FLIGHT AUGERS CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED AFTER 24 HRSft DC - DRIVING CASING RC - ROCK CORE L - LOST CAVED ATft MD - MUD DRILLING											
		TION TEST DRIVING 2"		1' WITH	140# HAI			MADE				

	10

	RECORD OF SOIL / ROCK EXPLORATION												
Con	Contracted With Gahagan & Bryant Associates Boring # PR-44												
Proj	ect Nar		t Loop Cha	nnel D	eepeni	ng					Job #	18-0043	
Loc	ation _	Baltimore, MD											
						SAM	1PLEI	₹					
Datur	mML	LLW	Hammer Wt.			_ Hc	le Dian			Fore	eman _	M. Fletcher	
	Elev	-1.1 ± ft	Hammer Dro	•	in		ck Core				pector _	D. Patterson	
Date	Started _	1/10/19	Spoon Size	2 in		_ Bo	ring Me	ethod HSA		Date	e Comp	leted1/10/19	
	ELEV.	SOIL DESCRIPTION		STRA	J Z	프믜		SAM	MPLE			BORING & SAMPLE	
	(ft)	Color, Moisture, Density, Plast Proportions	icity, Size	DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
$\dashv$		WATER										1. Area 8	
												2. 578134.06 N	
					Jun							1437023.39 E	
4						_							$\vdash$
-						5							-
$\dashv$					h	-							<b>H</b>
					<u></u>								
					h	10							_
$\dashv$					<u></u>	_							$\vdash$
					Jun								
						<u>15</u>							
-						] —							$\vdash$
-					h	_							
					luu.								
						20_							
4					hu	_							-
$\dashv$					<u></u>	-							$\vdash$
$\Box$					hu	25							
4					ļ	_							
-						_							-
$\dashv$					ļ	$\downarrow$ $\dashv$							$\vdash$
					<u></u>	30_							
4					Jun	$\downarrow $ $\downarrow$							-
$\dashv$					L	$\dashv$							$\vdash$
$\dashv$						35							
					Jun	ļ <u>,                                     </u>							
					ļ								
4						] -							-
$\dashv$					Jun	40							-
	S	AMPLER TYPE	SAMPLE CO	NDITIO	DNS		UND	NATER DEP	TH		BO	RING METHOD	
	- DRIVE	EN SPLIT SPOON	D - DISINTE	EGRATED	)	AT CC	MPLE	TION ft			A - HOL	LOW STEM AUGERS	
CA	PT - PRESSED SHELBY TUBE I - INTACT AFTER HRS ft CFA - CONTINUOUS FLIGHT AUGERS CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED AFTER 24 HRS ft DC - DRIVING CASING												
	- ROCK		L - LOST	41.14.7771 :	440"			ft				D DRILLING	
ST	ANDARD	PENETRATION TEST DRIVING 2"	OD SAMPLER	1' WITH	140# HA	MMER	FALLI	NG 30": COUNT	MADE	AI 6" INT	IERVAL	5	



	<u></u>	RECO	RD OF	SOIL	_ / K	UCK	EXPLORA	4110	N			
Contract	ed WithGahagan & Br									Boring		
-	NameTask 17 - Seag	girt Loop Ch	annel D	eepen	ing					Job#	18-0043	
Location	Baltimore, MD											
					SAM	1PLEF	₹					
Datum	MLLW	_ Hammer W			Ho	le Diam			For	eman	M. Fletcher	
Surf. Elev.		_ Hammer Dr	<b>υρ</b>	in		ck Core				ector _	D. Patterson	
Date Starte	d1/10/19	_ Spoon Size	2 in		Bo	ring Me	ethod HSA		Dat	e Comple	eted1/10/19	
	, SOIL DESCRIPTIO		STRA	٦٥	王끡		SAM	MPLE			DODING & CAMPLE	
ELE\ (ft)	Color, Moisture, Density, Pla Proportions	sticity, Size	DEPTH (ft)	SYMBOL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER (continued)			I								
				Jun	┪							L
4					1 -							$\vdash$
-46.	1		45.0		45							-
-40.	Black, wet, very soft, CLA	Υ		/////	43		WOR/18"	1	DS	8		
47.	6 Dark gray, wet, very soft,	fat CLAY	<u>46.5</u>				***************************************	ļ !	53	"		
	trace sand,	iai olai,					WOR/18"		DC	40		
4	(CH)						VVOIV/10	2	DS	12		$\vdash$
					50		WOD/40"					-
$\dashv$					-		WOR/18"	3	DS	18		$\vdash$
							WOR/18"	4	DS	18		
					<u>55</u>							
$\dashv$					-		WOR/18"	5	DS	18		$\vdash$
$\dashv$												$\vdash$
-60.	1		59.0				WOR/18"	6	DS	18		
	Bottom of Boring at 59.0 f	t			60							
_					_							$\vdash$
$\dashv$					_							$\vdash$
-					_							
					65							
_					-							$\vdash$
$\dashv$					_							$\vdash$
$\dashv$					70							$\vdash$
$\dashv$					_							-
$\dashv$					75							$\vdash$
_					75							_
4												$\vdash$
	CAMDLED TYPE	CAMPIES		ONE	80 CBO	יסואוו	MATER DED	TU		POF	DING METHOD	
DS - DR	SAMPLER TYPE SAMPLE CONDITIONS GROUNDWATER DEPTH BORING METHOD  DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETION ft HSA - HOLLOW STEM AUGERS											
PT - PR	ESSED SHELBY TUBE ONTINUOUS FLIGHT AUGER	I - INTAC U - UNDIS	T		AFTER	₹	HRS RS ft	ft	CFA	A - CON	TINUOUS FLIGHT AUGERS ING CASING	
	OCK CORE	L - LOST	ONDED		CAVE	ED AT	(5 II ft				DRILLING	
STANDA	RD PENETRATION TEST DRIVING	2" OD SAMPLE	R 1' WITH	140# HA	MMER	FALLIN	NG 30": COUNT	MADE	AT 6" IN	TERVALS	3	

TO

		RECOR	RD OF	SOIL	. / R	OCK	<b>EXPLOR</b>	ATIO	N			
Contracted										Borin		
Project Nar		girt Loop Cha	annel D	eepeni	ing					Job #	18-0043	
Location _	Baltimore, MD											
					SAM	1PLEF	₹					
DatumML	LW	Hammer Wt	140	lb	Ho	ole Dian	neter 8 in		Fore	eman _	M. Fletcher	
	-1.6 ± ft	Hammer Dro	00	in		ck Core				ector _	D. Patterson	
Date Started _	1/10/19	_ Spoon Size	2 in		_ Bo	ring Me	thod HSA		Date	e Compl	leted1/10/19	
	SOIL DESCRIPTION	MNI	STRA	٦ ٦	ΞШ		SAM	MPLE				
ELEV. (ft)	Color, Moisture, Density, Pla Proportions		DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 6	
				uu	] _						2. 577991.32 N	
				Jun							1437151.02 E	
				ļ	\ _							$\perp$
					5							<u> </u>
+					] —							$\vdash$
$\dashv$				Jun	↓							$\vdash$
7				ļ	-							
					10							
				uu	] _							
_				Jun	┥ _							L
-				<u></u>	\							$\vdash$
$\dashv$					15							$\vdash$
				Jun	13							
				Jun	-							
				<u></u>								
												L
					20							<u> </u>
-				Jun	\							$\vdash$
$\dashv$					1 -							$\vdash$
7												
				Jun	25							
				Jun	\ _							
_					] _							$\vdash$
-29.6	Black, wet, very soft, fat <b>C</b>	:Ι ΔΥ	28.0				14.00.4.00					$\vdash$
+	Black, wet, very cost, fat e				3U _		WOR/18"	1	DS	7		$\vdash$
					30_							
							WOR/18"	2	DS	5		
							WOR/18"	3	DS	12		L
-36.6	Dork grov wet vorv ooft		<u>35.0</u>		35							<u> </u>
4	Dark gray, wet, very soft, (CH)	iai <b>CLAT</b> ,					WOR/18"	4	DS	10		$\vdash$
-					4							$\vdash$
1							WOR/18"	5	DS	10		<b> </b>
					40				الحال	10		
S	SAMPLER TYPE SAMPLE CONDITIONS GROUNDWATER DEPTH BORING METHOD											
PT - PRESS CA - CONTI	IN SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER	D - DISINT I - INTACT U - UNDIS	Γ		AFTEI AFTEI	R R 24 HF	TION ft HRS RS ft		CFA DC	A - CON DRIN -	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING	
RC - ROCK	CORE	L - LOST			CAVI	ED AT	ft		MD	- MUE	DIRILLING	
STANDARD	PENETRATION TEST DRIVING	2" OD SAMPLEF	R 1' WITH	140# HA	MMER	FALLI	NG 30": COUNT	MADE	AT 6" INT	ΓERVAL	S	

	10

	-	RECO	RD OF	SOIL	. / RO	CK	EXPLORA	OITA	N			
Contracted	d WithGahagan & Brya	ant Associa	ites							Borin	g# <u>PR-45</u>	
Project Na		rt Loop Cha	annel D	eepen	ing					Job#	18-0043	
Location	Baltimore, MD											
					SAMP	LEF	₹					
DatumM	LLW	. Hammer Wt	140	lb	_ Hole	Diam	eter8 in		For	eman	M. Fletcher	
Surf. Elev	-1.6 ± ft	Hammer Dro		in			Dia. N/A			ector _	D. Patterson	
Date Started	1/10/19	Spoon Size	2 in		Borin	ig Me	thod HSA		Dat	e Compl	eted1/10/19	
	SOIL DESCRIPTION	l	STRA	٦.	тш		SAN	//PLE				
ELEV. (ft)	Color, Moisture, Density, Plast Proportions	ticity, Size	DEPTH (ft)	SOIL	SCALE	ond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	Dark gray, wet, very soft, fa	at CLAY,			<u> </u>		WOR/18"	6	DS	18		
					- - 45		WOR/18"	7	DS	15		
-					1		WOR/18"	8	DS	18		
					50		WOR/18"	9	DS	18		
					1		WOR/18"	10	DS	18		
							WOR/18"	11	DS	18		
					1		WOR/18"	12	DS	18		_
-61.1	Bottom of Boring at 59.5 ft		59.5		<u>60</u>		WOR/18"	13	DS	18		
$\dashv$												$\vdash$
-												
					<u>65</u>							
$\dashv$												
$\dashv$												$\vdash$
-												
					70							
												L
_												-
4												$\vdash$
-					75							$\vdash$
					13							
	SAMPLER TYPE S	SAMPLE C		)NG	GROUI	NDV	VATER DEP	TH		BOI	RING METHOD	
	EN SPLIT SPOON	D - DISINT	_	-			TON ft		HSA		LOW STEM AUGERS	
PT - PRES	SSED SHELBY TUBE TINUOUS FLIGHT AUGER	I - INTAC U - UNDIS L - LOST	Т		AFTER 2	24 HR	HRS ft	_ ft	CF/ DC	A - CON - DRIV	TINUOUS FLIGHT AUGERS //ING CASING ) DRILLING	
STANDARI	D PENETRATION TEST DRIVING 2"	OD SAMPLEF	R 1' WITH	140# HA	MMER FA	ALLIN	IG 30": COUNT	MADE	AT 6" IN	TERVAL:	S	

TE

	Ē	RECOR	D OF	SOIL	. / R	оск	EXPLOR	ATIO	N			
Contracte										Borin		
Project Na		irt Loop Cha	nnel D	eepeni	ing					Job#	18-0043	
Location	Baltimore, MD											
					SAM	1PLEF	₹					
DatumN	MLLW	_ Hammer Wt.			_ Ho	le Diam			For	eman _	M. Fletcher	
Surf. Elev	1.1 ± ft 1/4/19	Hammer Dro	p <u>30</u> 2 in	in		ck Core				ector _ e Compl	D. Patterson	
Date Started	1/4/10	_ Spoon Size ₋	2 111		_ во	ring Me	thod		Dat	e Compi	leted	
ELEV.	SOIL DESCRIPTION		STRA	BOL	DEPTH		SAM	MPLE			BORING & SAMPLE	
(ft)	Color, Moisture, Density, Plas Proportions	ticity, Size	DEPTH (ft)	SOIL	SC/	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
	WATER				-						1. Area 7	_
-	WAIER				1 -							
											2. 578332.37 N 1436280.4 E	
				Jun	$rack egin{array}{c} rack egin{array}{c$							
				<u></u>	5							
4					] -							F
_				Jun	$\mid \; \dashv$							
				<u></u>	$\mid - \mid$							
					10							
				Jun	<b>↓</b> _							L
_				ļ	$\dashv$							$\vdash$
$\dashv$					] -							$\vdash$
					15							
				Jun								
					1 _							
_					] -							$\vdash$
$\dashv$				Jun	20							$\vdash$
					1 20							
_				Jun	$\dashv$							_
-22.9	Black, gray, wet, very soft t	to stiff. fat	24.0		25		MODIANI					-
-	CLAY	,			<u>25</u> _		WOR/18"	1	DS	9		-
							14/0 5/400					
							WOR/18"	2	DS	10		
_												-
					30_		WOR/18"	3	DS	8		-
-31.9	Trace gravel at 32'		33.0				3-7-8	4	DS	7		
	Brown, wet, very loose to n dense, fine to coarse, <b>SAN</b>	nedium <b>ID</b> . and										
	gravel, trace silt	,			35_		6-11-14	5	DS	10		_
$\dashv$					-							$\vdash$
$\dashv$							4-6-5	6	DS	9		
					40		2-4-6	7	DS	8	<u> </u>	
		SAMPLE CO					VATER DEP	TH	ПС		RING METHOD	
PT - PRE	/EN SPLIT SPOON SSED SHELBY TUBE ITINUOUS FLIGHT AUGER CK CORE	D - DISINTE I - INTACT U - UNDIST L - LOST			AFTER AFTER	R R 24 HF	TION ft HRS RS ft ft	ft	CF/ DC	A - CON - DRIN	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING D DRILLING	
	STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS											

	TE

# **RECORD OF SOIL / ROCK EXPLORATION**

Contracted With	Gahagan & Bryant Associates		PR-46
Project Name	Task 17 - Seagirt Loop Channel Deepening	Job #	18-0043
Location	Baltimore, MD		
	SAMPLER		

DatumMLLW	Hammer Wt140 lb	Hole Diameter8 in	Foreman M. Fletcher
Surf. Elev. 1.1 ± ft	Hammer Drop 30 in	Rock Core Dia. N/A	Inspector D. Patterson
Date Started 1/4/19	Spoon Size 2 in	Boring Method HSA	Date Completed 1/4/19

ELEV.	SOIL DESCRIPTION	STRA DEPTH	٦٥	SAMPLE					DODING & CAMPLE	7	
(ft)	Color, Moisture, Density, Plasticity, Size Proportions	DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
<u>-41.9</u>	Brown, wet, very loose to medium dense, fine to coarse, <b>SAND</b> , and gravel, trace silt (continued)  Gray, tan, brown, wet, very loose to	43.0				3-2-2	8	DS	9		_
	loose, fine, SAND, trace silt			45		6-3-3	9	DS	7		
						2-3-3	10	DS	14		
				50		2-1-1	11	DS	7		
- <u>52.9</u>		<u>54.0</u>				1-1-2	12	DS	10		_
	Tan, brown, wet, very loose, fine to medium, SAND, (SP)			<u>55</u> —		2-2-2	13	DS	12		
				60		2-1-2	14	DS	8		
 -59.4	Bottom of Boring at 60.5 ft	60.5				4-4-4	15	DS	6		
				65							
				_							
				70							
				75_							_
	AMDIED TVDE			80_							

# **SAMPLER TYPE**

DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE
CA - CONTINUOUS FLIGHT AUGER

RC - ROCK CORE

RECORD OF SOIL EXPLORATION SEAGIRT LOGS.GPJ TLB2010.GDT 5/1/19

# SAMPLE CONDITIONS

D - DISINTEGRATED

I - INTACT U - UNDISTURBED L - LOST

**GROUNDWATER DEPTH** AT COMPLETION _____ ft
AFTER ______ HRS. _____ ft
CAVED AT _____ ft

# **BORING METHOD**

HSA - HOLLOW STEM AUGERS CFA - CONTINUOUS FLIGHT AUGERS
DC - DRIVING CASING
MD - MUD DRILLING

STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS

	TE

# RECORD OF SOIL / ROCK EXPLORATION

On material and	With Gahagan & Br			JOIL	. / K	OCK	EXPLOR	A110	11	D =!	a# PR-47		
Contracted Project Na				epeni	ng					Boring # PR-47  Job # 18-0043			
Location _		,		•						000 #			
					SAM	1PLEF	₹						
DatumML	LLW	Hammer Wt.	140	lb	_ Hc	ole Dian	neter 8 in		Fore	eman _	M. Fletcher		
Surf. Elev	-0.9 ± ft	Hammer Dro		in		ck Core	e DiaN/A		Insp	ector _	D. Patterson		
Date Started _	1/10/19	Spoon Size	2 in		_ Bo	ring Me	thod HSA		Date	e Comp	leted1/10/19		
	SOIL DESCRIPTIO	)N	STRA	٦.	ΞЩ		SAI	MPLE					
ELEV. (ft)	Color, Moisture, Density, Pla Proportions		DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES		
	WATER			····							1. Area 8		
				Juu	_						2. 577963.18 N		
4					_						1436641.95 E	_	
-					5								
				Juu	, —								
_					] _								
_				m								_	
				ļ	10							-	
				Juu									
				Juu	_								
					<u>15</u> _								
-					] —								
7				ļ	-								
					,								
					20								
_				Juu	_							-	
$\dashv$					_								
					] —								
				Juu	25								
_				<u> </u>	_								
$\dashv$					] -							-	
$\dashv$					-								
					30								
_												_	
$\dashv$				Juu	_							-	
$\dashv$					35								
					=								
				Juu									
_												_	
$\dashv$					40							-	
S	AMPLER TYPE	SAMPLE CO	ONDITIC	) NS		UND	NATER DEP	· PTH		BO	LING METHOD		
DS - DRIVE	EN SPLIT SPOON	D - DISINTI	EGRATED	)	AT CC	OMPLE	ΓΙΟΝ ft			A - HOL	LOW STEM AUGERS		
CA - CONT	SED SHELBY TUBE INUOUS FLIGHT AUGER	I - INTACT U - UNDIST			<b>AFTE</b>	R 24 HF	HRS RS ft	ft	DC	- DRI	ITINUOUS FLIGHT AUGERS /ING CASING		
RC - ROCK		L - LOST			CAVI	ED AT	ft				DRILLING		
STANDARD	STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS												

10

Contracted With   Gahagan & Bryant Associates   Boring # Tesk 17 - Seagiff Loop Channel Deepening   Job # 18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043				RECOF	RD OF	SOIL	. / R	OCK	EXPLORA	ATIO	N			
Description   Sample   Sampl	Contr	racted	WithGahagan & Brya	nt Associa	tes							Borin	g# <u>PR-47</u>	
SAMPLER   SAMPLER   SAMPLE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLER   SAMPLE	Proje	ct Naı		Loop Cha	nnel D	eepeni	ng					Job#	18-0043	
Delum   MLLW   Hammer Wit   140 lb   Hole Dameler   6 in   Rock Core Iba   NA   Impector   Delument   1019	Locat	tion _	Baltimore, MD											
Supplementary   Supplementar							SAM	1PLEI	₹					
Solit Description   Sport Size   2 in   Boring Method   HSA   Date Completed   1/10/19	Datum	ML					_ Ho	le Dian			For	eman _		
SOLD DESCRIPTION   Color, Mostland Density, Plasticity, Size   DEPTH   0					ν ——	in			5 Dia					
### ARPLER TYPE    SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLE TYPE   SAMPL	Date S	tarted _	17 10/ 13	Spoon Size			_ во	ring ivie	etnod <u>110/1</u>		Dat	e Compi	eted	
### ARPLER TYPE    SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLE TYPE   SAMPL		ELEV.		situ. Cina	STRA	BOL	FJ		SAN	/IPLE			BORING & SAMPLE	
### WATER (continued)  ### 48.9		(ft)	Proportions	лту, огде		SYM	SC/	Cond	Blows/6"	No.	Туре		NOTES	
48.9 Light gray, wet soft, CLAY, trace 49.5 Reddish brown, wet, very loose, fine, silly SAND SAND SAND SAND SAND SAND SAND SAND			WATER (continued)				_							_
48.9 Light gray, wet, soft, CLAY, trace -59.4 sand, trace mica Reddish brown, wet, very loose, fine, silty SAND  Light gray, wet, very soft, CLAY  -55.4  Tan, brown, wet, very loose to medium dense, fine, silty SAND  WOR/18* 3 DS 5  Tan, brown, wet, very loose to medium dense, fine, silty SAND  WOH/12*-2 4 DS 15  Bottom of Boring at 59.5 ft  SAMPLER TYPE  SAMPLER TYPE  BS - BRIVEN SPLIT SPOON PS - PRESENDES SHEELEY TUBE CA: CONTINUOUS FLIGHT AUGER CONTINUOUS FLIGHT AUGER CA: CONTINUOUS FLIGHT AUGER CONTINUOUS FLIGHT AUGER CA: CONTINUOUS FLIGHT AUGERS CONTINUOUS FLIGHT AUGERS CA: CONT	-													
48.9 Light gray, wet, soft, CLAY, trace -59.4 sand, trace mica Reddish brown, wet, very loose, fine, silty SAND  Light gray, wet, very soft, CLAY  -55.4  Tan, brown, wet, very loose to medium dense, fine, silty SAND  WOR/18* 3 DS 5  Tan, brown, wet, very loose to medium dense, fine, silty SAND  WOH/12*-2 4 DS 15  Bottom of Boring at 59.5 ft  SAMPLER TYPE  SAMPLER TYPE  BS - BRIVEN SPLIT SPOON PS - PRESENDES SHEELEY TUBE CA: CONTINUOUS FLIGHT AUGER CONTINUOUS FLIGHT AUGER CA: CONTINUOUS FLIGHT AUGER CONTINUOUS FLIGHT AUGER CA: CONTINUOUS FLIGHT AUGERS CONTINUOUS FLIGHT AUGERS CA: CONT						Jun								
48.9 Light gray, wet, soft, CLAY, trace -59.4 sand, trace mica Reddish brown, wet, very loose, fine, silty SAND  Light gray, wet, very soft, CLAY  -55.4  Tan, brown, wet, very loose to medium dense, fine, silty SAND  WOR/18* 3 DS 5  Tan, brown, wet, very loose to medium dense, fine, silty SAND  WOH/12*-2 4 DS 15  Bottom of Boring at 59.5 ft  SAMPLER TYPE  SAMPLER TYPE  BS - BRIVEN SPLIT SPOON PS - PRESENDES SHEELEY TUBE CA: CONTINUOUS FLIGHT AUGER CONTINUOUS FLIGHT AUGER CA: CONTINUOUS FLIGHT AUGER CONTINUOUS FLIGHT AUGER CA: CONTINUOUS FLIGHT AUGERS CONTINUOUS FLIGHT AUGERS CA: CONT	_					Jun	\							L
SAMPLER TYPE   SAMPLE CONDITIONS   SAMPLE CONDITIONS   SAMPLER TYPE   SAMPLE CONDITIONS   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SAMPLE TYPE   SAMPLE CONDITIONS   SAMPLER TYPE   SAMPLE TYPE							45							
SAMPLER TYPE   SAMPLE CONDITIONS   SAMPLE CONDITIONS   SAMPLER TYPE   SAMPLE CONDITIONS   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SAMPLE TYPE   SAMPLE CONDITIONS   SAMPLER TYPE   SAMPLE TYPE	$\dashv$					m	$\rfloor$ $\dashv$							-
SAMPLER TYPE   SAMPLE CONDITIONS   SAMPLE CONDITIONS   SAMPLER TYPE   SAMPLE CONDITIONS   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SAMPLE TYPE   SAMPLE CONDITIONS   SAMPLER TYPE   SAMPLE TYPE	╡.	-48.9			48.0	Jun	$\vdash$							
Reddish brown, wet, very loose, fine, silty SAND				trace					6-1-3	1	DS	12		
SAMPLER TYPE   SAMPLE CONDITIONS   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SOUNDWATER DE		- <u>50.4</u>		 ose,	49.5	/////	50							
Light gray, wet, very soft, CLAY 55.4  Tan, brown, wet, very loose to medium dense, fine, slity SAND  WOH/12*-2 4 DS 15 60.4  Bottom of Boring at 59.5 ft  Bottom of Boring at 59.5 ft  SAMPLER TYPE  SAMPLER TYPE  SAMPLER TYPE  D - DISINTEGRATED  D - DISINTEGRATED  L - NINCT  CA - CONTINUOUS FLIGHT AUGER  CA - CONTINUOUS FLIGHT AUGERS  CA - CON	$\dashv$	50.0	fine, silty <b>SAND</b>		50.0		-		WOH/12"-2	2	DS	7		-
Tan, brown, wet, very loose to medium dense, fine, silty SAND	+	- <u>52.9</u> _	Light gray, wet, very soft, <b>C</b>	LAY	52.0		-							
Tan, brown, wet, very loose to medium dense, fine, silty SAND   SAND   WOH/12*-2   4   DS   15	$\exists$								WOR/18"	3	DS	5		
MOH/12"-2   4   DS   15	<u></u>	- <u>55.4</u>	Tan, brown, wet, very loose		<u>54.5</u>	/////	55							
	4						-		WOH/12"-2	4	DS	15		_
SAMPLER TYPE  SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  S9.5 SETE 60	$\dashv$								***************************************			10		
SAMPLER TYPE  SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  S9.5 SETE 60	$\exists$								6-9-5	5	DS	10		
SAMPLER TYPE   SAMPLE CONDITIONS   GROUNDWATER DEPTH   SAMPLES CFA - CONTINUOUS FLIGHT AUGERS   CA - CONTINUOUS FLIGHT AUGER	_}-	-60.4	Bottom of Boring at 59.5 ft		59.5		60		000			10		
SAMPLER TYPE DS - DRIVEN SPILIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AT COMPLETION AT	_		<b>3</b>				_							
SAMPLER TYPE DS - DRIVEN SPILIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AT COMPLETION AT	-						_							_
SAMPLER TYPE DS - DRIVEN SPILIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AT COMPLETION AT	+						_							
SAMPLER TYPE DS - DRIVEN SPILIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AT COMPLETION AT							65							
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  D - DISINTEGRATED I - INTACT AFTERHRS ft AFTER 24 HRS ft CAVED AT ft MD - MUD DRILLING														
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  D - DISINTEGRATED I - INTACT AFTERHRS ft AFTER 24 HRS ft CAVED AT ft MD - MUD DRILLING	$\dashv$						_							
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  D - DISINTEGRATED I - INTACT AFTERHRS ft AFTER 24 HRS ft CAVED AT ft MD - MUD DRILLING	-						_							
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AFTER 24 HRS ft AFTER 24 HRS ft AFTER 24 HRS ft MD - MUD DRILLING							70							
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AFTER 24 HRS ft AFTER 24 HRS ft AFTER 24 HRS ft MD - MUD DRILLING														
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AFTER 24 HRS ft AFTER 24 HRS ft AFTER 24 HRS ft MD - MUD DRILLING	_													
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AFTER 24 HRS ft AFTER 24 HRS ft AFTER 24 HRS ft MD - MUD DRILLING	-													
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AFTER 24 HRS ft AFTER 24 HRS ft AFTER 24 HRS ft MD - MUD DRILLING	$\exists$						75							
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  GROUNDWATER DEPTH AT COMPLETIONft							· •							
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  GROUNDWATER DEPTH AT COMPLETIONft														
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  GROUNDWATER DEPTH AT COMPLETIONft	4						-							
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  GROUNDWATER DEPTH AT COMPLETIONft	$\dashv$						80							
DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETIONft HSA - HOLLOW STEM AUGERS PT - PRESSED SHELBY TUBE I - INTACT AFTER HRSft CFA - CONTINUOUS FLIGHT AUGERS CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED AFTER 24 HRSft DC - DRIVING CASING RC - ROCK CORE L - LOST CAVED ATft MD - MUD DRILLING		S	AMPLER TYPE S	AMPLE CO	ONDITIO	DNS		UND	WATER DEP	TH	I	BOF	RING METHOD	
CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED AFTER 24 HRS ft DC - DRIVING CASING RC - ROCK CORE L - LOST CAVED AT ft MD - MUD DRILLING		DRIVE	EN SPLIT SPOON	D - DISINTI	EGRATE		AT CC	MPLE	TION ft			A - HOLI	LOW STEM AUGERS	
	CA -	- CONT	INUOUS FLIGHT AUGER	U - UNDIST			<b>AFTER</b>	R 24 HF	RS ft	_ 11	DC	- DRIV	/ING CASING	
STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS					1' WITH	140# HA				MADE				

TE

		RECO	RD OF	SOIL	. / R0	эск	EXPLOR	ATIO	N			
Contracted	WithGahagan & B	ryant Associa	ates							Borin	g# <u>PR-48</u>	
Project Nan			annel D	eepeni	ing				Job #	Job #18-0043		
Location _	Baltimore, MD	)										
					SAM	IPLEF	₹					
DatumMLI	LW	Hammer W	t140	lb	_ Ho	le Diam	neter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	0.5 ± ft	Hammer Dr	•	in		ck Core				ector _	D. Patterson	
Date Started _	1/14/19	Spoon Size	2 in		Boi	ring Me	thod HSA		Date	e Comp	leted1/14/19	
	SOIL DESCRIPTI	ON	STRA	٦,	II Ш SAMI			/IPLE				
ELEV. (ft)	Color, Moisture, Density, Pl Proportions	lasticity, Size	DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 6	
											2. 577809.49 N	
				Jun	\ _						1436996.37 E	
4												$\vdash$
-					5							-
-				Jun	$\downarrow \dashv$							
				ļ								
				h	10							_
-				ļ	$\dashv$							$\vdash$
7												
				Jun	$\rfloor$							
				Jun	<u>15</u>							
4												-
-				uu	] -							$\vdash$
$\dashv$				Jun	$\mid - \mid$							$\vdash$
7					20							
4				luu.	$\downarrow$ $\downarrow$							$\vdash$
-				<u></u>								-
-					25							
				Jun	20							
-26.5			27.0	uu.								
	Brown, black, wet, very s	sott, elastic			_		WOR/18"	1	DS	10		L
-	(MH)				20							
					30_		WOR/18"	2	DS	18		
-31.5			32.0									
	Dark gray, wet, very soft, (CH)	, fat CLAY,					WOR/18"	3	DS	17		
	(511)											L
					35_		WOR/18"	4	DS	18		_
-					-							
							WOR/18"	5	DS	14		
		0.1			40							
	AMPLER TYPE N SPLIT SPOON	SAMPLE C D - DISINT					NATER DEP	ſĦ	пе		RING METHOD LOW STEM AUGERS	
PT - PRESS	SED SHELBY TUBE NUOUS FLIGHT AUGER	I - INTAC U - UNDIS L - LOST	T		AFTEF AFTEF	R R 24 HF		ft	CF <i>A</i> DC	A - CON DRIN -	ILOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING DRILLING	
	PENETRATION TEST DRIVING		R 1' WITH	140# HA				MADE				



Contracted With   Galagan & Bryant Associates   Sample   PR-48   Task 17 - Seagift Loop Channel Deepening   Job # 16-0043   Task 17 - Seagift Loop Channel Deepening   Job # 16-0043   Task 17 - Seagift Loop Channel Deepening   Sample				RECORD C	)FS	OIL	/ ROC	CK E	EXPLOR/	ATIO	N			
Baltimore   MD   SAMPLER TYPE   SAMPLE CONDITIONS   SAMPLE   Sam	Contr	acted	With Gahagan & Bryant	Associates								Borin	g# <u>PR-48</u>	
SAMPLER Type   SAMPLE CONDITIONS   SAMPLE Type   SAMPLE CONDITIONS   SAMPLER Type   SAMPLE CONDITIONS   SAMPLE Type   SAMPLE CONDITIONS   SAMPLE Type   SAMPLE CONDITIONS   SAMPLE Type   SAMPLE Type   SAMPLE CONDITIONS   SAMPLE Type   SAMP	Proje	ct Nar		.oop Channel	Dee	penir	ng					Job#	18-0043	
Destrict   Milk   Mil	Locat	ion _	Baltimore, MD											
Suff Eq.   0.5 th						;	SAMPI	LER						
SAMPLE TYPE   SAMPLE CONDITIONS   SAMPLE CONDITIONS   SAMPLE CONDITIONS   SAMPLE			· · · · · · · · · · · · · · · · · · ·				_ Hole D	Diame						
SOIL DESCRIPTION   Color, Mostare Density, Plasticity, Size   DEPTH   OF S   S   S   S   S   S   S   S   S   S									Jiu					
Color, Montrue, Dennet, Pleaticity, Size	Date Si	arteu _	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	spoon size			_ Boring	y weu			Date	e Compi	eled	
### Apular Standard Registry Well, very soft, elastic SILT, (MH)    Apular Standard Registry Well, very soft, elastic SILT, (MH)   Apular Standard Registry	E	ELEV.		STF	RA	물	F		SAN	/IPLE				
Dark gray, wet, very soft, elastic   10		(ft)	Proportions		)	SYN		ond	Blows/6"	No.	Туре		NOTES	
Dark gray, wet, very soft, elastic   Sample conditions   Sample	-	40.5		11	0				WOR/18"	6	DS	18		_
MoR/18*   7   DS   14	+	40.5												
Normal   N			SILI, (MH)			Ш			WOR/18"	7	DS	14		
Normal   N	4					Ш	45							$\vdash$
SAMPLER TYPE   SAMPLE CONDITIONS   SAMPLE CONDITIONS   SAMPLE TYPE   SAMPLE CONDITIONS   SAMPLER TYPE   SAMPLE CONDITIONS   GROUNDWATER DEPTH   A COMPLETION   R.S.   T.   T.   T.   T.   T.   T.   T.	_					Ш	45_		WOR/18"	8	DS	18		_
SAMPLER TYPE   SAMPLE CONDITIONS   SAMPLE CONDITIONS   SAMPLE TYPE   SAMPLE CONDITIONS   SAMPLER TYPE   SAMPLE CONDITIONS   GROUNDWATER DEPTH   A COMPLETION   R.S.   T.   T.   T.   T.   T.   T.   T.						Ш								
SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SOUNDWATER SPLEIT SPOON   PT - PRESSED SHELBY TUBE   CA - SMINLOUS FLIGHT AUGERS   CA - CONTINUOUS FLIGHT AUGERS   CA - CONTINU	4						_		WOR/18"	9	DS	16		_
SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SOUNDWATER SPLEIT SPOON   PT - PRESSED SHELBY TUBE   CA - SMINLOUS FLIGHT AUGERS   CA - CONTINUOUS FLIGHT AUGERS   CA - CONTINU	$\dashv$						50							$\vdash$
SAMPLER TYPE   SAMPLE CONDITIONS   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLE CONDITIONS   SAMPLE CON									WOR/18"	10	DS	18		
SAMPLER TYPE   SAMPLE CONDITIONS   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLER TYPE   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLE CONDITIONS   SOUNDWATER DEPTH   SAMPLE CONDITIONS   SAMPLE CON	4						-							$\vdash$
-58.0 Bottom of Boring at 58.5 ft  -58.5 Bottom of Boring at 58.5 ft  -60  -70  -70  -70  -70  -70  -70  -70	+						-		WOR/18"	11	DS	17		-
-58.0 Bottom of Boring at 58.5 ft  -58.5 Bottom of Boring at 58.5 ft  -60  -70  -70  -75  -75  -75  -75  -75  -7							 55 <b>■</b>							
Sample Type									WOR/18"	12	DS	18		
Sample Type	-								MOD/10"	40	50	40		-
60	+	58.0	Rottom of Boring at 58 5 ft	58.	.5	Ш	-		WUR/18	13	DS	12		$\vdash$
SAMPLER TYPE DS - DRIVEN SPILT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AT COMPLETION AT COMPLETION AT COMPLETION AFTER _ HRS ft AFTER 24 HRS ft AFTER 24 HRS ft CAVED AT _ ft AFTER 24 HRS ft AFTER 24 HRS ft CAVED AT _ ft AFTER 24 HRS ft AFT	$\Box$		Dottom of Borning at 30.5 ft				60							
SAMPLER TYPE DS - DRIVEN SPILT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AT COMPLETION AT COMPLETION AT COMPLETION AFTER _ HRS ft AFTER 24 HRS ft AFTER 24 HRS ft CAVED AT _ ft AFTER 24 HRS ft AFTER 24 HRS ft CAVED AT _ ft AFTER 24 HRS ft AFT	$\dashv$						_							$\vdash$
SAMPLER TYPE DS - DRIVEN SPILT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AT COMPLETION AT COMPLETION AT COMPLETION AFTER _ HRS ft AFTER 24 HRS ft AFTER 24 HRS ft CAVED AT _ ft AFTER 24 HRS ft AFTER 24 HRS ft CAVED AT _ ft AFTER 24 HRS ft AFT	$\dashv$						_							$\vdash$
SAMPLER TYPE DS - DRIVEN SPILT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AT COMPLETION AT COMPLETION AT COMPLETION AFTER _ HRS ft AFTER 24 HRS ft AFTER 24 HRS ft CAVED AT _ ft AFTER 24 HRS ft AFTER 24 HRS ft CAVED AT _ ft AFTER 24 HRS ft AFT														
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AT COMPLETION ft AFTER HRS ft CAVED AT ft MD - MUD DRILLING	_						<u>65</u>							_
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AT COMPLETION ft AFTER HRS ft CAVED AT ft MD - MUD DRILLING	+						_							-
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AT COMPLETION ft AFTER HRS ft CAVED AT ft MD - MUD DRILLING														
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AT COMPLETION ft AFTER HRS ft CAVED AT ft MD - MUD DRILLING														_
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AFTER 24 HRS ft AFTER 24 HRS ft MD - MUD DRILLING	$\overline{}$						70							-
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AFTER 24 HRS ft AFTER 24 HRS ft MD - MUD DRILLING														
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AFTER 24 HRS ft AFTER 24 HRS ft MD - MUD DRILLING	$\Box$													F
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  AFTER 24 HRS ft AFTER 24 HRS ft MD - MUD DRILLING	$\dashv$						75							$\vdash$
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  GROUNDWATER DEPTH AT COMPLETIONft	$\dashv$						15							-
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  GROUNDWATER DEPTH AT COMPLETIONft														
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  GROUNDWATER DEPTH AT COMPLETIONft	4						$\dashv$							$\vdash$
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  GROUNDWATER DEPTH AT COMPLETIONft	$\dashv$						80							-
PT - PRESSED SHELBY TUBE I - INTACT AFTER HRS ft CFA - CONTINUOUS FLIGHT AUGERS CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED AFTER 24 HRS ft DC - DRIVING CASING RC - ROCK CORE L - LOST CAVED AT ft MD - MUD DRILLING		S	AMPLER TYPE SAI	MPLE CONDI	TION	IS (		NDW	ATER DEP	TH	1	BOF	RING METHOD	
	PT - CA -	DRIVE PRESS CONTI	N SPLIT SPOON E SED SHELBY TUBE I INUOUS FLIGHT AUGER L	- DISINTEGRA - INTACT - UNDISTURBE	TED	,	AT COMF AFTER _ AFTER 24	PLETION 4 HRS	ON ft _ HRS i ft		CF <i>A</i> DC	A - HOL A - CON - DRIV	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING	
					TH 14					MADE				

	TO

		RECOR	RD OF	SOIL	. / R	OCK	<b>EXPLOR</b>	ATIO	N			
Contracted		Bryant Associa							Boring # PR-49			
Project Nar		agirt Loop Cha	nnel D	eepeni	ng				Job #	<u> 18-0043</u>		
Location _	Baltimore, M	D										
					SAM	1PLEF	₹					
DatumML	LW	Hammer Wt	140	lb	_ Hc	le Dian	neter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	2.1 ± ft	Hammer Dro	•	in		ck Core				ector _	D. Patterson	
Date Started _	1/8/19	Spoon Size	2 in		_ Bo	ring Me	ethod HSA		Date	e Compl	leted1/8/19	
	SOIL DESCRIPT	ΓΙΟΝ	STRA	٦,	Ŧщ		SAN	MPLE				
ELEV. (ft)	Color, Moisture, Density, Proportions	Plasticity, Size	DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 6	
				uu	] _						2. 577567.31 N	
				Jun	_						1437052.45 E	
_					_							
					5							_
-				Jun	-							$\vdash$
7				Jun	_							
					10							
_				hu	_							-
-					_							
				hu	15							
				ļ								
					] _							_
$\dashv$				Lui.								-
-				Jun	20							
				h	_							
4				Jun								-
					25							-
				lu.	—							
				Jun								
-26.9	- Di i	O. A.V	29.0									
	Black, gray, wet, very s	oft, fat CLAY			<u>30</u>		WOR/18"	1	DS	6		
-												-
-					-		WOR/18"	2	DS	11		
					35		WOR/18"	3	DS	9		
4												$\vdash$
4							WOR/18"	4	DS	2		$\vdash$
-												$\vdash$
1					40 40		WOR/18"	5	DS	15		
S	AMPLER TYPE	SAMPLE CO	ONDITIO	ONS	GRO	UND	NATER DEP				RING METHOD	
PT - PRESS CA - CONT	N SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER	D - DISINT I - INTACT U - UNDIST	-		AFTEI AFTEI	R R 24 HF	TION ft HRS ft		CF <i>A</i> DC	A - CON DRIN -	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS VING CASING	
RC - ROCK		L - LOST					ft				D DRILLING	
STANDARD	PENETRATION TEST DRIVIN	G 2" OD SAMPLER	1' WITH	140# HA	MMER	FALLI	NG 30": COUNT	MADE	AT 6" INT	ERVAL	S	



T		RECO	RD OF	SOIL	. / R0	OCK	EXPLOR	ATIO	N			
Contracted		ı & Bryant Associ								Boring		
Project Na		- Seagirt Loop Ch	annel D	eepen	ing					Job#	18-0043	
Location .	Baltimore	e, MD										
					SAM	PLE	₹					
DatumM							neter 8 in		For	eman	M. Fletcher	
Surf. Elev	2.1 ± ft 1/8/19	Hammer D	. op	in		ck Core				ector _	D. Patterson	
Date Started .	170/13	Spoon Size			Boi	ring Me	etnod		Dat	e Comple	eted	
ELEV.	SOIL DESC		STRA	lL BOL	王빌		SAM	MPLE			BORING & SAMPLE	
(ft)	Color, Moisture, Den Propor	sity, Plasticity, Size tions	DEPTH (ft)	SYMBOL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
-38.9	Black, gray, wet, ve	ery soft, fat <b>CLAY</b>	41.0	////								_
-30.9	(continued) Dark gray, wet, ver		+41.0		1 🖠							$\vdash$
	SILT,	y soπ, eiastic		Ш			WOR/18"	6	DS	18		
	(MH)			Ш								_
				Ш	45_		WOR/18"	7	DS	16		-
-				Ш								$\vdash$
				Ш	-		WOR/18"	8	DS	18		
				Ш								
				Ш	<u>50</u>		WOR/18"	9	DS	17		
_				Ш								$\vdash$
$\dashv$				Ш	-		WOR/18"	10	DS	18		$\vdash$
_				Ш	_							
				Ш	55		WOR/18"	11	DS	18		
				Ш								$\perp$
_				Ш	-		WOR/18"	12	DS	18		$\vdash$
-				Ш	_							$\vdash$
				Ш	60		WOR/18"	13	DS	18		F
-58.4	Bottom of Boring at	60.5 ft	60.5									
												_
_					_							$\vdash$
-					65							$\vdash$
					00_							
4												$\vdash$
$\dashv$					70							$\vdash$
_					70							-
4												$\vdash$
					75							-
$\dashv$												$\vdash$
					80			<u></u>				
_	SAMPLER TYPE	SAMPLE C	_	_		_	NATER DEP	TH	ПС	_	RING METHOD	
PT - PRES	EN SPLIT SPOON SSED SHELBY TUBE FINUOUS FLIGHT AUGER	D - DISIN' I - INTAC U - UNDIS L - LOST	T STURBED	J	AFTEF AFTEF	R R 24 HF	ΠΟΝ π HRS RS ft ft	ft	CF/ DC	A - CON - DRIV	LOW STEM AUGERS TINUOUS FLIGHT AUGERS 'ING CASING DRILLING	
	OPENETRATION TEST DE			140# HA				MADE				

10

Contracted With   Gahagan & Bryan / Associates   Job #   18-0043   18-0043   18-0043   18-0043   18-0043   18-0043   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045   18-0045				RECOR	RD OF	SOIL	. / R	OCK	EXPLOR/	ATIO	N			
Task 17 - Seagirt Log Channel Deepening	Cor	ntracted	With Gahagan & Brya	nt Associa	tes							Borin	g# PR-50	
SAMPLET   SAMPLE	Pro	ject Naı		t Loop Cha	innel De	eepeni	ng							
Design   Mill	Loc	ation _	Baltimore, MD											
Surf Elev							SAM	1PLEI	₹					
Suff Elev	Datu	m ML	LW	Hammer Wt.	140	lb	Но	ole Dian	neter 8 in		For	eman	M. Fletcher	
SOIL DESCRIPTION   Color. Miching. Dentaly, Fleaticity, Size   STRA   DEPTH   Fig.   Soil   Standard   Stand			1.4 ± ft			in							D. Patterson	
### WATER   1	Date	Started _	1/15/19	Spoon Size	2 in		_ Bo	ring Me	thod HSA		Dat	e Compl	leted1/15/19	
### WATER   1			SOIL DESCRIPTION		STRA	٦.	ΤШ		SAN	ИPLE				
29.6 Gray, black, wet, very soft, elastic 31.0 30 30 40.0 WOR/18* 1 DS 10 40.0 WOR/18* 2 DS 18 40.0 WOR/18* 3 DS 17 40.0 WOR/18* 3 DS 17 40.0 WOR/18* 3 DS 17 40.0 WOR/18* 4 DS 18 40.0 WOR/18* 3 DS 17 40.0 WOR/18* 4 DS 18 40.0 WOR/18* 4 DS 18 40.0 WOR/18* 5 DS 18 40.0 WOR/18* 4 DS 18 40.0 WOR/18* 5 DS 1			Color, Moisture, Density, Plastic	city, Size	DEPTH	SOIL	DEPT	Cond	Blows/6"	No.	Туре			
29.6 Gray, black, wet, very soft, elastic st.T. (MH)  29.6 Gray, black, wet, very soft, elastic st.T. (MH)  38.6 WOR/18* 1 DS 10  38.6 WOR/18* 2 DS 18  WOR/18* 2 DS 18  WOR/18* 3 DS 17  WOR/18* 3 DS 17  WOR/18* 4 DS 18  SAMPLE TYPE  BS - DRIVEN SPLIT SPROON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGERS CA - CONTINUOUS FLIGHT			WATER			L							1. Area 6	
29.6 Gray, black, wet, very soft, elastic sll.T, (MH) 30 WOR/18* 1 DS 10 SLLT, (MH) WOR/18* 2 DS 18 WOR/18* 3 DS 17 WOR/18* 3 DS 17 WOR/18* 3 DS 17 WOR/18* 3 DS 17 WOR/18* 4 DS 18 SENERAL SUBJECT OF STEAM OF ST						Juu							2. 577536 N	
29.6 Gray, black, wet, very soft, elastic SILT, (MH)  29.6 Gray, black, wet, very soft, elastic SILT, (MH)  25. WOR/18° 1 DS 10  30. WOR/18° 2 DS 18  WOR/18° 3 DS 17  WOR/18° 3 DS 17  WOR/18° 4 DS 18  SAMPLER TYPE DS - DRIVEN SPILT SPOON PT - PRESSED SHELBY TUBE CONDITIONS AS AMPLER TYPE DS - DRIVEN SPILT SPOON PT - PRESSED SHELBY TUBE CONDITIONS AT COMPLETION AT	_					Juu	-							
29.6 Gray, black, wet, very soft, elastic SILT, (MH)  SAMPLER TYPE DS . PRIVEN SPLIT SPOON PS . PRIVEN	_						i _							-
29.6  Gray, black, wet, very soft, elastic  SILT. (MH)  SAMPLER TYPE  DS - DRIVEN SPLIT SPOONE  PS - PRESSPONELDY TUBE  DS - DRIVEN SPLIT SPOONE  A - CONTINUOUS FLIGHT AUGER  CA - CONTINUOUS FLIGHT AUGER  CONTINUOUS FLIGHT AUGERS  CONTINUOUS FLIGH							5—							-
29.6  Gray, black, wet, very soft, elastic  SILT. (MH)  SAMPLER TYPE  DS - DRIVEN SPLIT SPOONE  PS - PRESSPONELDY TUBE  DS - DRIVEN SPLIT SPOONE  A - CONTINUOUS FLIGHT AUGER  CA - CONTINUOUS FLIGHT AUGER  CONTINUOUS FLIGHT AUGERS  CONTINUOUS FLIGH	_					Juu	-							
29.6  Gray, black, wet, very soft, elastic SILT. (MH)  SAMPLER TYPE DS - DRIVEN SPLIT SPOON BS - PRESSED SHELDY TUBE CA - CONTINUOUS FLICHT AUGER CA - CONTINUOUS	_						-							
29.  -29.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.6  -38.														
29.6  Gray, black, wet, very soft, elastic  SILT, (MH)  WOR/18" 1 DS 10  WOR/18" 2 DS 18  WOR/18" 3 DS 17  WOR/18" 3 DS 17  WOR/18" 3 DS 17  WOR/18" 4 DS 18  SAMPLER TYPE  SAMPLER TYPE  DS - PRIVEN SPLIT SPOON PT - PRESSED SHELEY TUBE CA - CONTINUOUS FLIGHT AUGER CAYED AT THE TABLE TO THE						Jun	10							
29.6 Gray, black, wet, very soft, elastic SILT, (MH)  -29.6 WOR/18" 1 DS 10  WOR/18" 2 DS 18  -38.6 WOR/18" 3 DS 17  WOR/18" 3 DS 17  WOR/18" 4 DS 18  -38.6 SAMPLER TYPE  SAMPLE CONDITIONS DF - PRISESED SHELBYTUBE CA - SONTRIVIOUS PLICHT AUGER CA - CONTINUOUS PLICHT AUGERS CA - CONTINUOUS PLICHT AUGER CA - CONTINUOUS	_					Juu	-							-
29.6 Gray, black, wet, very soft, elastic 31.0							_							
29. Caray, black, wet, very soft, elastic sll.T. (MH)														
20 20 20 20 25 25 25 25 25 27 28 29 29 20 20 20 20 20 20 20 25 25 25 25 25 25 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20						Juu	15							
20 20 20 20 25 25 25 25 25 27 28 29 29 20 20 20 20 20 20 20 25 25 25 25 25 25 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20						Juu								
29.6  Gray, black, wet, very soft, elastic  SILT, (MH)  SAMPLE TYPE  SAMPLE CONDITIONS  SAMPLE TYPE  D - OBINTA SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLER TYPE  D - DISINTEGRATED D - I NITACT U - WOR/18" AT COMPLETION AT FIRE AFTER HRS. AFTER AFTE	_						1 -							
29.	_						]							_
25.	_					Juu	20							-
25  -29.6 Gray, black, wet, very soft, elastic SILT, (MH)  SILT, (MH)  SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  D - DISINTEGRATED I - INTACT UDINDISTURBED L - LOST  D - DISINTEGRATED I - INTACT UDINDISTURBED L - LOST  D - DISINTEGRATED I - INTACT CAVED AT						luu.	20							
25  -29.6 Gray, black, wet, very soft, elastic SILT, (MH)  -38.6 WOR/18" 1 DS 10  -38.6 WOR/18" 2 DS 18  -38.6 WOR/18" 3 DS 17  -38.6 SAMPLE TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  D - DISINTEGRATED L - INTACT U- U- UNDISTURBED L - LOST  D - DISINTEGRATED L - LOST  D - DRIVEN SPILITE L - LOST  D														
25  -29.6  Gray, black, wet, very soft, elastic SILT, (MH)  WOR/18" 1 DS 10  WOR/18" 2 DS 18  WOR/18" 3 DS 17  WOR/18" 3 DS 17  SAMPLER TYPE DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  D - DISINTEGRATED L - LOST  BORING METHOD HSA - HOLLOW STEM AUGERS CFA - CONTINUOUS FLIGHT AUGERS CFA - CONTINUOUS FLIGHT AUGERS CC - ROCK CORE  BORING METHOD HSA - HOLLOW STEM AUGERS CFA - CONTINUOUS FLIGHT AUGERS CFA - CONTINUOU														
29.6 Gray, black, wet, very soft, elastic SILT, (MH) WOR/18" 1 DS 10	_					Juu	_							
-29.6 Gray, black, wet, very soft, elastic SILT, (MH)						L	<u>25</u>							_
-29.6	_						] -							-
-29.6	_						_							
-29.6	_					Juu	-							
Gray, black, wet, very soft, elastic SILT, (MH)  WOR/18" 1 DS 10  WOR/18" 2 DS 18  WOR/18" 3 DS 17  WOR/18" 3 DS 17  WOR/18" 4 DS 18  SAMPLER TYPE  SAMPLE CONDITIONS DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  D - DISINTEGRATED I - INTACT AFTERHRS ft AFTER 24 HRS ft AFTER 24 HRS ft CAVED AT ft AFTER 24 HRS ft CAVED AT ft AFTER 24 HRS ft CAVED AT ft AFTER 24 HRS ft AFTER 25 HRS ft AFTER 25 HRS ft AFTER 26 HRS ft AFTER 2							30							
SILT, (MH)	_	-29.6	Charle black wat warms and	Jantin	31.0									
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  D - DISINTEGRATED I - INTACT U - UNDISTURBED L - LOST  WOR/18" 2 DS 18  WOR/18" 4 DS 18  BORING METHOD  HSA - HOLLOW STEM AUGERS CFA - CONTINUOUS FLIGHT AUGERS DC - DRIVING CASING MD - MUD DRILLING	_			eiasuc		Ш	-		WOR/18"	1	DS	10		_
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  D - DISINTEGRATED I - INTACT AFTER HRS ft AFTER 24 HRS ft CAVED AT ft MD - MUD DRILLING	_		(MH)			Ш								
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  DVOR/18"  WOR/18"  WOR/18"  WOR/18"  WOR/18"  WOR/18"  WOR/18"  WOR/18"  A DS  BORING METHOD  HSA - HOLLOW STEM AUGERS CFA - CONTINUOUS FLIGHT AUGERS DC - DRIVING CASING MD - MUD DRILLING	-						- 35		WOR/18"	2	DS	18		
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  GROUNDWATER DEPTH AT COMPLETIONft AFTER HRSft AFTER 24 HRSft CAVED ATft MD - MUD DRILLING														
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  GROUNDWATER DEPTH AT COMPLETION									WOR/18"	3	DS	17		L
SAMPLER TYPE  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  SAMPLE CONDITIONS  GROUNDWATER DEPTH AT COMPLETION	_													$\vdash$
SAMPLER TYPE  SAMPLE CONDITIONS  GROUNDWATER DEPTH  DS - DRIVEN SPLIT SPOON PT - PRESSED SHELBY TUBE CA - CONTINUOUS FLIGHT AUGER RC - ROCK CORE  D - DISINTEGRATED I - INTACT AFTER HRS ft CAYED AT ft MD - MUD DRILLING	_	20.0			40.0		40		WOR/18"	4	DS	18		$\vdash$
DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETIONft HSA - HOLLOW STEM AUGERS PT - PRESSED SHELBY TUBE I - INTACT AFTER HRSft CFA - CONTINUOUS FLIGHT AUGERS CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED AFTER 24 HRS ft DC - DRIVING CASING RC - ROCK CORE L - LOST CAVED AT ft MD - MUD DRILLING			AMPI FR TYPF 9	AMPI F CC		LLLL DNS	40 GRO	יחאוו	NATES DED	TH			I RING METHOD	
CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED AFTER 24 HRS ft DC - DRIVING CASING RC - ROCK CORE L - LOST CAVED AT ft MD - MUD DRILLING		6 - DRIVE	EN SPLIT SPOON	D - DISINTE	EGRATED	)	AT CC	OMPLE	ΓΙΟΝ ft			A - HOL	LOW STEM AUGERS	
RC - ROCK CORE L - LOST CAVED AT ft MD - MUD DRILLING	PT	- PRES	SED SHELBY TUBE	I - INTACT	•		AFTE	R	HRS	ft	CFA	A - CON	ITINUOUS FLIGHT AUGERS	
STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS					JJLD									
	ST	ANDARD	PENETRATION TEST DRIVING 2"	OD SAMPLER	1' WITH	140# HA	MMER	FALLI	NG 30": COUNT	MADE	AT 6" IN	ΓERVAL	S	

	TE

ontracted roject Na		an & Bryant Associ 7 - Seagirt Loop Ch		epeni					Boring Job #		
ocation _					· · · ·				30b #		
					SAMPL	ER					
atum <u>Ml</u>	LLW	Hammer V	/t 140			ameter8 in		For	eman	M. Fletcher	
urf. Elev	1.4 ± ft	Hammer D				ore Dia. N/A			ector	D. Patterson	
ate Started _	1/15/19	Spoon Size			_ Boring	Method HSA			e Complet	ed1/15/19	
	SOIL DE	SCRIPTION	STRA	٦,	ΞЩ	SA	MPLE				$\neg$
ELEV. (ft)	Color, Moisture, D	ensity, Plasticity, Size portions	STRA DEPTH (ft)	SYMBOL	SCALE	d Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	Gray, wet, very so	oft, fat <b>CLAY</b>									-
						WOR/18"	5	DS	18		
					-	WOR/18"		DC	40		L
_					45	WOIVIO	6	DS	18		$\vdash$
_					-	MOD/401					$\vdash$
$\dashv$					-	WOR/18"	7	DS	17		$\vdash$
					50	WOR/18"	8	DS	18		
					_						L
_					-	WOR/18"	9	DS	18		$\vdash$
-											$\vdash$
-					_ 55	WOR/18"	10	DS	18		$\vdash$
					00						
						WOR/18"	11	DS	14		
					-						$\vdash$
4						WOR/18"	12	DS	18		$\vdash$
-58.6	Bottom of Boring	at 60.0 ft	60.0		60						
	Ŭ										$\vdash$
_					65						$\vdash$
_					_						$\vdash$
-					-						$\vdash$
					70						
4											$\vdash$
$\dashv$											$\vdash$
$\dashv$					 75						$\vdash$
_					13						
_											$\vdash$
	AMDI ED TOE	041515			80 DOLIN	DIA/ATER SE				NO METUOD	
DS - DRIVE	AMPLER TYPE	SAMPLE ( D - DISIN			<b>GROUN</b> AT COMPI	DWATER DEF	1H		BORI A - HOLLO	NG METHOD	

STANDARD PENETRATION TEST DRIVING 2" OD SAMPLER 1' WITH 140# HAMMER FALLING 30": COUNT MADE AT 6" INTERVALS

	TE

Contracted	Nation Gahadan & I	Bryant Associa			CON	EXPLOR	AIIO	14	Borin	na # PR-51	
Contracted Project Na		eagirt Loop Ch		pening					Borin Job #	· J · ·	
Location .										•	
				SA	MPLE	₹					
DatumM	LLW	Hammer Wt	140 lb	⊦	lole Dian	neter 8 in		For	eman _	M. Fletcher	
Surf. Elev	-0.6 ± ft	Hammer Dro	op30 in		lock Cor				ector _	D. Patterson	
Date Started .	1/11/19	Spoon Size	2 in	E	oring Me	ethod HSA		Dat	e Comp	leted1/11/19	
	SOIL DESCRIP	TION	STRA	7 1="	ı	SAI	MPLE				
ELEV. (ft)	Color, Moisture, Density, Proportions	Plasticity, Size	DEPTH (ft)	SYMBOL DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER									1. Area 8	
										2. 577973.42 N	
				_						1436379.64 E	
				5_	-						
4				-	-						
$\dashv$				- him	-						$\vdash$
+				- h							
$\dashv$				- 10	1						$\vdash$
					1						
				_	1						
				_							
				- m							
				15							
				~~							
				<u> </u>							L
				-							
				20_							
4				- L	_						_
4				- L	-						$\vdash$
+				<u> </u>	-						
$\dashv$					-						$\vdash$
_				2 <u>5</u>	1						
$\dashv$				- L	-						$\vdash$
+				- h	1						
7				-   ·	1						
7				30							
					_						
4				_	-						L
				~~ <u>35</u>	4						
$\dashv$					-						$\vdash$
_					-						-
$\dashv$				-	+						$\vdash$
_				~~ ₄₀	-						
	AMPLER TYPE	SAMPLE CO	ONDITION		ים מאטכ	WATER DEP	PTH	1	BΩ	RING METHOD	
DS - DRIVE	EN SPLIT SPOON	D - DISINT	EGRATED	AT C	OMPLE	TION ft			A - HOL	LOW STEM AUGERS	
	SSED SHELBY TUBE FINUOUS FLIGHT AUGER	I - INTAC [*] U - UNDIS [*]		AFTI AFTI	ER ER 24 HI	HRS RS ft	ft			NTINUOUS FLIGHT AUGERS VING CASING	
RC - ROCK		L - LOST		CA'	/ED AT	ft				D DRILLING	
STANDARD	PENETRATION TEST DRIVIN	IG 2" OD SAMPLEF	R 1' WITH 14	0# HAMME	R FALLI	NG 30": COUN	T MADE	AT 6" IN	ΓERVAL	.S	
<u></u>	·										

	TE

	•	RECOR	RD OF	SOIL	. / R	OCK	EXPLORA	OITA	N			
Contracted	d WithGahagan & Bryan	t Associa	tes							Borin	g# <u>PR-51</u>	
Project Na		Loop Cha	nnel De	eepen	ing					Job#	18-0043	
Location	Baltimore, MD											
					SAM	1PLEF	₹					
DatumM		Hammer Wt.			Ho	le Dian			For	eman _	M. Fletcher	
Surf. Elev		Hammer Dro	p 30 2 in	in		ck Core				ector _	D. Patterson eted 1/11/19	
Date Started	1/11/19	Spoon Size .	2 111		Bo	ring Me	ethod		Dat	e Compl	eted	
ELEV.	SOIL DESCRIPTION		STRA	30L	王		SAN	/IPLE			BORING & SAMPLE	
(ft)	Color, Moisture, Density, Plastici Proportions	ty, Size	DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
	WATER (continued)			tu								
				Jun	$\downarrow $ $\perp$							
_				<u></u>								-
$\dashv$					45							$\vdash$
				Jun	45_							
				Jun								
-48.6	5 0 0		48.0									
<u>-50.1</u>	Black, wet, very soft, CLAY		49.5				WOR/18"	1	DS	8		-
$-\Gamma$	Gray, wet, very loose, fine to medium, clayey <b>SAND</b>		T		50							_
-	medium, dayey <b>SAND</b>						3-3-4	2	DS	15		$\vdash$
							1-2-3	3	DS	16		
55.6	Gray-brown, wet, very loose t		_ <u>55.0</u> _		55							
$\dashv$	loose, fine to coarse, SAND,				-		2-3-6	4	DS	18		$\vdash$
$\dashv$	gravel, (SP)											$\vdash$
	(0.)						3-3-4	5	DS	13		
_]					60			Ü				
					_		2-2-1	6	DS	12		_
-62.6	Bottom of Boring at 62.0 ft		62.0		∄ _■		2-2-1	U	55	12		$\vdash$
$\dashv$	Bottom of Borning at 02.0 it				-							$\vdash$
					65							
												_
_					_							$\vdash$
$\dashv$					70							$\vdash$
					1-0							
_					_							$\vdash$
$\dashv$					75							$\vdash$
$\overline{}$					75							<u> </u>
╛												
4												$\vdash$
	SAMPLER TYPE SA	MPLE CO	MDITIC	)NG	80 GPO	וטואו	NATER DEP	TH		PO!	RING METHOD	
		D - DISINTE		_			NATER DEP TION ft	111	HSA		LOW STEM AUGERS	
PT - PRES	SSED SHELBY TUBE TINUOUS FLIGHT AUGER	I - INTACT U - UNDIST L - LOST	•		AFTER AFTER	R R 24 HF	HRS RS ft ft	_ ft	CF/ DC	A - CON - DRIV	ITINUOUS FLIGHT AUGERS /ING CASING ) DRILLING	
	O PENETRATION TEST DRIVING 2" O		1' WITH	140# HA				MADE				

	TE

			RECOF	RD OF	SOIL	. / R	OCK	EXPLOR	ATIO	N			
Con	ntracted	l WithGahagan & Bry	ant Associa	tes							Borin	g# PR-52	
	ject Na	me Task 17 - Seag	irt Loop Cha	nnel D	eepeni	ng					Job #		
Loc	ation .	Baltimore, MD											
						SAM	1PLE	R					
Datui	m MI	LLW	_ Hammer Wt.	140	lb	Нс	ole Dian	_{neter} 8 in		For	eman _	M. Fletcher	
	Elev	0.3 ± ft	_ Hammer Dro				ock Cor				eman _	D. Patterson	
	Started .	1/7/19	_ Spoon Size	2 in			ring Me				e Comp	leted1/7/19	
ſ				T		<b></b>		SAL	MPLE				
	ELEV. (ft)	SOIL DESCRIPTIOI Color, Moisture, Density, Plas Proportions	N ticity, Size	STRA DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
		WATER										1. Area 7	-
					Juu							2. 577936.74 N	
					fuu	_						1436029.5 E	
$\exists$						_							_
-						5							
$\dashv$					Jun	—							
$\exists$					fuu	_							
						10							
4					Juu	_							
$\dashv$					Jun	_							
$\dashv$						_							
$\exists$					Jun	15							
					Jun								
					<u></u>	_							
4						] _							
$\dashv$					Jun								
					fuu	<u>20</u>							
$\exists$						_							
					Jun	_							
					Jun	<u>25</u>							
$\dashv$						_							_
$\dashv$						] —							
$\exists$					Jun	_							
					<u> </u>	30							
					him	_							
4					Jun								
$\dashv$					<u> </u>	25							
						35							
$\exists$						-							
					Juu								
													L
			<b></b>	<u> </u>		40			<u>L.                                    </u>			<u> </u>	
DC			SAMPLE CO					WATER DEP	TH	ПС		RING METHOD	
PT CA	- PRES	EN SPLIT SPOON ISED SHELBY TUBE TINUOUS FLIGHT AUGER	D - DISINTI I - INTACT U - UNDIST L - LOST	•		AFTEI AFTEI	R R 24 HI	TION ft HRS RS ft	ft	CF/ DC	4 - CON DRIV -	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING D DRILLING	
		) PENETRATION TEST DRIVING 2		1' \\/\T⊔	140# 🗀 🗘				L WVDE				
01	, " 4DVI /L	. LILLIVIIION ILOI DINVING Z	OD ON WINI LEIN		1 1017 1 17	viL1	, (LLI	1.000.000111	1VII/LDL	, U IIN	\ V /\L	. <del>.</del>	

	TE

				JUIL	. / K	UUN	EXPLOR	4110	IN		DD 50	
Contracted				eeneni	ina					Boring Job #	·	
Project Na Location		rt Loop Ona	IIIICI D	ССРСП	iiig					JOD #	10 0040	
					SAN	1PLEF	₹					
DatumM	LLW	. Hammer Wt.	140	lb	Ho	ole Diam	neter 8 in		For	eman	M. Fletcher	
Surf. Elev	0.3 ± ft	. Hammer Dro	00	in		ock Core				ector _	D. Patterson	
Date Started	1/7/19	Spoon Size	2 in		_ Bo	ring Me	thod HSA		Dat	e Comple	eted1/7/19	
	SOIL DESCRIPTION		STRA	٦,	ΞЩ		SAM	MPLE				
ELEV. (ft)	Color, Moisture, Density, Plast Proportions		DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER (continued)			I								
				Jun	-							_
-												-
+					45							
-45.7			46.0	Juu								
	Black, wet, very soft, CLA	<b>(</b>					WOR/18"	1	DS	6		
_					-							
-49.7			50.0		 50		WOR/18"	2	DS	6		
<u>-49.7</u>	Gray, brown, wet, very loos	e, fine,			30_							
	SAND, trace silt, (SP-SM)						1-1-2	3	DS	18		
-52.7	Gray, brown, wet, very loos		<u>53.0</u>		_							
	SAND,	e, line,					1-1-1	4	DS	16		_
	(SP)				55							
					1		1-2-1	5	DS	14		
							121					
							1-1-3	6	DS	17		
-59.7	Bottom of Boring at 60.0 ft		60.0		60		110			.,		
	ggg				-							
					<u>65</u>							
_					_							_
					_							
					<u>70</u>							
_					_							
+					_							
					<u>75</u>							
4					_							
-					-							-
-					-							$\vdash$
					80							
	SAMPLER TYPE	SAMPLE CO	NDITIO	ONS	GRO	UND	WATER DEP	TH		BOF	RING METHOD	
PT - PRES	EN SPLIT SPOON SSED SHELBY TUBE INUOUS FLIGHT AUGER	D - DISINTE I - INTACT U - UNDIST			AFTE AFTE	R R 24 HF	TION ft HRS RS ft	ft	CF/ DC	A - CON - DRIV	LOW STEM AUGERS TINUOUS FLIGHT AUGERS TING CASING	
RC - ROCH		L - LOST	41.14.1 <del></del>	4 407/ 114			ft				DRILLING	
STANDARD	PENETRATION TEST DRIVING 2"	OD SAMPLER	1' WITH	140# HA	MMER	FALLI	NG 30": COUNT	MADE	AT 6" IN	ERVALS	S	

	TE

	RECORD OF SOIL / ROCK EXPLORATION												
Con	tracted	WithGahagan & Brya	nt Associa	tes							Borin	g # PR-53	
Proj	ect Nar		t Loop Cha	nnel D	eepeni	ng					Job #	18-0043	
Loca	ation _	Baltimore, MD											
						SAM	1PLEI	₹					
Datur	nML	LW	Hammer Wt.	140	lb	_ Hc	ole Dian	neter 8 in		Fore	eman _	M. Fletcher	
Surf.		0.9 ± ft	Hammer Dro	•	in		ock Core				ector _	D. Patterson	
Date	Started _	1/7/19	Spoon Size	2 in		_ Bo	oring Me	ethod HSA		Date	e Comp	leted1/7/19	
		SOIL DESCRIPTION		STRA	٦,	ΞЩ		SAI	MPLE				
	ELEV. (ft)	Color, Moisture, Density, Plast Proportions	icity, Size	DEPTH (ft)	SYMBOL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
		WATER			Lun							1. Area 8	
					Jun							2. 577796.88 N	
_					luu.	_						1435910.87 E	-
-						5							$\vdash$
					Jun	3							
					Jun	-							
_						_							L
-					Jun	10							_
-						_							$\vdash$
					hun								
					Jun	<u>15</u>							
-						] _							$\vdash$
-					m	_							$\vdash$
-					Jun	-							
						20							
_					Jun	_							-
-						_							$\vdash$
_						25							
					Jun								
					Jun								
_						] _							_
$\dashv$						20							$\vdash$
-					fuu	30							
$\Box$													
$\dashv$					Jun	_							$\vdash$
_						35_							<u> </u>
$\dashv$						] -							$\vdash$
$\dashv$					fin	-							
					<u></u>								
					$\overline{\mathbf{m}}$	40							
DS		AMPLER TYPE SEN SPLIT SPOON	D - DISINTE					WATER DEP	TH	HSA		RING METHOD LOW STEM AUGERS	
PT CA	- PRES	SED SHELBY TUBE INUOUS FLIGHT AUGER	I - INTACT U - UNDIST L - LOST			AFTEI AFTEI	R R 24 HF	HRS RS ft ft	ft	CF <i>A</i> DC	4 - CON 1 - DRI	NTINUOUS FLIGHT AUGERS VING CASING D DRILLING	
		PENETRATION TEST DRIVING 2"		1' WITH	140# HA				MADE				

TE

## **RECORD OF SOIL / ROCK EXPLORATION**

Contracted With	Gahagan & Bryant Associates	Borina#	PR-53
Project Name	T 1 47 0 111 01 1D 1	Job #	18-0043
Location	Baltimore, MD		

### SAMPLER

DatumMLLW	Hammer Wt140 lb	Hole Diameter8 in	Foreman M. Fletcher
Surf. Elev. 0.9 ± ft	Hammer Drop 30 in	Rock Core Dia. N/A	Inspector D. Patterson
Date Started 1/7/19	Spoon Size 2 in	Boring Method HSA	Date Completed 1/7/19

	51.51	SOIL DESCRIPTION	STRA	٦٦	ΞЩ		SAM	MPLE			DODING A CAMPUE	٦
	ELEV. (ft)	Color, Moisture, Density, Plasticity, Size Proportions	STRA DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	-40.1	WATER (continued)	41.0									H
	70.1	Black, wet, very soft, CLAY to	71.0	MM	1		WOR/18"	1	DS	4		
		SILT								·		
_					1 4		WOR/18"	2	DS	4		
_					<u>45</u>		VVOI () 10	2	טס	4		
$\dashv$					1		MOD/401			_		
_	<u>-46.6</u>		<u>47.5</u>		-		WOR/18"	3	DS	6		-
$\neg$		Gray-brown, wet, very loose, fine to medium, <b>SAND</b> , trace clay,			_							
	-49.1	(SP)	50.0		50		3-3-4	4	DS	14		
		Black, wet, medium stiff, CLAY			_							
+	<u>-51.1</u>	Gray-brown, wet, very loose to	<u>52.0</u>		4 -		6-2-3	5	DS	9		-
-		loose, fine to medium, SAND, trace			_							-
$\dashv$		silt, trace gravel			55		6-1-2	6	DS	15		H
					35_							
							2-4-5	7	DS	18		
4					-		3-3-4	8	DS	18		L
-	-59.1	Bottom of Boring at 60.0 ft	60.0		60		004			.0		H
$\dashv$					-							H
┪					_							F
_					<u>65</u>							
-					_							
$\dashv$					-							$\vdash$
$\dashv$					_							H
$\exists$					70							
4					_							-
$\dashv$					75							$\vdash$
$\overline{}$					75							$\vdash$
$\dashv$					-							F
					80			<u> </u>			<u> </u>	$\perp$
PT CA	- DRIVE - PRESS	AMPLER TYPE  N SPLIT SPOON SED SHELBY TUBE NUOUS FLIGHT AUGER CORE  SAMPLE C D - DISINT D - INTAC U - UNDIS L - LOST	TEGRATED T STURBED		AT CO AFTE AFTE	OMPLE ⁻ R R 24 HF	NATER DEP FION ft HRS RS ft ft		CF/ DC	A - HOL A - CON - DRIV	RING METHOD  LOW STEM AUGERS ITINUOUS FLIGHT AUGERS VING CASING D DRILLING	
		PENETRATION TEST DRIVING 2" OD SAMPLEI		140# HA				MADE				

	TE

				JUIL	. / 八	JUN	EXPLOR	A110	IA			
Contracted		•		ononi	n a	Boring # PR-54 Job # 18-0043						
Project Na			inner De	epeni	ng					Job #	10-0043	
Location	Baitimore, MD				041	4DL E						
					SAIV	1PLEI						
Datairi	-0.6 ± ft	Hammer Wt.				ole Dian				eman _	M. Fletcher  D. Patterson	
Surf. Elev Date Started	1/11/19	<ul><li>Hammer Dro</li><li>Spoon Size</li></ul>	2 in			ock Core oring Me	. Dia			pector _ e Comp		
	1										1	
ELEV. (ft)	SOIL DESCRIPTIC Color, Moisture, Density, Pla Proportions		STRA DEPTH (ft)	SYMBOL	DEPTH SCALE	Cond	SAI Blows/6"	MPLE No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER										1. Area 8	
											2. 577479.82 N	
				l	_						1436578.7 E	
_					_							_
_					5							
				h	_							
					_							
				l	10							
-					_							
$\neg$					_							
				l								
				luu	<u>15</u> _							
_					_							_
-				m	_							
_				l	_							
					20							
					_							
_				l	_							_
$\dashv$					_							
_					25							
				h								
					_							
					_							_
$\dashv$				l	30							-
					55_							
4				l	_							L
$\dashv$												$\vdash$
					35							
				l								
4												-
	AMPLER TYPE	SAMPLE CO		MIC	40 GPO	ו וויוטו	WATER DEP	TU		PO	 RING METHOD	
	EN SPLIT SPOON	D - DISINTI	_	_	-	_	TION ft	117	HSA		LOW STEM AUGERS	
PT - PRES	SSED SHELBY TUBE TINUOUS FLIGHT AUGER	I - INTACT U - UNDIST L - LOST	7		AFTEI AFTEI	R R 24 HF	HRS RS ft ft	ft	CF/ DC	4 - CON 1 DRI	NTINUOUS FLIGHT AUGERS VING CASING D DRILLING	
	D PENETRATION TEST DRIVING		2 1' WITH 1	140# HA				Γ MADE .				
								-				

10

			RECOF	RD OF	SOIL	. / R0	CK	EXPLOR	ATIO	N			
Conf	tracted	With Gahagan & Bry									Borin	g # <u>PR-54</u>	
Proje	ect Nar		irt Loop Cha	annel D	eepen	ing					Job#	18-0043	
Loca	ation _	Baltimore, MD											
						SAM	IPLE	₹					
Datum	nML	LW	_ Hammer Wt			Ho	le Dian				eman _	M. Fletcher	
Surf. E	Elev Started _	-0.6 ± ft 1/11/19	<ul><li>Hammer Dro</li><li>Spoon Size</li></ul>	op <u>30</u> 2 in	in		ck Core				ector e Comple	D. Patterson	
Date	Starteu _		_ Spoon Size			_ 60	ilig ivie			Dat	e Compi	eted	
	ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Plas		STRA DEPTH	ESP.	DEPTH		SAM	MPLE			BORING & SAMPLE	
	(ft)	Proportions	tiony, Oizo	(ft)	SOIL	SCE	Cond	Blows/6"	No.	Туре	Rec (in)	NOTES	
		WATER (continued)											-
-		, ,											
					Jun	$\downarrow \  \    $							
4					Jun	$\downarrow$ $\perp$							
_						45							
$\dashv$						$]$ $\dashv$							H
$\exists$	-48.6			48.0	Jun	$\downarrow -$							$\vdash$
		Dark gray, wet, very soft, s	andy fat					WOR/18"	1	DS	12		
	<u>-50.1</u>	CLAY, (CH)	/-	<u>49.5</u> .		50							
4		Tan, wet, very loose to loos	se,					3-1-2	2	DS	5		
-		medium to coarse, <b>SAND</b> , gravel	trace					J-1-Z	_	53	5		-
+								7.4.5		D0	_		-
$\exists$						55		7-4-5	3	DS	3		
								20-6-3	4	DS	4		
4													
-	-60.1			59.5		_		3-3-3	5	DS	3		-
$\dashv$		Bottom of Boring at 59.5 ft				60							-
٦													
4													
						<u>65</u>							-
$\dashv$													
$\exists$													
						70							
4						_							F
$\dashv$						-							
$\dashv$													
						<u>75</u>							
$\dashv$													L
$\dashv$													$\vdash$
$\dashv$						80							
	S	AMPLER TYPE	SAMPLE CO	ONDITIO	ONS		UND	NATER DEP	TH	ı	BOF	RING METHOD	
PT	- DRIVE	N SPLIT SPOON SED SHELBY TUBE	D - DISINT I - INTACT	EGRATE	)	AT CC	MPLE	ΓΙΟΝ ft HRS		CFA	A - HOLI A - CON	LOW STEM AUGERS TINUOUS FLIGHT AUGERS	
	- CONT - ROCK	INUOUS FLIGHT AUGER CORE	U - UNDIST L - LOST	IURBED		CAVE	R 24 HF ED AT	RS ft ft				/ING CASING DRILLING	
STA	ANDARD	PENETRATION TEST DRIVING 2'	OD SAMPLER	1' WITH	140# HA	MMER	FALLII	NG 30": COUNT	MADE	AT 6" IN	TERVAL:	S	

	TE

0	ntracted With Gahagan & Bryant Associates Boring #PR-55											
Project N		agirt Loop Cha		eepeni	ng					Job #18-0043		
Location				•						000 7		
					SAM	1PLEF	₹					
Datum	MLLW	Hammer Wt.	140	lb	_ Ha	le Dian	neter 8 in		Fore	eman _	M. Fletcher	
Surf. Elev	-0.7 ± ft	Hammer Dro		in		ck Core	e Dia. N/A		Insp	ector _	D. Patterson	
Date Started	1/11/19	Spoon Size	2 in		_ Bo	ring Me	thod HSA		Date	e Comp	leted1/11/19	
	SOIL DESCRIPT	ION	STRA	٦,	ΞШ		SAI	MPLE				$\neg$
ELEV. (ft)	Color, Moisture, Density, F Proportions		DEPTH (ft)	SOIL	DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
	WATER			uu							1. Area 8	
				Juu							2. 577137.49 N	_
_					1 -						1436714.92 E	$\vdash$
-					5							H
				Juu	-							
				<u> </u>								
4					]							<u> </u>
-				Juu	1,_							$\vdash$
_				ļ	10							-
					1 -							
				luu								
				Juu	\							
					15_							-
-					] -							$\vdash$
				Juu								
					20							_
_				Juu								-
$\dashv$					1 -							$\vdash$
				Juu	25							
				L.	1 4							_
$\dashv$					] -							$\vdash$
$\dashv$				Jun	$\mid \; \dashv$							-
$\dashv$				Juu	30							
$\neg$												
$\dashv$												$\vdash$
$\dashv$				Juu	$\mid \; \dashv$							-
$\dashv$					35							-
_					35							
				Juu	$\mid \;                                   $							
$\dashv$					1 4							L
$\dashv$					1,_							-
	SAMPLER TYPE	SAMPLE CO	NDITIC	L DNS	40 GRO	יחאט	NATER DEP	TH		BO	│ RING METHOD	
DS - DRIV	VEN SPLIT SPOON	D - DISINTE	EGRATED	)	AT CC	MPLE	ΓΙΟΝ ft			A - HOL	LOW STEM AUGERS	
CA - CON	SSED SHELBY TUBE TINUOUS FLIGHT AUGER	I - INTACT U - UNDIST			AFTER	R 24 HF	HRS RS ft	ft	DC	- DRI	NTINUOUS FLIGHT AUGERS VING CASING	
RC - ROC		L - LOST	41.14.0		CAVI	ED AT	ft				D DRILLING	
STANDAR	RD PENETRATION TEST DRIVING	2" OD SAMPLER	1' WITH 1	140# HAI	MMER	FALLI	NG 30": COUNT	I MADE	A1 6" INT	IERVAL	S	



	F	RECORD OF	SOIL	_ / ROC	K EXPLORA	ATIO	N			
Contracted	WithGahagan & Bryant /	Associates						Boring	g # PR-55	
Project Na		oop Channel D	eepen					Job#	·	
Location ₋	Baltimore, MD									
				SAMPL	.ER					
DatumMl	LLW Hs	ammer Wt140	lb	Наю Г	Diameter 8 in		For	eman	M. Fletcher	
Surf. Elev	07.0	ATTITION VVI	in		Core Dia. N/A			ector _	D. Patterson	
Date Started _		ooon Size2 in_		Boring	Method HSA			e Comple	eted1/11/19	
				I <b>-</b> l	AVS	MPLE				$\neg$
ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Plasticity,	Size STRA DEPTH	SYMBOL	DEPTH SCALE				Rec	BORING & SAMPLE NOTES	
(11)	Proportions	(ft)	S X	BS c∘	nd Blows/6"	No.	Туре	(in)	NOTES	
	WATER (continued)		1							
-42.7	,	42.0								
	Dark gray, wet, medium stiff, el		Ш		WOR/18"	1	DS	9		
	SILT, trace fine sand, (MH)		Ш							
	, ,		Ш	45	WOR/18"	2	DS	8		
$\dashv$			Ш	_■	Working	_	DS			F
$\dashv$			Ш		MOD/40"					$\vdash$
-			Ш	-	WOR/18"	3	DS	18		
<u>-50.2</u>	Gray-brown, wet, medium dens	49.5		50 ■						
	clayey <b>SAND</b> , and gravel,	.e,			4-9-17	4	DS	11		
-52.7	(SC)	52.0								
	Grayish-brown, wet, very loose medium dense, clayey <b>SAND</b> , li	to ittle			9-13-14	5	DS	7		
_	gravel			<b></b> -						-
				<u>55</u> ■	2-2-4	6	DS	10		
$\dashv$				4 -						
					WOH/12"-1	7	DS	6		
-59.2	Bottom of Boring at 58.5 ft	58.5	<i>7.7.7.7.</i> 3		7701712	'				
	Dettern er Dennig at eele n			60						
_										_
$\dashv$										-
$\dashv$										-
-				65						
_										-
				70						-
+										-
										$\vdash$
				75						
$\exists$										L
$\dashv$										$\vdash$
$\dashv$										$\vdash$
+				80						$\vdash$
S	SAMPLER TYPE SAM	IPLE CONDITION	ONS		IDWATER DEP	TH	1	BOF	RING METHOD	
DS - DRIVE	EN SPLIT SPOON D	- DISINTEGRATEI		AT COMF	PLETION ft			A - HOLI	LOW STEM AUGERS	
CA - CONT	INUOUS FLIGHT AUGER U	- INTACT - UNDISTURBED			HRS 1 HRS ft	_ ft			TINUOUS FLIGHT AUGERS ING CASING	
RC - ROCK	CORE L	- LOST		CAVED	AT ft		MD	- MUD	DRILLING	
STANDARD	PENETRATION TEST DRIVING 2" OD :	SAMPLER 1' WITH	140# HA	MMER FA	LLING 30": COUNT	MADE	AT 6" IN	TERVALS	S	

	TE

			RECOR	D OF	SOIL	. / R	оск	EXPLOR	ATIO	N			
Conti	racted	With Gahagan & Brya	nt Associat	es							Borin	ng # PR-56	
Proje	ct Nar		t Loop Cha	nnel D	eepeni	ing					Job#	<u> 18-0043</u>	
Locat	tion _	Baltimore, MD											
						SAM	1PLEF	₹					
Datum	ML	LLW	Hammer Wt.	140	lb	_ Ho	ole Diam	neter 8 in		Fore	eman _	M. Fletcher	
Surf. E	lev	2.1 ± ft	Hammer Dro	•	in	_ Ro	ck Core				ector _	D. Patterson	
Date S	tarted _	1/15/19	Spoon Size _	2 in		Bo	ring Me	thod HSA		Date	e Compl	leted1/15/19	
Γ.		SOIL DESCRIPTION		STRA		ΞЩ		SAM	MPLE			202010 0 0 0 1 1 2	
	ELEV. (ft)	Color, Moisture, Density, Plasti Proportions		DEPTH (ft)	SOIL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
_		WATER										1. Area 6	_
-		WAILK				1 -							$\vdash$
-												2. 576972.07 N 1436910.2 E	H
					Jun								
					Jun	5							
													L
$\dashv$						] —							$\vdash$
-					Jun	<b> </b>							$\vdash$
$\dashv$					L	10							
					Jun	<b>↓</b> _							
_					Jun	\ _							$\vdash$
-						1,-							$\vdash$
-						15_							-
$\dashv$					Jun	↓ −							
					ļ								
_						<u>20</u>							
-					Jun	┥							$\vdash$
$\dashv$						\ -							H
_													
					L.	_							
					Jun								
4						] _							L
-						] —							$\vdash$
$\dashv$					Jun	30							$\vdash$
_					Jun	30_							
					uu	<b>↓</b> _							
+	-31.9	Black gray wat yony soft to		34.0									$\vdash$
-		Black, gray, wet, very soft to medium stiff, fat <b>CLAY</b> ,	J			<u>35</u> _		WOR/18"	1	DS	6		_
$\dashv$		(CH)											$\vdash$
$\dashv$						-		WOR/18"	2	DS	16		
						40		WOR/18"	3	DS	18		
			SAMPLE CO					WATER DEP	TH			RING METHOD	
PT - CA -	- PRES	EN SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER ( CORE	D - DISINTE I - INTACT U - UNDIST L - LOST			AFTEI AFTEI	R R 24 HF	ΓΙΟΝ ft HRS RS ft ft	ft	CFA DC	A - CON - DRIN	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS VING CASING D DRILLING	
		PENETRATION TEST DRIVING 2"		1' WITH	140# HA				MADE				



		RECORD (	OF SO	IL / R	OCK	EXPLORA	ATIO	N			
Contracte			l Doone	ning					Borin	·	
Project Na Location		LLOOP CHAIIILE	Deebe	riiig					Job #	10-0043	
Location				SAN	/IPLE	R					
	AL L VA /		140 lb			0 :				M Flatabor	
DatumN Surf. Elev	1LLW 2.1 ± ft	Hammer Wt Hammer Drop	140 lb 30 in		ole Diar	neter <u>8 in</u> e Dia. <u>N/A</u>			eman _ bector _	M. Fletcher  D. Patterson	
Date Started	1/15/19	•	in			ethod HSA			e Compl	eted1/15/19	
				ـــــــــــــــــــــــــــــــــــ		445	/IPLE				$\neg$
ELEV.	Color, Moisture, Density, Plasti		TH   ō 5	DEPTH SCALE	0 1			_	Rec	BORING & SAMPLE NOTES	
(11)	Proportions	(f	i) 0 2	S BS	Cond	Blows/6"	No.	Туре	(in)	NOTES	
$\dashv$	Black, gray, wet, very soft to medium stiff, fat CLAY,	)									
	(CH) (continued)					WOR/18"	4	DS	18		
_				45		WOR/18"	5	DS	18		_
3						WOR/18"	6	DS	18		
				50		WOR/18"	7	DS	17		_
		53				WOH/6"-2-3	8	DS	18		
	Gray, wet, loose, ROCK FRAGMENTS			55		3-4-4	9	DS	4		
	Grayish-brown, wet, medium medium to coarse, <b>SAND</b> , I	55 n dense, ittle	.5								
	gravel, trace silt		***	· · · · _		4-5-8	10	DS	10		
-58.4	Bottom of Boring at 60.5 ft	60	.5	<u>60</u> —		6-6-7	11	DS	7		
				_							
_				65							
_				_							$\vdash$
-				-							$\vdash$
				70							
				_							
				_							_
$\dashv$				75-							$\vdash$
_				75							-
				_							
											L
	OAMBLED TYPE	AMDI E CONT	TICNIC	80		 	<b>.</b>			ONO METUOD	
	SAMPLER TYPE S /EN SPLIT SPOON	AMPLE CONDI D - DISINTEGRA				WATER DEP TION ft	ΙΗ	цел		RING METHOD LOW STEM AUGERS	
PT - PRES	SSED SHELBY TUBE TINUOUS FLIGHT AUGER	I - INTACT U - UNDISTURBI L - LOST		AFTE AFTE	R R 24 H	HRS ft ft	_ ft	CF/ DC	A - CON - DRIV	TINUOUS FLIGHT AUGERS /ING CASING DRILLING	
STANDAR	D PENETRATION TEST DRIVING 2" (	OD SAMPLER 1' WI	TH 140#	HAMMER	FALLI	NG 30" COUNT	MADE	AT 6" IN	ΓFRVAI :	S	



# FINDLING, INC.

TEL: 410-367-1400 FAX: 410-466-6867 info@findlinginc.com

3401 Carlins Park Drive, Baltimore, Maryland 21215

July 10, 2012

Gahagan & Bryant Associates, Inc. 9008 Yellow Brick Road, Unit O-P Baltimore, Maryland 21237-5606

Attention: Mr. Martin R. Snow

Associate

Re: Results of Borings in

Seagirt Marine Terminal Channel

Baltimore, Maryland

Findling Project No. 07-1122-10

Dear Mr. Snow:

Findling, Inc. is pleased to submit this report containing the results of the test borings that were drilled for Seagirt Marine Terminal. This work was performed in order to obtain information related to subsurface condition for a widening project at Seagirt Marine Terminal in the Dundalk West Access Channel and Seagirt-Dundalk Connecting Channel and Turning Basin. This work was performed in accordance with our proposal dated June 2, 2012 and was authorized by you.

# 1.0 Subsurface Exploration

## 1.1 Soil Test Borings

A total of fifteen (15) test borings (P-1 to P-15) were drilled in the vicinity of proposed channel widening area. The locations of these borings are shown graphically on Figure 1: Boring Location Plan, in the Appendix.

The test borings were drilled using a truck mounted drill rig positioned above the deck of a barge. The borings were advanced using hollow-stem augers. The borings were advanced to depths ranging from 62.4 feet to 64.2 feet below Mean Lower Low Water (MLLW) level.

## 1.2 Standard Penetration Test (SPT) Samples

Soil samples were recovered from each boring at 2-foot intervals by driving a 1 3/8 inch ID (2-inch OD) split-spoon sampler in accordance with ASTM D-1586 specifications.



Re: Results of Borings in

Seagirt Marine terminal Channel

Baltimore, Maryland

Findling Project No. 07-1122-10

July 10, 2012

Page 2 of 2

The sampler was first seated about 6-inches to penetrate through the loose cuttings and then driven an additional 1 foot with blows of a 140-pound hammer falling 30 inches. The summation of the number of hammer blows required to drive the sampler two additional successive 6-inches is typically designated as the Standard Penetration Resistance (N) value (i.e., the summation of the 2nd 6-inch and the 3rd 6-inch penetration resistance). The sampler was driven an additional 6-inch to complete the 2-foot continuous sampling procedure (the penetration resistance for the 4th 6-inch penetration is not used in computing the SPT N-value).

Soils obtained from the sampling device were sealed in glass sample jars and transported to our soils testing laboratory. The recovered soil samples were inspected and classified by a Geotechnical Engineer using ASTM D2487 - Unified Soil Classification System (USCS,). A description of the soils conditions encountered at each test boring location is presented on the individual Boring Logs and is included in the Appendix.

# 2.0 Laboratory Soil Tests

The following laboratory tests were performed on selected soil samples that were obtained from the soil test borings.

Moisture Content Tests (ASTM D2216) Atterberg Limits (ASTM D4318) Sieve Analysis (ASTM D421, D422)

All tests were performed in accordance with applicable ASTM procedure.

We appreciate the opportunity to be of service to you on this project. If you have any questions, please call us.

Very truly yours,

FINDLING, INC.

M. Surendra

M. Suri Surendra, Ph.D., P.E.

Chief Engineer

Amsalu Duressa, P.E.

Ausaly Duressa

Chief Executive Officer

	****		Findling,Inc						BOR	INC	G LOG
PROJE			Seagirt Marine Terminal Cl	hannel				ROJEC	07-1122-10	)	BORING NO. P-1
COORD		ee Bo	ring Location Plan	BEGUN 06 DEPTH V	5/11/12 VATER ENG		MPLETED 06/11/12 END DRILL		HOLE SIZE 7" AT 24 HRS		GROUND ELEVATION  0.0 MLLW CAVED DEPTH
DRILLE	R		64.31, N: 576,156.54		N/A OF HAMMI	ŀ	N/A GHT OF FA		N/A TYPE OF CO	) DRE	N/A BORING DEPTH (FT)
ll .			D. Fincham ETHOD Barge) & HSA, ASTM 1586	DEPTH T	40 LB O ROCK N/A	LOG	30" GGED BY:	S. F	N/A		63.6 PAGE NO.
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION		SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	DATA		SAMPLE RECOVERY (in)	REMARKS:
- 5	-		Water depth at start: = 22.7 ft at 9:22 a.m. Tide = 1.39'  Corrected water depth at s = 21.3 ft (MLLW)	tart:					-	j.E.	
- 10 -	- -			- - - - -	The state of the s						
- 15 - - 20 -	• •	***************************************		- - - -							
	<u>-21.3</u>		Dark gray wet SILT, trace t Sand	fine _	S-1	24"	WOR/	24"	DS _	6"	
- 25	-			-	S-2	24"	WOR/	24"	DS _	16"	
				-	S-3	24"	WOR/	24"	DS	18"	
- 30 -	· -			- -	S-4	24"	WOR/	24"	DS	24"	
				- -	S-5	24"	WOR/	24"	DS	20"	
					S-6	24"	WOR/	24"	DS	18"	

PROJE		ndl	ing,Inc.	BOR	ING	LOC	ने	BORING		P-1	
PROJE	.01		Seagirt Marine Term	inal Channel				PROJE	ст no. <u>07-</u> 1122 <b>-</b> 1(	)	PAGE 2
		ي و		3 11112		T	SAMPL			***	
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHICLOG	DESCRIPTION		SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	KQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 35 -	_ -36.1	-	Dark gray wet SILT, t Sand	race fine	S-7	24"	WOR	/24"	DS	24"	
			Green wet SILT, trac	e fine Sand	S-8	24"	WOR	/24"	DS	24"	
				-	S-9	24"	WOR	/24"	DS _	24"	
- 40 -	-			-	S-10	24"	WOR	/24"	DS _	24"	
	-			-	S-11	24"	WOR	/24"	DS _	24"	
- 45 -	<b>-</b> .			-	S-12	24"	WOR	/24"	DS _	24"	
	_			-	S-13	24"	WOR	/24"	DS _	18"	
	<u>.</u>			-	S-14	24"	WOR	/24"	DS	24"	
- 50 -	<u>-</u>			<del>-</del>	S-15	24"	WOR	/24"	DS _	24"	
	-			-	S-16	24"	WOR	/24"	DS _	24"	
- 55 -	_			-	S-17	24"	WOR	/24"	DS _	24"	
	_			-	S-18	24"	WOR	/24"	DS _	20"	
	_			-	S-19	24"	WOR	/24"	DS ]	24"	
- 60 -	-			-	S-20	24"	WOR	/24"	DS _	24"	
	-			-	S-21	24"	WOR	/24"	DS	24"	
- 65 -	_	. RY1.1,121.1	Bottom of Boring at 6	3.6 ft -					~		
	-			-					: - -		
	-			-					_		
- 70 -	_										
	_			<u>.</u>					-		
	<u>-</u>			-					_		
- 75	_			-							

	1111111111		Findling,Inc	2				BOR	IN(	G LOG
PROJE			Seagirt Marine Terminal Cl	hannel			PRO	JECT NO. 07-1122-10	)	BORING NO.
LOCAT	ION			BEGUN		CON	MPLETED	HOLE SIZE	<u>,                                     </u>	GROUND ELEVATION
COORE	S SINATES	ee Bo	ring Location Plan	DEPTH V	/11/12 VATER ENG	ATI	06/11/12 END DRILL	7" AT 24 HRS		0.0 MLLW CAVED DEPTH
		442.0	16.17, N: 575,360.48		N/A	<i>y</i> , , , , ,	N/A	N/A		N/A
DRILLE	R	, , , , , , ,	13.11,111,0,0,000110	WEIGHT	OF HAMME	R HEI	GHT OF FALL	TYPE OF CO	ORE	BORING DEPTH (FT)
TYPE C	F DRILL F	IG & M	D. Fincham	DEPTH T	40 LB	100	30" GGED BY:			63 PAGE NO.
			Barge) & HSA, ASTM 1586		N/A			3. Faris		1
	<b>,</b>						SAMPLE DA			1
DEРТН (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION		SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/ RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
0	-		Water depth at start: = 27.0 ft at 12:38 p.m. Tide = 2.03'	-						
- 5 -	-		Corrected water depth at s 25.0 ft (MLLW)	tart: =						
	<u>-</u>			-				-		
- 10 -	_			-				-		
	-			-			recovered from the control of the co			
- 15 -	- 			- -						
	-			-						
- 20 -	-			-					<u> </u>   	
	-			-				-		
- 25 -	-25 -		Dark gray to gray with brov SILT, trace fine Sand	vn wet	S-1	24"	WOR/24	" DS -	18"	
	-	3000		-	S-2	24"	WOR/24	" DS	12"	
- 30 -	- -31	.12.51.84.1	Orean wet Oll T. C.	_	S-3	24"	WOR/24	" DS -	14"	
	-		Green wet SILT, trace fine	Sand -	S-4	24"	WOR/24	" DS	24"	

		ndl	ing,Inc.	BOR	ING	LOC	<u>जे</u>	ORING N		P-2	2
PROJE	:C1		Seagirt Marine Term	inal Channel			P	ROJECT	no. -1122-1	0	PAGE
			Stagilt Warme Term	mai Chamei			SAMPLE		-1122-1		2
DEРТН (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION	4	SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/ RQD (%)		SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 35 -			Green wet SILT, trac	e fine Sand	S-5	24"	WOR/2	24"	DS	24"	
				-	S-6	24"	WOR/2	24"	DS -	24"	
				-	S-7	24"	WOR/2	24"	DS -	24"	
- 40 -				-	S-8	24"	WOR/2	24"	DS -	24"	
	-42		Green wet SILT, trace trace Clay	e fine Sand,	S-9	24"	WOR/1 WOI		DS -	24"	_
- 45 -	_		trace oray		S-10	24"	WOH/2	24"	DS -	24"	
	-46.5		Brown wet Silty fine to	o coarse	S-11	24"	1-2-0-	-1	DS -	24"	
	-		SAND, little to some	Gravel _	S-12	24"	1-0-1-	-0	DS -	10"	
- 50 -	<b>-</b> -				S-13	24"	2-2-2-	-2	DS -	18"	
	-53		D	OAND.	S-14	24"	2-1-3-	-3	DS -	8"	
- 55 -	<del>-</del>		Brown wet fine to coa and GRAVEL, trace \$		S-15	24"	2-3-3-	-2	DS -	12"	
	-			-	S-16	24"	3-3-4-	-4	DS -	12"	
	-			7	S-17	24"	4-7-12-	-14	DS -	16"	
- 60 -	 -				S-18	24"	4-7-10-	-13	DS -	20"	-
	_		Bottom of Boring at 6	2.0.6	S-19	24"	13-22-26	6-24	DS -	22"	
- 65 -			bottom of Boring at 6	-3.0 π					-	_	
	-			-					-		
	-								-		
- 70 -	-			_					_		
	<b>→</b>			_					-	<u> </u> 	
	_								-	]   	
- 75 -	_ 								-		

	<u> :</u>		Findling,Inc			•		<del>"</del>	BOR	IN(	G LOG
PROJE	СТ				1000			PROJEC	CT NO.		BORING NO.
LOCAT	101		Seagirt Marine Terminal Cl	nannel					07-1122 <b>-</b> 10	)	P-3
LUCAI		D	des I and Disc	BEGUN	11.440		MPLETER		HOLE SIZE		GROUND ELEVATION
COOR	DINATES	ee Boi	ring Location Plan	DEPTH V	/14/12 VATER ENC	. AT	06/14/ END DRII	12 .L	7" AT 24 HRS		0.0 MLLW CAVED DEPTH
	E: 1.	441,8	50.08, N: 574,594.76		N/A OF HAMME					L	N/A
DRILLE	R					R HE			N/A	RE	BORING DEPTH (FT)
TYPE (	OF DRILL F	IG & M	D. Fincham ETHOD	DEPTH T	10 LB O ROCK	LO	30" GGED BY		N/A		64.2 PAGE NO.
CN	/IE-75 (fi	om a l	Barge) & HSA, ASTM 1586		N/A				aris		1
							SAMP	LE DATA			
DEРТН (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION		SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
0			Water depth at start: = 25.2 ft at 7:18 a.m. Tide = 0.80'	-					-		
- 5 -	- -		Corrected water depth at s 24.4 ft (MLLW)	- tart: = _ -					-		
				-					-		
40	<del>-</del>			-					-		
- 10 -	_			-					-		
	-			-					-		
15 -	_			_					_		
	_			-					-		
- 20 -	<b>-</b>			-					-		
	- - 24.4			- -					-		
- 25 -	<u>- 1.7</u>		Dark gray wet SILT, trace to Sand	fine _	S-1	24"		R/18"- H/4"	DS	20"	
	<u>-</u>			-	S-2	24"	WOF	R/24"	DS	14"	
- 30 -	- 30.2	.:37 #1	Groon wet Sil T trees for		S-3	24"	WOF	R/24"	DS	24"	
	_		Green wet SILT, trace fine	sana _	S-4	24"	WOF	R/24"	DS	18"	
	_				S-5	24"	WOF	R/24"	DS	24"	

		ndl	ing,Inc.	BOR	ING	LOC	<del>}</del>	BORING		P-3	}
PROJE	CT		Seagirt Marine Term	inal Channal				PROJE			PAGE
			Seaght Marme Term	mai Channei			SAMPL	E DATA	07-1122-10	)	2
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTIO	И	SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 35 -			Green wet SILT, trac	e fine Sand _	S-6	24"	WOR	/24"	DS -	24"	
					S-7	24"	WOR	/24"	DS -	24"	
- 40 -				-	S-8	24"	WOR	/24"	DS -	24"	
	_			-	S-9	24"	WOR	/24"	DS	24"	
				-	S-10	24"	WOR		DS	24"	
- 45 -	_ -46.2		Cross wat Old T. too.	- 4- 1:441-	S-11	24"	WOR.		DS -	24"	
	<u>-48.2</u>		Green wet SILT, trac Clay, trace fine Sand Brown wet fine to coa	-	S-12	24"	WOH/	18"-1	DS -	24"	
- 50 -	-		and GRAVEL, little S		S-13	24"	1-4-4	4-9	DS -	8"	
	-51.2		Light brown, gray we coarse SAND, little S		S-14	24"	6-4-6	6-7	DS -	15"	
	54.2		little Gravel Light grey wet SILT,	-	S-15	24"	1-1-	1-3	DS -	14"	
- 55 -	- -		Sand	race line _	S-16	24"	WOH	/24"	DS	22"	
	-57.7 -		Brown wet fine to coa		S-17	24"	WOH/1	8"-13	D\$ -	5"	
- 60 -	- 		and GRAVEL, trace t	o little Silt -	S-18	24"	4-4-4	4-5	DS _	5"	
	_			-	S-19	24"	4-5-		DS	10"	
- 65 -			Bottom of Boring at 6		S-20	24"	5-6-	7-6	DS -	16"	
- 65			•	-							
	_			- -					- -		
- 70 -	<b>-</b>			<u>-</u>					<u>-</u>		
	- -			-							
- 75 -	-			-							
	-			-					-		

			Findling,Inc	7 .					BOR	INC	G LOG
PROJE			Seagirt Marine Terminal C	hannel			I	PROJEC	OT NO. 07-1122-10		BORING NO. P-4
LOCAT				BEGUN			/PLETED	1	HOLE SIZE	· · · · · · · · · · · · · · · · · · ·	GROUND ELEVATION
COORE	S SINATES	ee Bo	ring Location Plan	DEPTH V	/14/12 VATER ENG	C. AT E	06/14/1 ND DRIL	12 L	7" AT 24 HRS		0.0 MLLW CAVED DEPTH
	E: 1,	441,7	67.30, N: 574,157.27		N/A		N/A		N/A TYPE OF CO		N/A BORING DEPTH (FT)
DRILLE		1	D. Finaham		OF HAMME	ER  HEIO	3HT OF F	ALL			
TYPE C	F DRILL R	IG & M	D. Fincham ETHOD	DEPTH T	40 LB O ROCK	LOG	30" GED BY:		N/A		64.1 PAGE NO.
CM	1E-75 (fir	om a l	Barge) & HSA, ASTM 1586		N/A				aris		1
DEРТН (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION		SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
0	-		Water depth at start: = 42.3 ft at 10:54 a.m. Tide = 0.87'	-					-		
- 5 -			Corrected water depth at s 41.4 ft (MLLW)	start: =					WARRANGE STORY AND A STORY AND		
- 10 -				-					-		
- 15 -	_			- - - -					-		
- 20 -				- - - -					-		
- 25 -				-  					-		
- 30 -	- - -			- - - -					-		
	-								_		

		ndl	ing,Inc.	BOR	ING	LOC	BC	PRING NO.	P-4	4
PROJE	CT		Seagirt Marine Term	inal Channel			PR	OJECT NO. 07-1122-1	۸	PAGE
		ڻ ق	Seaght Warme Term	·			SAMPLE C			2
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTIO	И	SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/ RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 35 -			Water					-	-	
- 40 -	- 41.4 -		Dark gray wet SILT,	trace fine				-		
	- -44.6		Sand	-	S-1	24"	WOR/2	4" DS	6"	
- 45 -	-		Green to brown wet S fine Sand, trace Clay		S-2	24"	WOR/2	4" DS	14"	
	-			-	S-3	24"	WOR/2	4" DS	20"	
- 50 -	49.1 _		Gray brown wet SILT sand, with layers silty		S-4	24"	WOH/2	4" DS	24"	
	- 52.1	,,	Brown with grey mois		S-5	24"	WOH/18	"-3 DS	20"	
	-53.6 -54.1		Clay, trace fine to me	edium Sand, ¯ s	S-6	24"	WOH/18	"-6 DS	20"	
- 55 -	- - - =7 1		Green wet Silty fine to SAND  Brown wet fine to coa		S-7	24"	WOH/2		9"	
	<u>_</u> -57.1	1.65 a.u. 1.65 a.u. 1.65 a.u. 1.65 a.u. 1.65 a.u.	່ trace Silt ∖Brown and green wet	Ţ	S-8	24"	WOH/12' 4	'- ³⁻ DS	20"	
- 60 -	- - 61.1		medium SAND Brown with green, grecoarse SAND, trace to		S-9	24"	1-1-2-4	DS	10"	
	0 1.1		Brown moist SILT, litt fine Sand, little Clay,	lle to some	S-10	24"	2-2-3-3	B DS	16"	
	_		silty fine Sand  Bottom of Boring at 6	4.1 ft	S-11	24"	2-2-3-3	B DS	18"	
- 65 -	_		<b></b>	- - -						
- 70 -	_			- - -				-	1	
	~			- - -						
- 75 -	-									

	<del>"</del>		Findling,Inc	1	***************************************				BOR	INC	G LOG
PROJE	CT							PROJEC	T NO.		BORING NO.
			Seagirt Marine Terminal C	hannel			-	4	07-1122-10	ì	P-5
LOCAT	ION			BEGUN		COM	APLETEC	)	07-1122-10 HOLE SIZE	<u></u>	GROUND ELEVATION
COOD	S DINATES	ee Bo	ring Location Plan	06	/14/12		06/14/	12	7"		0.0 MLLW CAVED DEPTH
COOK			<b>0</b> < 0 < 3 < <b>0</b> = 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0		VATER ENC	İ	ND DRII		AT 24 HRS		
DRILLE	E: 1.	,441,6	26.96, N: 573,901.61	WEIGHT	N/A Of HAMME	R HEI	N/A SHT OF	FALL	N/A TYPE OF CO	ORF	N/A BORING DEPTH (FT)
		]	D. Fincham ETHOD		40 LB		30"		N/A		63.6
TYPE (	OF DRILL F	RIG & MI	ETHOD	DEPTH T	O ROCK	LOG	GED BY	:			PAGE NO.
CN	<u>/IE-75 (fi</u>	om a	Barge) & HSA, ASTM 1586		N/A				aris		1
		g					SAMP	LE DATA			****
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION		SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
0			Water depth at start: = 44.8 ft at 1:03 p.m. Tide = 1.40'	- - -				***************************************	-		
- 5 -			Corrected water depth at s 43.4 ft (MLLW)	tart: = __ - -							
	 			-							
- 10 -	_			- -					-		
- 15 -				- - -					- -		
				-					-		
- 20 -	- - -			- - -					- - -		
- 25 -	-			-					-		
				- - -					-		
- 30 -	-			- - -	-						
	-			-					_		

		ndl	ing,Inc.	BOR	ING	LOC	i i	BORING		P-5	5
PROJE	CI		Seagirt Marine Term	inal Channel				PROJEC	CT NO. 07-1122-10	```	PAGE
		,,,	Scagni Warme Term	шаг Спанцег			SAMPL	E DATA	J/-1122-10		2
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION	ń	SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 35 -	_		Water								
	_			_					-		
	_			- -					-		
- 40 -	_			-					- -		4 5 1 2 2 3
	<u>.</u>			~					-		
	43.4 -		Green to brown wet S	SILT, trace to-							
- 45 -	<b></b>		little fine Sand		S-1	24"	WOR	/24"	DS _	18"	
				_	S-2	24"	WOR	/24"	DS _	20"	
	-48.6 -	931 <u>5</u> (1)	Green with brown, gr	ey moist -	S-3	24"	WOR/		DS _	24"	
- 50 -	 ~-51.6		SILT, some fine Sand with layers of fine San	i, trace Clay⊥ nd _	S-4	24"	2-1-	4-3	DS ]	15"	
	-		Brown and green wet fine to medium Sand	SILT, little - trace Clay -	S-5	24"	WOH	/24"	DS	24"	
- 55 -	-54.6 - <u>55.6</u>		Brown moist Silty CL	AY, little fine	S-6	24"	WOH/	18"-2	DS _	24"	
	-56.1 -		Sand Brown ans green wet SAND	Silty fine	S-7	24"	2-1-	1-2	DS _	12"	
	_		Brown, green, grey to fine to coarse SAND,		S-8	24"	WOH/ 0-		DS	6"	
- 60 -	-		Silt	-	S-9	24"	WOR WOI		DS _	7"	
				~	S-10	24"	1-1-	1-2	DS ]	18"	
- 65 -	_		Bottom of Boring at 6	3.6 ft -					_		
	- -			-					-		
	-			-					-		
- 70 -	_								_		
	_	ļ		1					-		
	-			-					-		
- 75 -									_		

			Findling,Inc	· · · · · · · · · · · · · · · · · · ·				BOR	INC	G LOG
PROJE	CT				*****		PROJE	CT NO.	110	BORING NO.
LOCAT	ION		Seagirt Marine Terminal C	hannel  BEGUN	W	СОМЕ	PLETED	07-1122-10  HOLE SIZE	•	P-6 GROUND ELEVATION
0000	S	ee Bo	ring Location Plan	06	/15/12 VATER ENC	l	06/15/12 ID DRILL	7"		0.0 MLLW
COORI	DINATES E-1	441.5	70.87, N: 573,792.06			. AT EN		AT 24 HRS		CAVED DEPTH
DRILLE	R			WEIGHT	N/A OF HAMME	R HEIGH	N/A IT OF FALL	N/A TYPE OF CO	RE	N/A BORING DEPTH (FT)
TYPE C	OF DRILL F	IG & M	D. Fincham ETHOD	140 LB COMPANY LOGGED			30" ED BY:	N/A		62.7 PAGE NO.
CN	Æ-75 (fi	.75 (from a Barge) & HSA, ASTM 1586 N/A					S.	Faris		1
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION		SAMPLE NO,	SAMPLE LENGTH (in)	N-VALUE/ RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
0	-		Water depth at start: = 45.5 ft at 08:00 a.m. Tide = 2.33'  Corrected water depth at s	- - start: =				-	1	
- 5 -	<b>-</b>		43.2 ft (MLLW)	- - -				-		
- 10 -	-			- - -						
- 15 -	- -			- - -						
- 20 -	-			-				-		
	_			- - -				-		
- 25 -	~			-	-			-		
- 30 -	- -			- - -		NAMES OF THE PARTY		-		
	_			-				_		

		ndl	ing,Inc.	BOR	ING	LOC	BC	ORING NO.	P-6	
PROJE	CT						PF	ROJECT NO.		PAGE
	T	<u> </u>	Seagirt Marine Term	inal Channel			SAMPLE [	07-1122-1	0	2
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHICLOG	DESCRIPTION	<b>i</b>	SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/ RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 35 -			Water					_		
- 40 -	-43.2			- - - -		er er de d'an de dinteren		-	-	
15			Dark grey to green we fine Sand, trace Clay	et SILT, trace	S-1	18"	WOR/1	8" DS	10"	
- 45 -				-	S-2	24"	WOR/2	4" DS	24"	
	-47.7		Brown wet fine to coa		S-3	24"	WOR/6" 5-7	-2- DS	18"	
- 50 -	_		and ord week, mad of		S-4	24"	4-6-8-8	B DS	14"	
	-			•	S-5	24"	6-5-5-6	B DS	20"	
	- 55.2			-	S-6	24"	12-12-8		16"	
- 55 -	-56	ИK	Brown wet fine to coa	rse SAND	S-7	9"	7-100/3	B" DS -	9"	Cemented Sand layer noted at
	_	7	and Cemented Sand little Silt Brown wet fine to coa		S-8	24"	1-1-5-	5 DS	7"	55.2'
- 60 -			trace to little Silt		S-9	24"	2-3-4-5	5 DS	12"	
	-				S-10	24"	4-5-3-4	4 DS	6"	
	-		Bottom of Boring at 6	2.7'						
- 65 -	_			<u> </u>				-		
				-					-	
- 70 -	- -			<u>-</u>				-	-	
	-			-						
	_			-						
- 75 -	_			-		:				

			Findling,Inc	•					BOR	INC	G LOG
PROJEC	CT							PROJEC	T NO.		BORING NO.
			Seagirt Marine Terminal Cl	hannel			-		07-1122-10	<b>;</b>	P-7
LOCATION	ON		1000	BEGUN		COM	1PLETED	)	07-1122-10 HOLE SIZE		GROUND ELEVATION
COORDI	S INATES	ee Boi	ring Location Plan	06.	/18/12 VATER ENC	AT 1	06/18/ ND DRIL	12	7"		0.0 MLLW CAVED DEPTH
COOKD		441.0	72 00 N. 572 527 11						AT 24 HRS		
DRILLEF	E; 1,	441,3	73.88, N: 573,536.11	WEIGHT	N/A Of Hamme	R HEIG	N/A SHT OF E	FALL	N/A	RE	N/A BORING DEPTH (FT)
		I	D. Fincham ETHOD	14	10 LB		30"		N/A		63.2
TYPE O	F DRILL R	IG & MI	ETHOD	DEPTH T	O ROCK	LOG	GED BY	:	~ ~ ~ ~ ~		PAGE NO.
<u>CM</u>	E-75 (fr	om a l	Barge) & HSA, ASTM 1586	]	N/A				aris		1
		8					SAMP	LE DATA			
DEPTF	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION		SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
0	-		Water depth at start: = 49.8 ft at 7:44 a.m. Tide = 1.82'	_					-		
			Corrected water depth at s 48.0 ft (MLLW)	tart: =					-		
5 +			, ,	_					-		
				-	:				-		
				-	:				-		
10	-			_					_		
<b>_</b>				-							
				_					-		
				_					-		
15 🕇	-			-					_		
				-							
				~							
$\prod$				_					_		
20	-										
				-					-		
				-					-		
				-					-		
				-					-		
25	-			-							
				=							
				-							
				~							
· 30 +	-			_					_		
-				=					-		
$\rightarrow$				-					-		
$\dashv$				~					-		

		ndli	ing,Inc.	BOR	ING	LOC	7	BORING		P-7	
PROJE	CT		Seagirt Marine Term	inal Channal		·		PROJE			PAGE
		(5	Scagnt Marme Term	mai Chamiei			SAMPI	E DATA	07-1122-10		2
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION	N	SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 35 -				-					-		
- 40 -	- -			- - -					_		
- 45 -	-			- -					- - <u>-</u>		-
	-48		Green wet SILT, little fine Sand	Clay, trace					- -		
- 50 -	_ 51.2		mic dallu	_	S-1	24"	WOF	2/24"	DS -	24"	
	-		Brown, gray to brown to coarse SAND and	wet Silty fine GRAVEL	S-2	24"	3-3-	5-5	DS	10"	
- 55 -	_			-	S-3	24"	6-4-	4-6	DS _	10"	
	-56.7		Brown with grey wet	fine to coarse	S-4	24"	6-7-	7-2	DS	8"	
			SAND. little to trace t trace Gravel	o little Silt,    - -	S-5	24"	1-0-	1-3	DS	5"	
60 -	-			_	S-6	24"	1-3-	3-4	DS	18"	
	-		Pottom of Positive of O	204	S-7	24"	4-5-	5-5	DS -	20"	
- 65 -	- - -		Bottom of Boring at 6								
- 70 -				- - - -							
- 75 -	_								-		

		1111	Findling,Inc	***				BOR	INC	G LOG
PROJECT							PROJE	CT NO.		BORING NO.
LOCATION	1		Seagirt Marine Terminal Cl	hannel		1		07-1122-10  HOLE SIZE	)	P-8
LOCATION		. D	des I section Disc	BEGUN	210/10					GROUND ELEVATION
COORDINA	ATES	e Bor	ing Location Plan	DEPTH V	/18/12 VATER ENC	. AT E	06/18/12 END DRILL	7" AT 24 HRS		0.0 MLLW CAVED DEPTH
	E: 1,4	42,1	10.83, N: 573,430.53		N/A		N/A 3HT OF FALL	N/A	<b>L</b>	N/A
DRILLER			\ F'   1	1		R HEI		TYPE OF CO		BORING DEPTH (FT)
TYPE OF D	ORILL RIC	1 3 & ME	D. Fincham ETHOD	140 LB DEPTH TO ROCK LOGGED			30" GED BY:	N/A	ι	62.4 PAGE NO.
CME-	75 (fro	m a I	Barge) & HSA, ASTM 1586		N/A		S. I	aris	1	
		ğ					SAMPLE DATA	A		
ELI	RATA E./ EPTH	GRAPHICLOG	DESCRIPTION		SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/ RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 10 -			Water depth at start: = 32.0 ft at 9:30 a.m. Tide = 2.59'  Corrected water depth at s 29.4 ft (MLLW)	start: =					<u>α</u>	
25 -				 - -				-		
-2	29.4							_		
30 -			Dark grey wet SILT, trace to Sand	fine _				_		
-3	31.4		Green wet SILT, trace fine	Sand -	S-1	24"	WOR/24"	DS	24"	
					S-2	24"	WOR/24"	DS	24"	

		ndl	ing,Inc.	BOR	ING	LOC	7	BORING	3 NO.	P-8	
PROJE	CT		Seagirt Marine Term	ninal Channel				PROJE	CT NO. 07-1122-10		PAGE
		b	Seaght Warme Term	mai Chamei			SAMPL	E DATA			2
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTIO	N	SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 35	-			-	S-3	24"	WOR	2/24"	DS	24"	
	-37.9		Grey, brown wet fine	to coarse	S-4	24"	WOR/	18"-1	DS	20"	
- 40 -		6 (444); 1 (144); 1 (144); 1 (144);	SAND with trace to li gravel	ttle silt, some	S-5	24"	1-2-	2-2	DS	11"	
		100000 11111111 14111111 141111111		-	S-6	24"	2-2-	4-4	DS -	13"	
		( 6690); 1.0177. ( 11164) 1.6137.		-	S-7	24"	4-3-	1-1	DS	14"	
45 -	- -46.4				S-8	24"	WOH	1/24"	DS	3"	
			Grey brown wet Silty little fine to medium S	CLAY with - Sand	S-9	24"	WOH/	18"-1	DS	14"	
- 50 -	- 50.4			_	S-10	24"	WOR/ 3-1		DS _	20"	
	-52.4		Grey brown wet SAN trace Gravel	_	S-11	24"	1-2-	5-7	DS	20"	
	-		Brown wet fine to coa and GRAVEL, little S		S-12	24"	5-2-	5-8	DS	14"	
- 55 -	<u> </u>			-	S-13	24"	7-13-	12-9	DS _	16"	
	_			-	S-14	24"	8-4-	5-4	DS	14"	
- 60 -	-59.9		Red wet fine to medic	um SAND,	S-15	24"	3-3-	2-2	DS _	15"	
			little Silt  Bottom of Boring at 6	- -	S-16	24"	1-2-	3-3	DS	10"	
- 65 -			bottom of boning at o	72.411					<del>-</del>		
00 -	-			<u>-</u> -					_		
	_			-					-		
- 70 -	_								-		1
	-			]					~ ~		
- 75 -	-								- -		
				-							

		•	Findling,Inc						BOR	INC	G LOG
PROJE			Seagirt Marine Terminal C	hannel				ROJECT			BORING NO.
LOCAT		ee Boi	ring Location Plan	BEGUN 06 DEPTH V	/18/12 VATER ENC		MPLETED 06/18/12 END DRILL	<u> </u>	7-1122-10 HOLE SIZE 7" AT 24 HRS		GROUND ELEVATION  0.0 MLLW CAVED DEPTH
DRILLE	E: 1.		42.53, N: 573,101.88	1	N/A OF HAMME		N/A GHT OF FA		N/A YPE OF CO	) PRE	N/A BORING DEPTH (FT)
	OF DRILL F	RIG & MI	D. Fincham ETHOD Barge) & HSA, ASTM 1586	DEPTH T	40 LB o rock N/A	LOG	30" GGED BY:	S. Fa	N/A ris		63.2 PAGE NO.
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION	•	SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/ ROD (%)	DATA	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 5 - 10 15 - 20 -			Water depth at start: = 27.0 ft at 12:50 p.m. Tide = 1.77'  Corrected water depth at s 25.2 ft (MLLW)	- start: =						Д	
- 25 -	25.2		Dark grey wet SILT, trace Sand	fine	S-1	24"	WOR/	24"		15"	
	-27.7 - -		Green wet SILT, trace fine	Sand -	S-2	24"	WOR/	24"	DS	24"	
- 30 -	_			-	S-3	24"	WOR/	24"	DS -	20"	
					S-4	24"	WOR/	24"	DS -	18"	

		indl	ing,Inc.	BOR	ING :	LOC	<del>}</del>	BORING		P-9	)
PROJE	:C1		Seagirt Marine Term	inal Channel				PROJE	ст но. 07-1122-10		PAGE 2
		0		***************************************			SAMPL	E DATA			
DЕРТН (ft)	STRATA ELE./ DEPTH	GRAPHICLOG	DESCRIPTIO		SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 35 -			Green wet SILT, trac	e fine Sand	S-5	24"	WOR	1/24"	DS _	24"	
					S-6	24"	WOR	2/24"	DS 1	10"	
	-38.2		Green wet SILT, trac	e clay, trace _	S-7	24"	WOR	1/24" ——	DS -	24"	
- 40 -			iiie saliu	_	S-8	24"	WOR WOH		DS -	24"	
	-42.7 -43.2		$_{\gamma}$ Gray wet fine to coar	se SAND,	S-9	24"	WOR/	12"-1-	DS -	22"	
- 45 -	45.2		\some Gravel, little Si Brown wet Silty fine t \SAND, trace Shells		S-10	24"	WOH	1/24"	DS -	24"	
	<u>.</u>	140 mil 140 mil 140 mil	Brown with grey wet SAND, some Gravel,		S-11	24"	1-1-	1-3	DS -	9"	
	·			-	S-12	24"	3-4-	5-6	DS -	14"	
50 -		1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1		_	S-13	24"	3-2-	3-4	DS -	6"	
	<u>-52.2</u>		Brown wet Silty fine t	o coarse	S-14	24"	3-3-	3-4	DS -	13"	
- 55 -	<u> </u>		ON THE GREAT CHANGE	-	S-15	24"	3-3-	2-4	DS -	7"	
	<del> </del>  -			-	S-16	24"	4-3-	3-4	DS -	10"	
	<del> </del>  -			-	S-17	24"	4-5-	2-2	DS -	6"	
- 60 -	_			_	S-18	24"	2-3-	2-1	DS -	8"	
	<u> </u>				S-19		2-3-3	3-3	DS	9"	
			Bottom of Boring at 6	3.2 ft					_		
- 65 -	<b>-</b> -			_					-		
	-			_					-		
- 70 -	- -			_					- -		
	<u>-</u>			<del>-</del>					-		
	<u>.</u>			_					<b>-</b>		
- 75 -	_			_					-		

			Findling,Inc	; <b>.</b>				BOR	INC	G LOG
PROJE	СТ		Consideration of the control of the	1			PRO	JECT NO.		BORING NO.
LOCAT	ION		Seagirt Marine Terminal C	hannel BEGUN		CON	//PLETED	07-1122-10 HOLE SIZE	)	P-10 GROUND ELEVATION
	S	ee Boi	ring Location Plan	6/	21/12		6/21/12	7"		1
COORI	DINATES			DEPTH V	/21/12 VATER ENG	AT E	END DRILL	AT 24 HRS		0.0 MLLW CAVED DEPTH
DRILLE	E: 1.	,442,0	31.38, N: 573,270.27	WEIGHT	Dry N/A			N/A	1	N/A BORING DEPTH (FT)
DINICLL	-IX				WEIGHT OF HAMMER HEIGHT OF					
TYPE (	OF DRILL F	L RIG & METHOD DEP			40 lbs o rock	LOG	30" GED BY:	N/A	1	PAGE NO.
CN	/IE-75 (fi	om a l	Barge) & HSA, ASTM 1586 N/A			S	. Faris		1	
				***************************************		1	SAMPLE DA			
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION		SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/ RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
0	_		Water depth at start: = 27.6 ft at 7:19 a.m. Tide = 2.00'	-				-		
5 -			Corrected water depth at s 25.6 ft (MLLW)	start: = _ - -				-		
10 -	- - -			-				-		
				- - -				-		
15 -	-			- - -				-	-	
20 -	- -			- - -				-	-	
	-			_						
	-			_						
25 -	-25.6	[]] <u>]</u> ]]]]	Dode exercised OUT 1				MODIA	_		
	-		Dark grey wet SILT, trace Sand	ııne -	S-1	16.8"	WOR/12 WOR/5		16"	
	-			-	S-2	24"	WOR/24	DS -	24"	
30 -	-30 -		Green wet SILT, trace fine	Sand	S-3	24"	WOR/24	DS -	24"	
	<del>-</del>			-	S-4	24"	WOR/24	DS ·	24"	

		ndli	ing,Inc.	BOR	ING	LOC	<del>,</del>	BORING		P-1	0
PROJE	СТ		Seagirt Marine Term	inal Channel		770000	F	PROJE	CT NO. 07-1122-1	0	PAGE
			Scagne Marine Term				SAMPLE		J/-1122-1		2
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTIO	N	SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	ACD (78)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 35 -	_	MIN	Green wet SILT, trac	e fine Sand	S-5	24"	WOR	24"	DS	24"	
	-				S-6	24"	WOR	/24"	DS	24"	
	-38		Green wet SILT, trac Clay, trace fine Sand		S-7	24"	WOR	/24"	DS	24"	
- 40 -	-		Clay, trace line Sand	' _ -	S-8	24"	WOH/1 2	2"-2-	DS -	24"	
	-42.5 -		Brown and grey wet t		S-9	24"	1-1-1	-2	DS	- 24"	
- 45 -	- 40		SAND, trace Gravel,	little SILT _	S-10	24"	5-2-1	-1	DS	5"	
	-46		Brown, grey, black w SAND, trace Silt	et fine coarse	S-11	24"	1-2-2	2-2	DS	8"	
	-48 -		Brown with grey to br	ND, trace Silt  own with grey to brown wet fine arse SAND and GRAVEL, trace		24"	1-1-3	-3-4 DS - 1	14"		
- 50 -	-		Silt	· -	S-13	24"	4-5-8	3-7	DS -	12"	
	-			-	S-14	24"	5-5-5	5-6	DS	8"	,
- 55 -	<u>-</u>			_	S-15	24"	2-3-3	3-2	DS	- 8"	
	-			-	S-16	24"	3-4-5	5-4	DS	7"	
	_			-	S-17	24"	4-5-7	'-7	DS	12"	
- 60 -	<b>-</b>			 -	S-18	24"	4-5-4	I-3 ———	DS -	10"	
	_		Bottom of Boring at 6	33.0 ft	S-19	24"	3-4-5	5-4	DS	12"	
- 65 -	- -										
- 70 -	- -			-						-	
- 75 -	- -			- - -					_		
75	_								-		

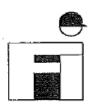
			Findling,Inc						BOR	INC	G LOG
PROJE	СТ						PF	ROJEC	T NO.		BORING NO.
LOCAT	ION		Seagirt Marine Terminal C	nannel				(	07-1122-10 HOLE SIZE	l	P-11
LOCAI		Б		BEGUN	(0.4.(4.0	COV	MPLETED				GROUND ELEVATION
COOR	SINATES	ee Boi	ring Location Plan	06/21/12 06/ DEPTH WATER ENC. AT END		06/21/12 END DRILL	2	7" AT 24 HRS		0.0 MLLW CAVED DEPTH	
	E: 1,	,441,7	81.84, N: 572,823.85		N/A		N/A	A N/A		ı	
DRILLE	R			WEIGHT OF HAMMER HEIGHT OF FA		LL	TYPE OF CO	RE	N/A BORING DEPTH (FT)		
TYPE (	F DRILL F	I RIG & MI	D. Fincham ETHOD	DEPTH T	40 lb O ROCK	LOG	30" LOGGED BY:		N/A		63.3 PAGE NO.
CN	1E-75 (fi	om a l	Barge) & HSA, ASTM 1586		N/A			S. F	aris		1
::				•			SAMPLE		******		
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION		SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/ ROD (%)	(a) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
0	-		Water depth at start: = 28.1 ft at 11:00 a.m. Tide = 1.70'	-					-		
- 5 -	- - -		Corrected water depth at s 26.4 ft (MLLW)	- tart: = _ -					- -		
	-								-		
- 10 -	- <b>-</b>			-					-		
	-			- - -							
- 15 -	- -			-					- -		
				-					-		
- 20 -	- - -			- - -							
	- -			-					-		
- 25 -	- - 26.4			- -					-		
	-		Dark grey wet SILT, trace Sand, trace Shells	fine -	S-1	24"	WOR/	24"	DS -	24"	
- 30 -	<u>30.3</u>		Green wet SILT, trace fine	Sand .	S-2	24"	WOR/	24"	DS -	24"	
	-			-	S-3	24"	WOR/	24"	DS	24"	

	Fi	ndli	ing,Inc.	BOR	ING I	LOC	J E	BORING	S NO.	P-1	1
PROJE	CT						F	PROJEC		·	PAGE
			Seagirt Marine Term	inal Channel			SAMPLE		)7 <del>-</del> 1122-10	) ]	2
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHICLOG	DESCRIPTION	И	SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/		SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 35 -	_		Green wet SILT, trac	e fine Sand	S-4	24"	WOR	/24"	DS	24"	
				-	S-5	24	WOR	/24"	DS -	24"	
				-	S-6	24	WOR	/24"	DS -	24"	
40 -	-				S-7	24	WOR	/24"	DS -	24"	
	- -			-	S-8	24	WOR		DS -	16"	
- 45				_	S-9	24	WOR/ WOH		DS _	24"	
	47.3		Creen wat Oil T trace	- -	S-10	24	WOR	/24"	DS	24"	
	-48.8		Green wet SILT, trac Sand Grey with brown wet		S-11	24	WOH/1	18"-3	DS -	20"	Cemented Sand
- 50 -	<u></u> 50.3		coarse SAND, trace Sand Fragments	Cemented	S-12	24	7-8-5	5-4	DS -	5"	fragments noted in Sample No.
			Brown with grey to be fine to coarse SAND GRAVEL		S-13	24	5-6-7	7-9	DS	7"	12
- 55 -				 	S-14	24	4-5-6	6-6	DS -	12"	
				-	S-15	24	8-8-7	7-6	DS	15"	
				-	S-16	24	5-5-4	1-4	DS	15"	
- 60 -				-	S-17	24	3-2-2		DS -	8"	
					S-18	24	4-9-4	1-3	DS	10"	
- 65 ·			Bottom of Boring at 6	33.3 ft _							
									-		
				- -					-	-	
- 70 ·	-			<u>-</u>							
				-					-	-	
- 75	†			-					-	-	

			Findling,Inc	, E				BOR	INC	G LOG
PROJE	CT						PROJI	ECT NO.		BORING NO.
			Seagirt Marine Terminal C	hannel				07-1122-10  HOLE SIZE	•	P-12
LOCAT				BEGUN			PLETED		1 11111	GROUND ELEVATION
COOR	SINATES	ee Bor	ring Location Plan	DEPTH W	22/12 VATER ENC	. AT EN	6/22/12 ND DRILL	7" AT 24 HRS		0.0 MLLW CAVED DEPTH
	E: 1,	441,3	75.75, N: 572,214.77		N/A		N/A	N/A		N/A
DRILLE	R			WEIGHT	of Hamme	R HEIGI	HT OF FALL	TYPE OF CO	RE	BORING DEPTH (FT)
TYPE (	OF DRILL R	IG & MI	D. Fincham ETHOD	DEPTH T	40 lb O ROCK	LOGG	30" SED BY:	N/A		63 PAGE NO.
			Barge) & HSA, ASTM 1586		N/A			Faris		1
							SAMPLE DA			
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHICLOG	DESCRIPTION		SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/ RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
0	_		Water depth at start: = 39.0 ft at 7:55 a.m. Tide = 2.00'	- - -				-		
- 5 -	<b></b>		Corrected water depth at s 37.0 ft (MLLW)	start: = _ -				-		
	_			-				-		
- 10 -	<b></b>			- - -				-		
- 15 -	- -			- -				-		
	<del>-</del>							-	annous property and a second	
- 20 -				- - -						
- 25 -	-							-		
	-			- -						
- 30 -	<b>-</b>			-				-		
	<del>-</del>							-		

		ndl	ing,Inc.	BOR	ING :	LOC	Ì	BORING		P-12	2
PROJE	СТ		Seagirt Marine Term	inal Channel				PROJE	CT NO. 07-1122-1(	- 1	PAGE 2
		(2)					SAMPL	E DATA			
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION	4	SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 35			Water						_		
	-37		Green wet SILT, trac trace Gravel	e fine Sand,	S-1	24"	WOF	2/24"	DS -	8"	
- 40 ·	<u></u>			_	S-2	24"	WOF	R/24"	DS -	24"	
				-	S-3	24"	WOF	R/24"	DS -	20"	
- 45 ·	_			- -	S-4	24"	WOF	₹/24"	DS -	24"	
	<u>-</u>				S-5	24"	WOF	R/24"	DS -	24"	
					S-6	24"	WOF	R/24"	DS -	20"	
- 50 -				-	S-7	24"	WOF		DS -	24"	
	-			-	S-8	24"	WOF		DS -	20"	
- 55 -					S-9	24"	WOF		DS -	24"	
	-57		Green with brown we	t SILT, trace	S-10	24"	WOF		DS -	24"	
00			to little Clay, fine San	d -	S-11	24"	WOF	•	DS -	24"	
- 60 -	<u></u>			<del>-</del>	S-12	24"	WOF		DS -	24"	
			Bottom of Boring at 6	3.0 ft	S-13	24"	WOH	1/24"	DS -	24"	
- 65 ·									-		
	_			-					-		
- 70 -	_	Topologica de la constitución de		_					<u>-</u>		
	+	***************************************		_					-		
	†			-							<u> </u>
- 75 ·	<del> </del>			_					-		

			Findling,Inc						BOR	INC	GLOG
PROJE	ECT							PROJEC			BORING NO.
			Seagirt Marine Terminal C	hannel					07 <b>-</b> 1122-10	Į.	P-13
LOCA	TION			BEGUN		COM	<b>MPLETED</b>		07-1122-10 HOLE SIZE		GROUND ELEVATION
COOR	S DINATES	ee Bo	ring Location Plan	6/ DEPTH V	6/22/12 6/22/1 DEPTH WATER ENC. AT END DRIL			ILL AT 24 HRS			0.0 MLLW CAVED DEPTH
DRILLI	E: 1	,441,3	00.25, N: 571,576.99	MEIOUT	N/A OF HAMME		N/A	A N/ FALL TYPE OF C			N/A BORING DEPTH (FT)
DIGIEC	-11	1	D. Fincham	]		K HEIG		ALL			
TYPE	OF DRILL F	RIG & M	ETHOD	DEPTH T	40 lb o rock	LOG	30" GED BY:		N/A		62.9 PAGE NO.
CI	ME-75 (fi	om a	Barge) & HSA, ASTM 1586		N/A			S. F	aris		1
		Ď					SAMPI	E DATA	\		
<b>DEPTH (ft)</b>	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION		SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
0			Water depth at start: = 42.4 ft at 10:36 a.m. Tide = 2.10'	-							
- 5	<u> </u>  -		Corrected water depth at s 40.3 ft (MLLW)	tart: = _ _					_		
	-			-	inch freezisch war and						
				-					-		
- 10 ·	<b>-</b>			_							
				-					-		
- 15 ·									_		
		-		-					-		
- 20 ·	_			-					_		
				-					-		
0.5				-							
- 25 <i>-</i>				: :							
				-					-		
- 30 -	_			_		:					
				-							
	<u> </u>			_							


		ndl	ing,Inc.	BOR	ING	LOC	3	BORING	3 NO.	P-1:	3
PROJE	СТ		Second Marine Town	1 (0) 1				PROJE			PAGE
			Seagirt Marine Term	inal Channel			SAMPL	E DATA	07-1122-10	***	2
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION	1	SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 35			Water	-					-		
- 40 -	40.3		Grey with greet wet S	SILT, trace					_		
	-		Sand		S-1	24"	WOF	R/24"	DS -	24"	
- 45 -	-45.9			- -	S-2	24"	WOF	R/24" ——	DS -	24"	
	_ <del>-40.8</del> -		Green wet SILT, trace	e fine Sand	S-3	24"	WOF	R/24"	DS -	24"	
	-			-	S-4	24"	WOF	R/24"	DS -	18"	
- 50 -	-			-	S-5	24"	WOF	R/24"	DS -	24"	
	-			-	S-6	24"	WOF	R/24"	DS -	24"	
- 55 -				<u>-</u>	S-7	24"	WOF	R/24"	DS -	24"	-
	-			-	S-8	24"	WOR	R/24"	DS -	24"	
	_ -58.9 -		One on house wet Oli		S-9	24"	WOF	R/24"	DS -	24"	
- 60 -	<del>-</del>		Green brown wet SIL fine Sand	.1, τrace Clay, —	S-10	24"	WOF	R/24"	DS -	24"	
	-		Defference of Designation	-	S-11	24"	WOF	R/24"	DS -	24"	
- 65 -	-		Bottom of Boring at 6	- 2.9 π - - -					- - -		
- 70 -	- - -			- - -					- - -	·	
- 75 -	- -			- - -					- - -		
	_			_							

			Findling,Inc						BOR	INC	G LOG
PROJE	СТ							PROJEC	CT NO.		BORING NO.
			Seagirt Marine Terminal Cl	nannel	inel			07-1122-10		)	P-14
LOCAT			-	BEGUN			MPLETED				GROUND ELEVATION
COORE	SINATES	ee Boı	ring Location Plan	DEPTH W	25/12 /ATER ENC	. AT E	6/25/1 END DRIL	. <u>2</u> .L	7" AT 24 HRS		0.0 MLLW CAVED DEPTH
	E: 1,441,821.55, N: 574,321.45				N/A		N/A	N/A N/A			N/A
DRILLE	:R	_		OF HAMME	R HEI		FALL	TYPE OF CO		BORING DEPTH (FT)	
TYPE C	F DRILL R	IG & MI	D. Fincham ETHOD	DEPTH TO	40 lb o rock	LOG	30" GED BY	:	N/A	<u> </u>	63.2 PAGE NO.
CM	1E-75 (fr	om a l	Barge) & HSA, ASTM 1586	]	N/A			S. F	Faris		1
		Ü					SAMP	LE DATA	A		
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHICLOG	DESCRIPTION		SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
0			Water depth at start:						_		
			= 27.7 ft at 7:14 a.m. Tide = 1.80'	_					_		
	_			-					-	_	
	_		Corrected water depth at s 25.9 ft (MLLW)	start: = _					-		
- 5 -	_		20.5 it (WILLVV)	_					_		
	_			-					-	-	
				_							
	_			-					_		
- 10 -	_			_					_		
	_			-					-		
	=			=					-	=	
				_					_		
- 15 -	_			_					_	-	
	_			-					-		
	_			-					-		
	_			-					-	-	
- 20 -				_							
	_			_					_	-	
				-					-	-	
	_			-					-	-	
0.5	_			-					-	1	
- 25 -	-25.9	FIGURE							_		
	_		Dark grey wet SILT, trace Sand	fine							
	_		Sunu	-	S-1	24"	WOF	R/24"	DS	15"	
- 30 -	<del>-</del>			_	S-2	24"	WOF	R/24"	DS -	24"	_
	31.2		Green wet SILT, trace fine	Sand					-		
	_			-	S-3	24"	WOF	R/24"	DS	24"	-

		ndl	ing,Inc.	BOR	ING :	LOG	7	BORING		P-14	
PROJE	СТ							PROJE			PAGE
	1		Seagirt Marine Term	inal Channel			CAMDI	E DATA	07-1122-10	0	2
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHICLOG	DESCRIPTIO!	N	SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/		SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 35 -			Green wet SILT, trac	e fine Sand	S-4	24"	WOF	R/24"	DS _	24"	
	_			-	S-5	24"	WOF	R/24"	DS	24"	
	_			-	S-6	24"	WOF	R/24"	DS -	24"	
- 40 -	-			_	S-7	24"	WOF	R/24"	DS -	24"	
	-43.2			-	S-8	24"	WOF	R/24"	DS	24"	
- 45 -	_		Green with brown we to little Clay, trace fin		S-9	24"	WOF	R/24"	DS -	24"	
	_			_	S-10	24"	WOF	1/24"	DS -	24"	
	-48.2		Brown with grey wet little fine Sand	 Clayey SILT,_	S-11	24"	1-0-	-1-0	DS	24"	
- 50 -	-51.2				S-12	24"	WOF	1/24"	DS -	15"	Cemented Sand
			Brown with grey wet coarse SAND, trace Cemented Sand Frag	Gravel, trace	S-13	24"	1-2-	3-3	DS -	6"	fragments noted in Sample No.
- 55 -	_			- -	S-14	24"	2-1-	2-1	DS -	10"	13,14,15 and 16
	_			-	S-15	24"	1-2-	-1-2	DS -	18"	
	_			<u>-</u>	S-16	24"	1-1-	-2-2	DS -	9"	
- 60 -	60.2 61.2		Reddish brown wet S \medium Sand, trace		S-17	24"	1-1-	2-4	DS -	18"	
			Brown wet Silty fine of SAND, trace Gravel		S-18	24"	3-6-	7-7	DS -	18"	
			Bottom of Boring at 6	3.2 ft -					-		
- 65 -	_			_					-	-	
	+			- -					-	-	
- 70 -	_			- -					- -	-	
	_			- -					-	-	
	+			- -					-	-	
- 75 -	_			_					_	-	

	2 200 20 1		Findling,Inc	*				BOR	INC	G LOG
PROJE			Seagirt Marine Terminal C	hannel				СТ NO. 07-1122-10	)	BORING NO. P-15
LOCAT		ee Boi	ing Location Plan	BEGUN 6/	/22/12 VATER ENC		IPLETED 6/22/12 ND DRILL	07-1122-10 HOLE SIZE 7" AT 24 HRS		GROUND ELEVATION  0.0 MLLW CAVED DEPTH
DRILLE	E: 1,		33.87, N: 576,332.90	WEIGHT	N/A OF HAMME		N/A OHT OF FALL	N/A	N DRE	N/A BORING DEPTH (FT)
	OF DRILL F	RIG & MI		DEPTH T		LOG	30" GED BY:	N/A	1	63.5 PAGE NO.
CN	/1Е-/3 (П	l	Barge) & HSA, ASTM 1586		N/A		S. SAMPLE DA	Faris [A		The state of the s
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHIC LOG	DESCRIPTION		SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/ RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
0	-		Water depth at start: = 24.3 ft at 12:38 p.m. Tide = 1.50'	-						
- 5 <i>-</i>	_		Corrected water depth at s 22.8 ft (MLLW)	tart: = _ -	The state of the s			-		
	···			_					- - -	
- 10 -	- -			-				-		
	-			- - -				-	- - -	
- 15 -	- -			<u>-</u>				-	- - - -	
	-			-				-		
- 20 -				-		:		_		
	-22.8		Dark grey with red wet SIL	T, trace				-		
- 25 -	-		fine Sand	-	S-1	24"	WOR/24"	DS	20"	
	-			-	S-2	24"	WOR/24"	DS	24"	
	<b>-</b>			-	S-3	24"	WOR/24"	DS	24"	
- 30 -	<b>-</b> -			-	S-4	24"	WOR/24"	DS _	24"	
	-			- - 	S-5	24"	WOR/24"	DS	24"	

		ndl	ing,Inc.	BOR	ING	LOG	Ť	BORING		P-1:	5
PROJE	СТ		Seagirt Marine Term	inal Channel				PROJEC	ст no. 07-1122-10		PAGE
		rh	beaght warme rem	mai Chamici			SAMPL	E DATA	J/-1122-1(		2
DEPTH (ft)	STRATA ELE./ DEPTH	GRAPHICLOG	DESCRIPTION	1	SAMPLE NO.	SAMPLE LENGTH (in)	N-VALUE/	RQD (%)	SAMPLE TYPE AND DIAMETER	SAMPLE RECOVERY (in)	REMARKS:
- 35 -			Dark grey with red we fine Sand	et SILT, trace	S-6	24"	WOF	₹/24"	DS _	24"	
	-36.5 -		Green wet SILT, trac	e fine Sand  -	S-7	24"	WOF	R/24"	DS _	24"	
	<b>-</b>			_	S-8	24"	WOF	R/24"	DS	20"	
40	_				S-9	24"	WOF	R/24"	DS _	24"	
				-	S-10	24"	WOF	2/24"	DS	24"	
- 45 -	_				S-11	24"	WOF	R/24"	DS _	24"	
				-	S-12	24"	WOF	R/24"	DS	24"	
F0				_	S-13	24"	WOF	₹/24"	DS	24"	
- 50 -				-	S-14	24"	WOF	₹/24"	DS	24"	:
	_			- - -	S-15	24"	WOF	₹/24"	DS	24"	
- 55 -				-	S-16	24"	WOF	₹/24"	DS _	24"	
				_	S-17	24"	WOF	₹/24"	DS	24"	
	-				S-18	24"	WOF	₹/24"	DS	24"	
- 60 -					S-19	24"	WOF	R/24"	DS	24"	
			Detter of Desire at 6	20 5 6	S-20	24"	WOF	₹/24"	DS	24"	
- 65	_		Bottom of Boring at 6	- 3.5 π							
				_				:	-		
70	_			_					_		
70											
				_					_		
- 75											



## FIELD CLASSIFICATION SYSTEM

### NON COHESIVE SOILS

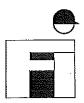
(Silt, Sand, Gravel and Combinations)

Density		Particle Size Id	entification	-
Very Loose	- 5 blows/ft, or less	Boulders	-8 inch dia	meter or more
Loose	<ul> <li>6 to 10 blows/ft.</li> </ul>	Cobbles	-3 to 8 inch	diameter
	e-11 to 30 blows/ft.	Gravel	-Coarse	-1 to 3 inch
Dense	-31 to 50 blows/ft.	•	Medium	-1⁄2 to 1 inch
Very Dense	-51 blows/ft, or more		Fine	-¼ to ½ inch
J		Sand	-Coarse	-0.6mm to ¼ inch
				(dia. of pencil lead)
Relative Prop	ortions		Medium	-0.2mm to 0.6mm
Descriptive T				(dia. of broom straw)
Trace	1 -10		Fine	-0.05mm to 0.2mm
Little	11-20			(Dia, of human hair)
Some	21-35	Silt		-0.6mm to 0.002mm
And	36-50			(Cannot see particles)
		COHESIVE SOILS		
		(Clay Silt and Combinations)		

(Clay, Silt and Combinations)

Consistency		Plasticity	
Very Soft	- 3 blows/ft. or less	Degree of	Plasticity
Soft	- 4 to 5 blows/ft.	Plasticity	Index
Medium Stiff	- 6 to 10 blows/ft.	None to slight	0-4
Stiff	-11 to 15 blows/ft.	Slight	5- 7
Very Stiff	-16 top 30 blows/ft.	Medium	8-22
Hard	-31 blows/ft. or more	High to Very High	over 22

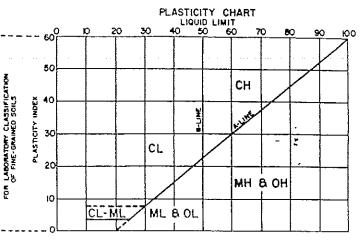
Classification on logs are made by visual inspection of samples.


<u>Standard Penetration Test</u> – The Standard Penetration Test (SPT) (ASTM D1586) consists of driving a 2.0" O.D., 1-3/8" I.D., sampler a distance of 1.0 foot into undisturbed soil with a 140 pound hammer free falling a distance of 30.0 inches.

It is customary to spoon 6-inches to penetrate through the loose cuttings and then perform the test. The number of hammer blows for each successive 6-inches of penetration is recorded on the boring logs (Example: 5/6/7/9). The summation of the number of hammer blows required to drive the sampler two additional successive 6-inches is typically designated as the Standard Penetration Resistance (N) value (i.e., the summation of the 2nd 6-inch and the 3rd 6-inch penetration resistance) (i.e., 6+7=13 blows/foot).

The sampler was driven an additional 6-inch to complete the 2-foot continuous sampling procedure (the penetration resistance for the 4th 6-inch penetration is not used in computing the SPT N-value).

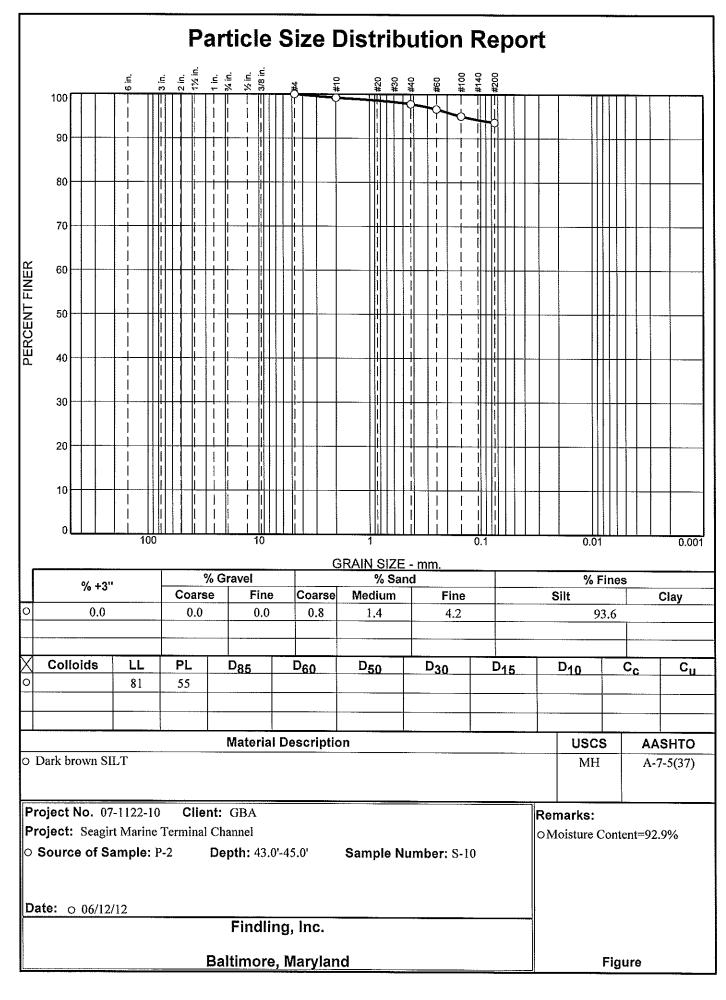
<u>Strata Changes</u> — In the column "Soil Descriptions" on the drill log the horizontal lines represent strata changes.

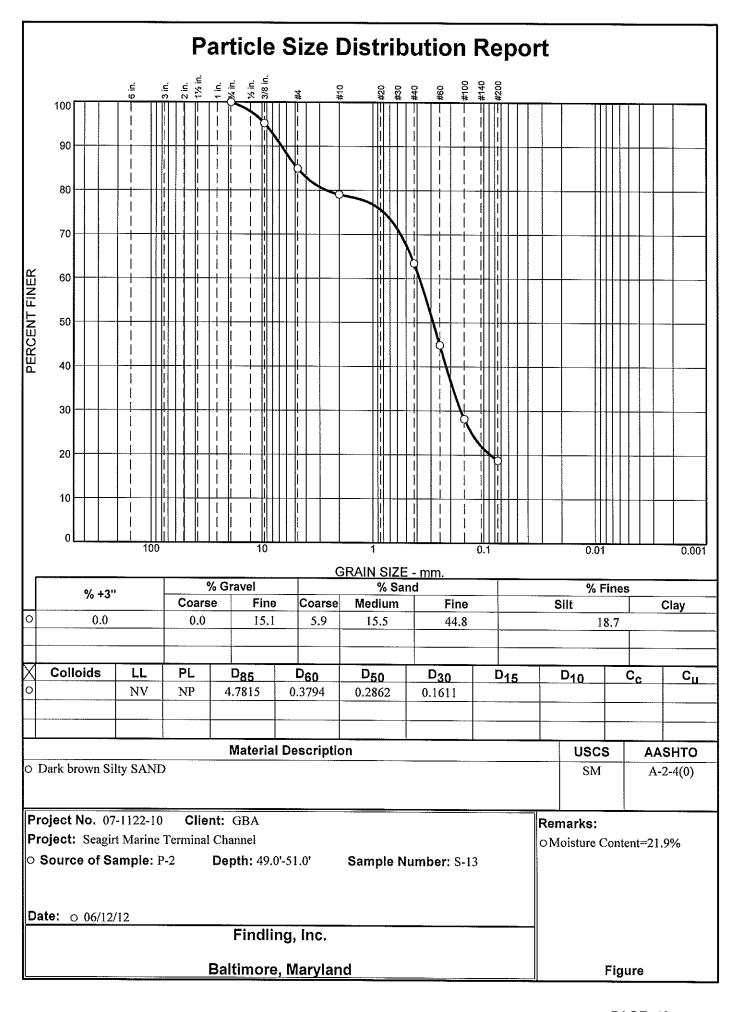

Ground Water observations were made at the times indicated. Porosity of soil strata, weather conditions, site topography, etc., may cause changes in the water levels indicated on the logs.

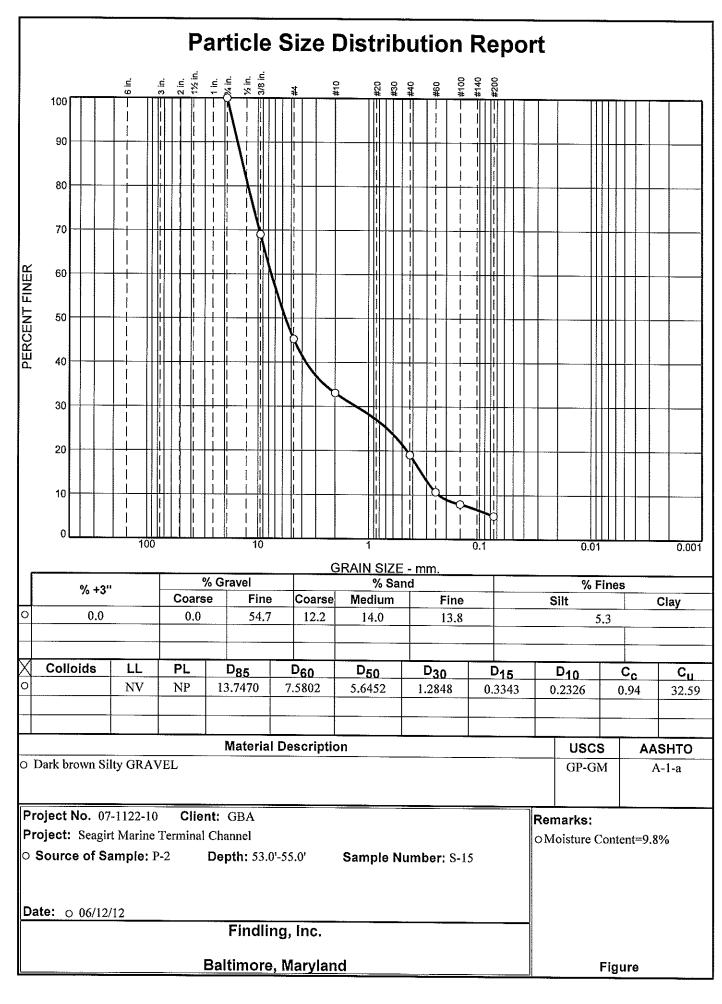


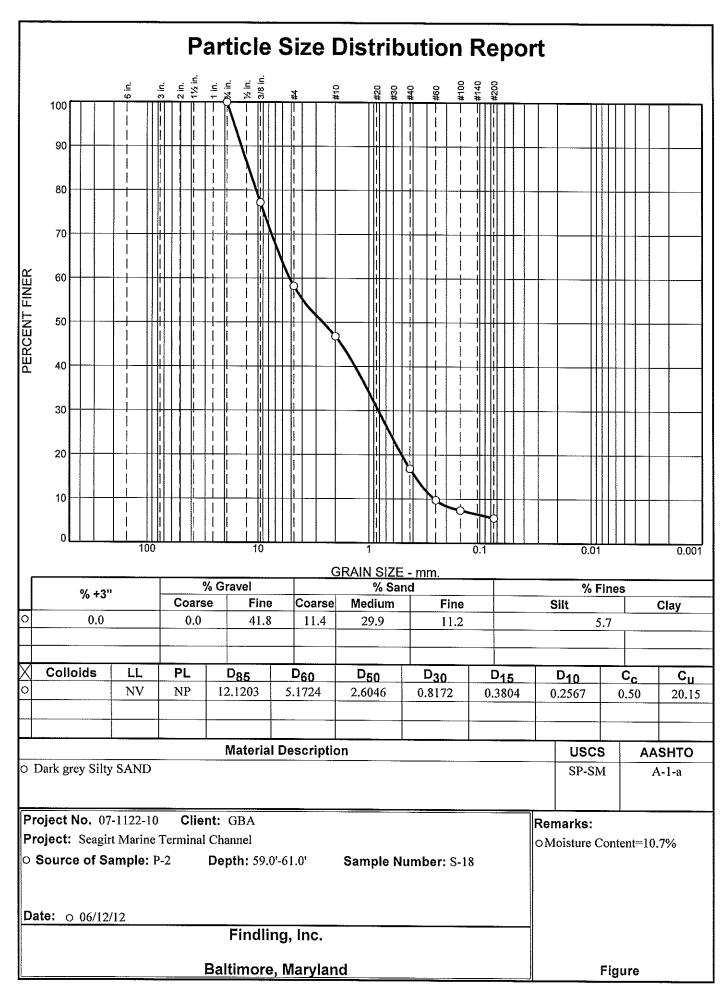
# UNIFIED SOIL CLASSIFICATION SYSTEM

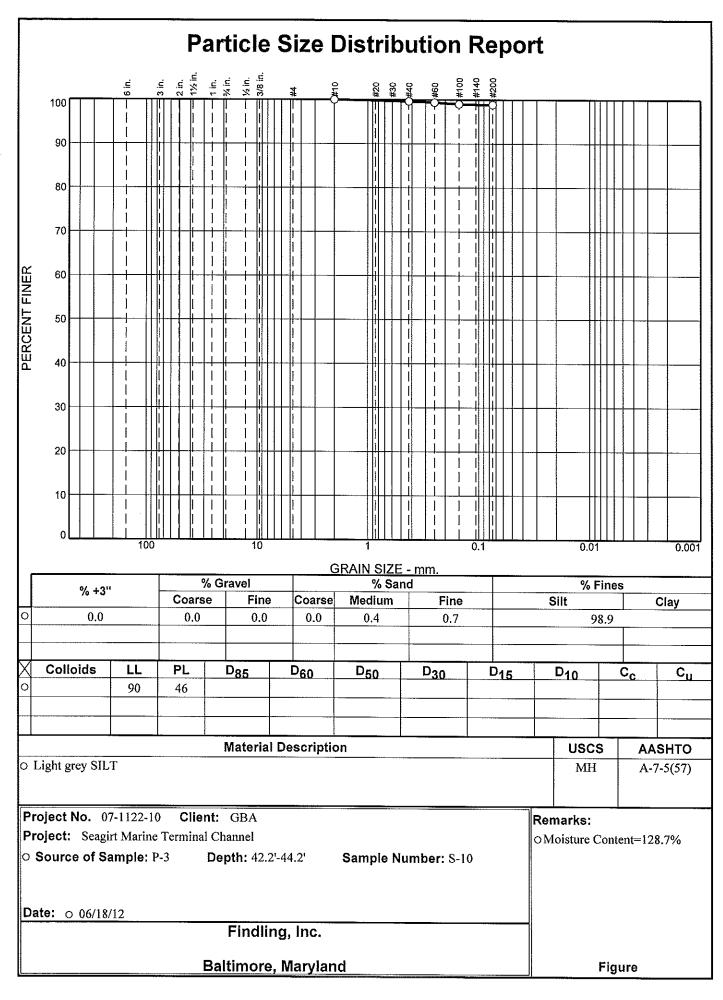
# SOIL CLASSIFICATION CHART

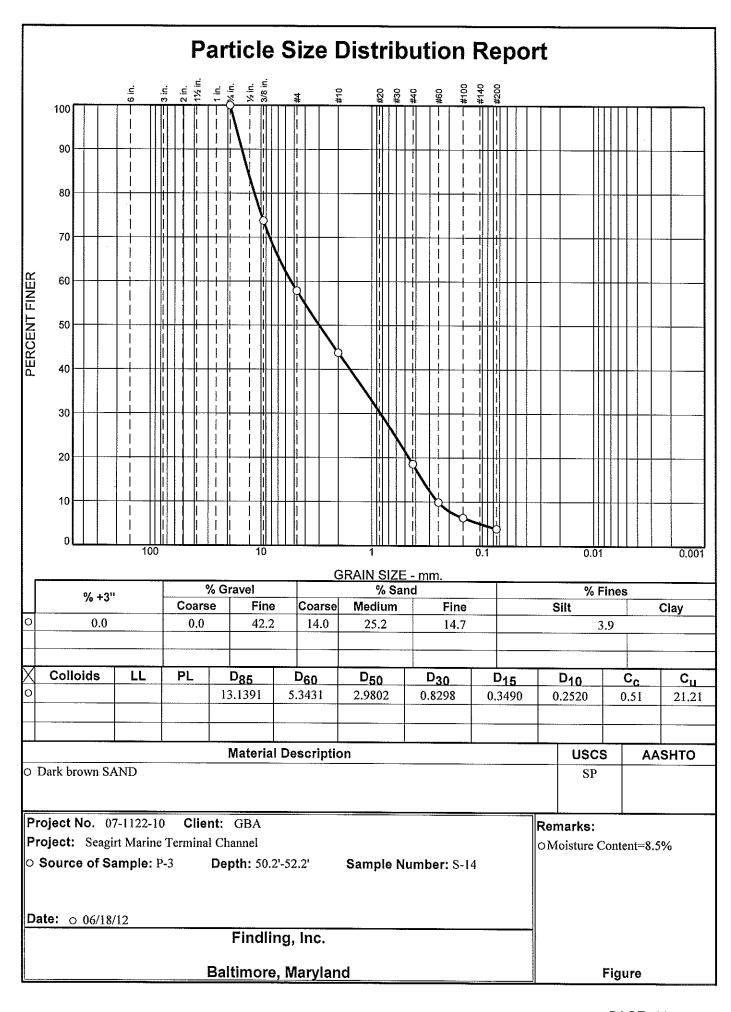

M	AJOR GROU	JPS	LETTER SYMBOL	TYPICAL DESCRIPTIONS	
	SILTS AND CLAYS LIQUID LIMIT LESS THAN 50%		ML	INORGANIC SILTS, VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS	
FINE - GRAINED SOILS SON OR MORE MASSES NO 200 SIEVE			CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SAHOY CLAYS, SILTY CLAYS, LEAN CLAYS	
			OL	ORGANIC SILTS AND ORGANIC SILTY CLAY OF LOW PLASTICITY	
	SILTS AND CLAYS LIQUID LIMIT GREATER THAN 50%		мн	IMORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDS ON SILTS, ELASTIC SILTS	
			СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	
			ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY	
			PT	PEAT, MUCK AND OTHER HIGHLY ORGANIC SOILS	
COARSE-GRAINED SOILS  MORE THIN 50% RETAINED ON No. 200 SIEVE	GRAVEL AND GRAVELLY SOILS MORE THAN 50% OF COARSE FRACTION RETAINED ON No. 4 SIEVE	CLEAN GRAVELS	GW	WELL-GRADED GRAVELS AND GRAVELS SAND MIXTURES, LITTLE OR NO FINES	
		LITTLE OR NO FINES	GP	POORLY GRADED GRAVELS AND GRAVELSAND MIXTURES, LITTLE OR NO FINES	
		GRAVELS WITH FINES	GM	SILTY GRAVELS, GRAVEL-SAHD-SILT MIXTURES	
		APPRECIABLE AMOUNT OF FINES	GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MOTURES	
	SAND AND SANDY SOILS	CLEAN SANDS	SW	WELL-GRADED SANDS AND GRAVELLY SANDS, LITTLE OR NO FINES	
		LITTLE OR NO FINES	SP	POORLY GRADED SANDS AND GRAYELLY SANDS, LITTLE OR NO FINES	
	MORE THAN 50% OF COARSE FRACTION PASSING No. 4 SIEVE	SANDS WITH FINES	SM	SILTY SANDS, SAND-SILT MIXTURES	
		AMOUNT OF FINES	sc	CLAYEY SANDS, SAND-CLAY MUXTURES	

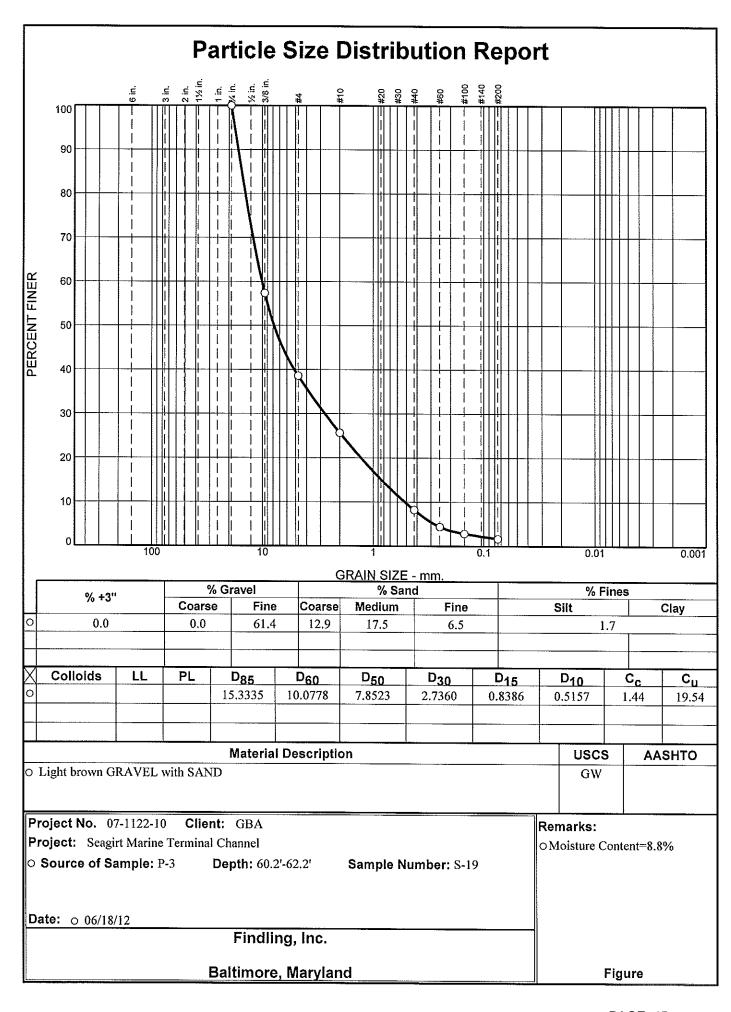


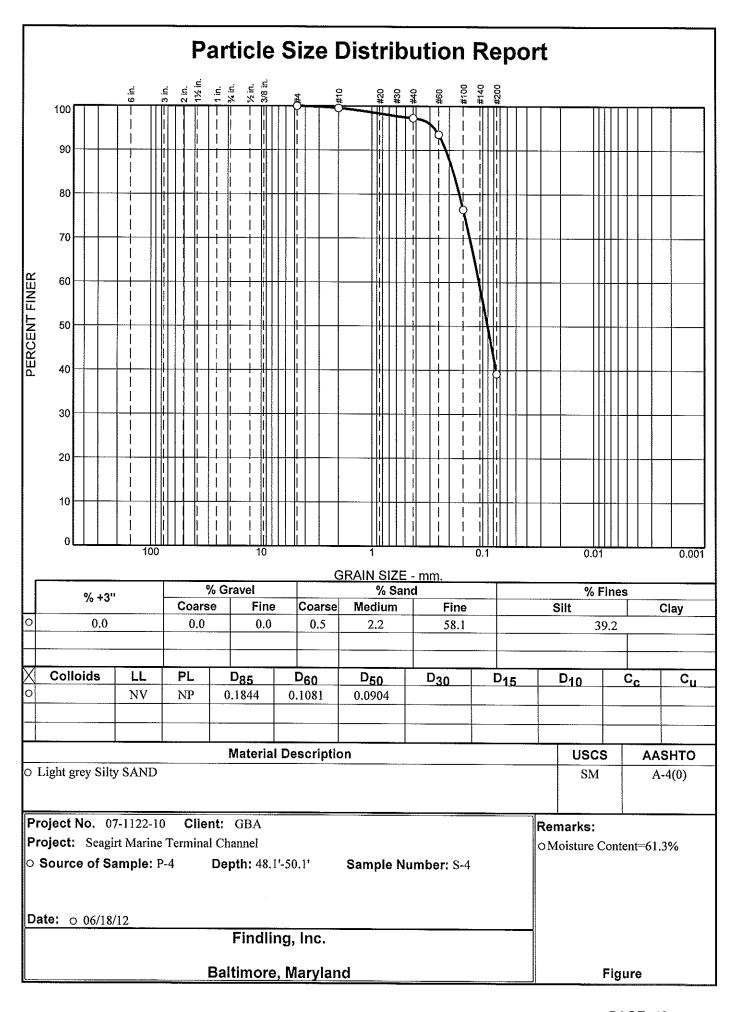


## GRADATION CHART

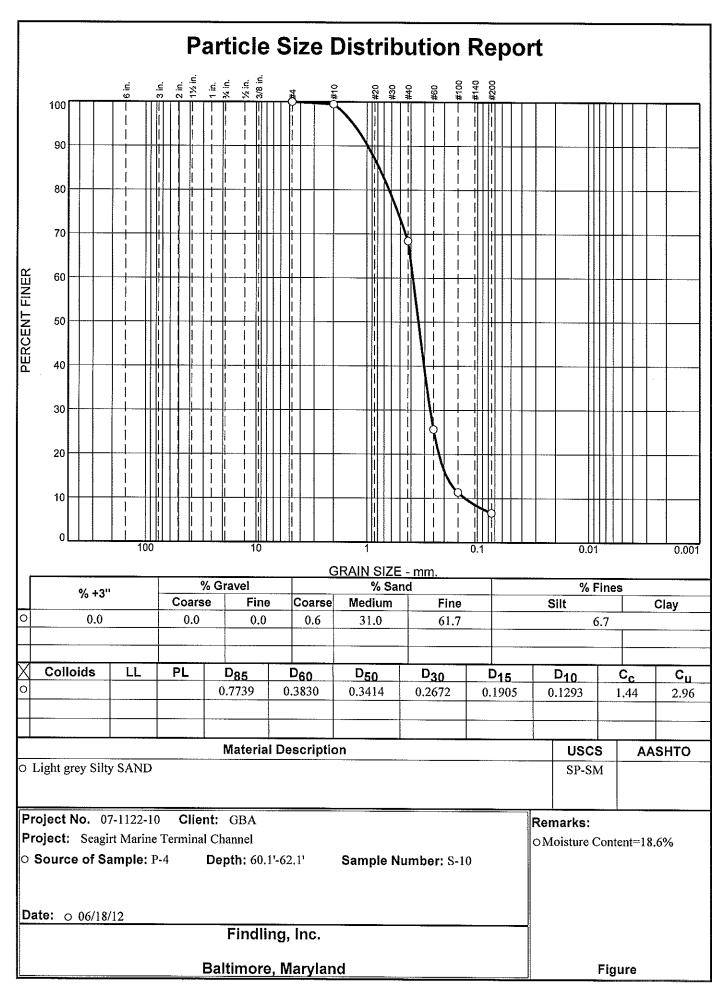

MATERIAL SIZE		PARTICLE SIZE					
		LOWER	LIMIT	UPPER LIMIT			
		MILLIMETERS	SIEVE \$IZE	WILLIMETERS	SIEVE SIZE		
SAND	FINE	.074	200	0.42	40		
	WEDIUM	0.42	40	2.00	10		
	COARSE	2.00	ю	4.76	4		
GRAVE	FINE COARSE	<b>4</b> .76	4 3/4"	19 76	3/4" 3"		
COBBLES		76	3"	305	12"		
BOULDERS		305	12"	914	36"		

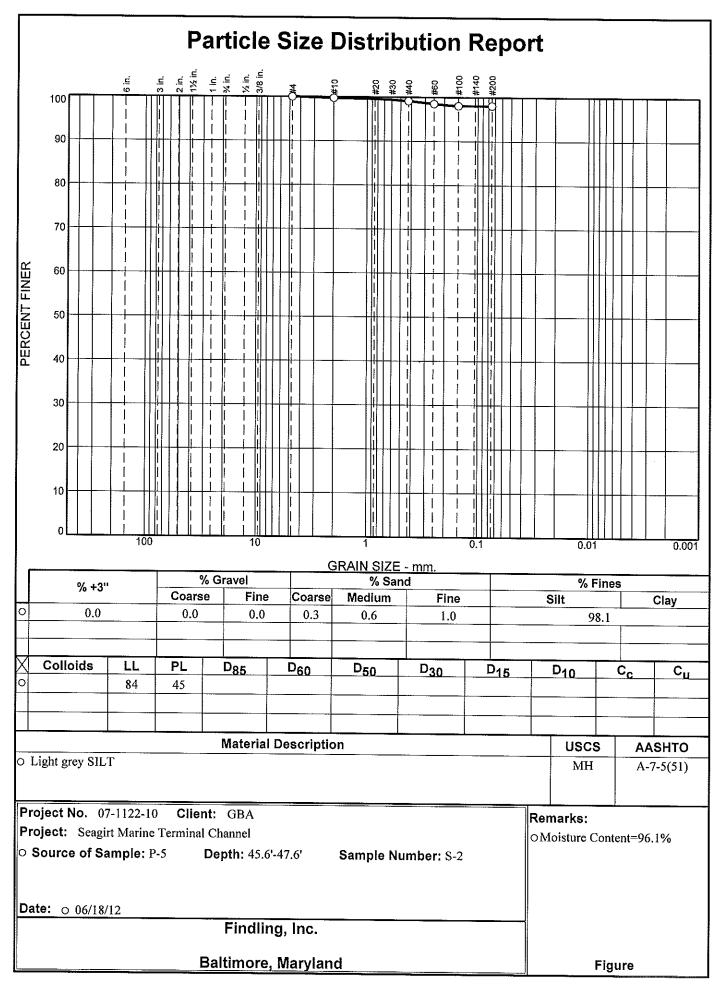

Grain Size Analysis: Findling, Inc., 2012 (P – Series)

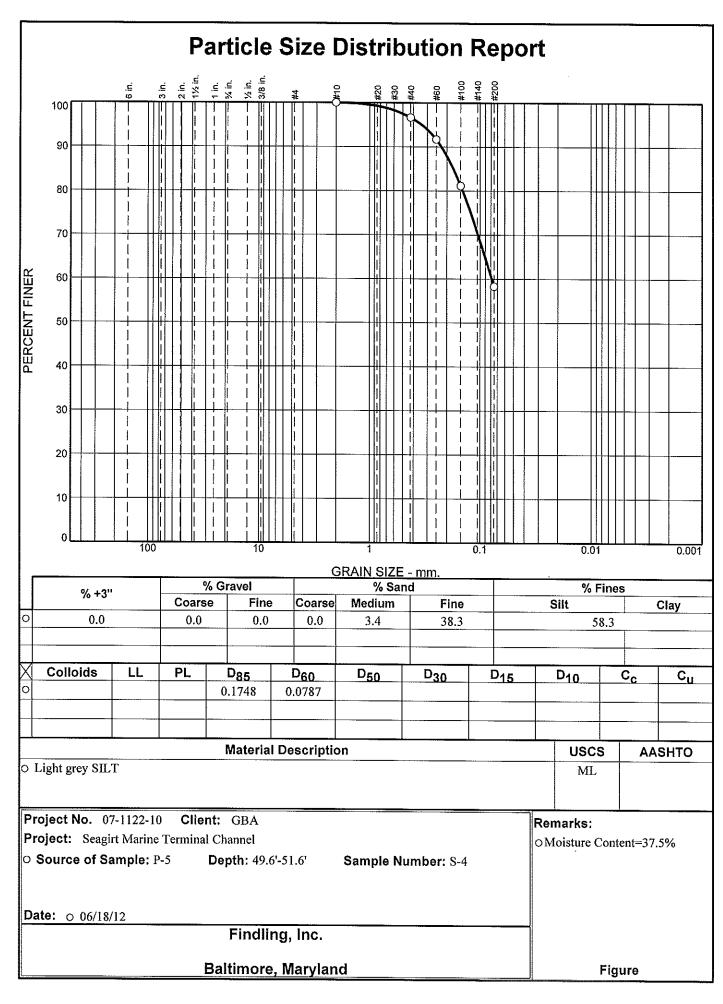


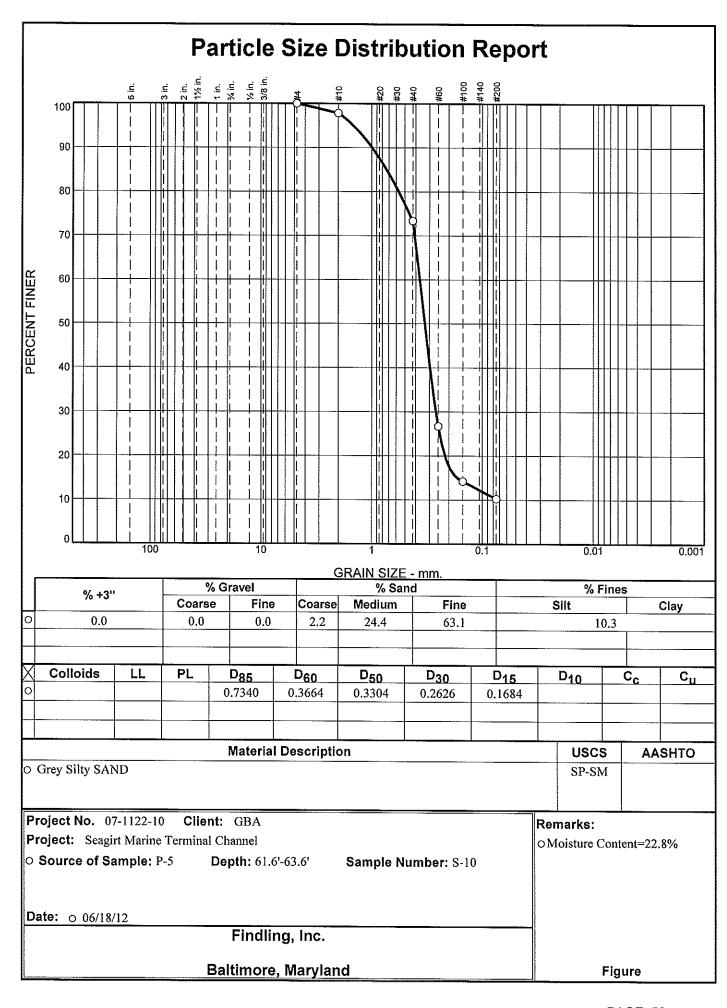



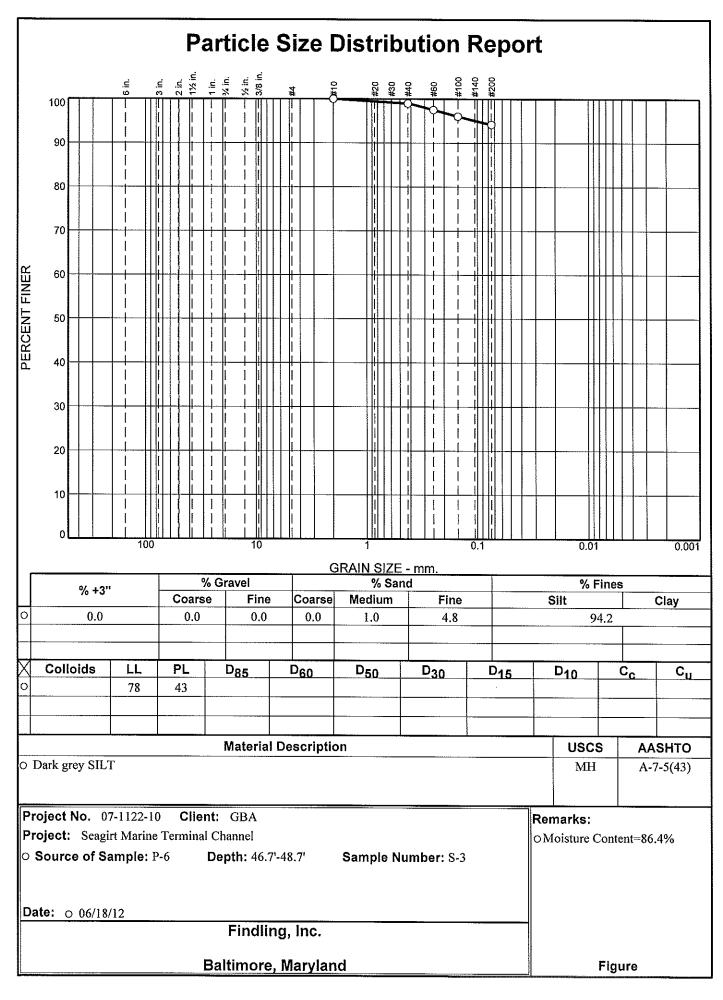



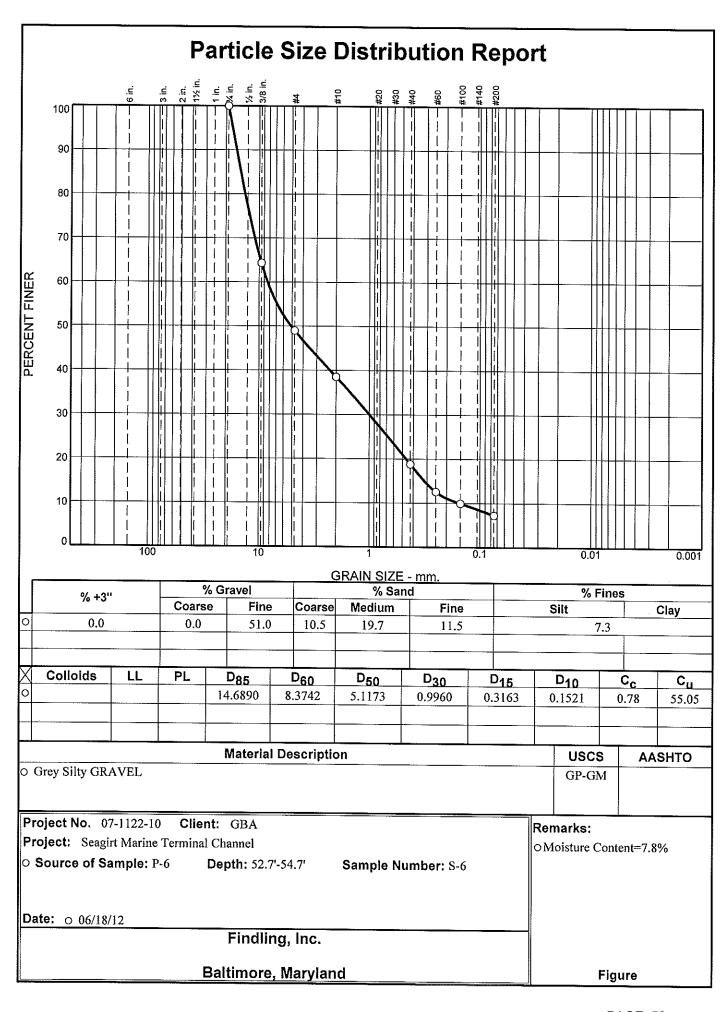



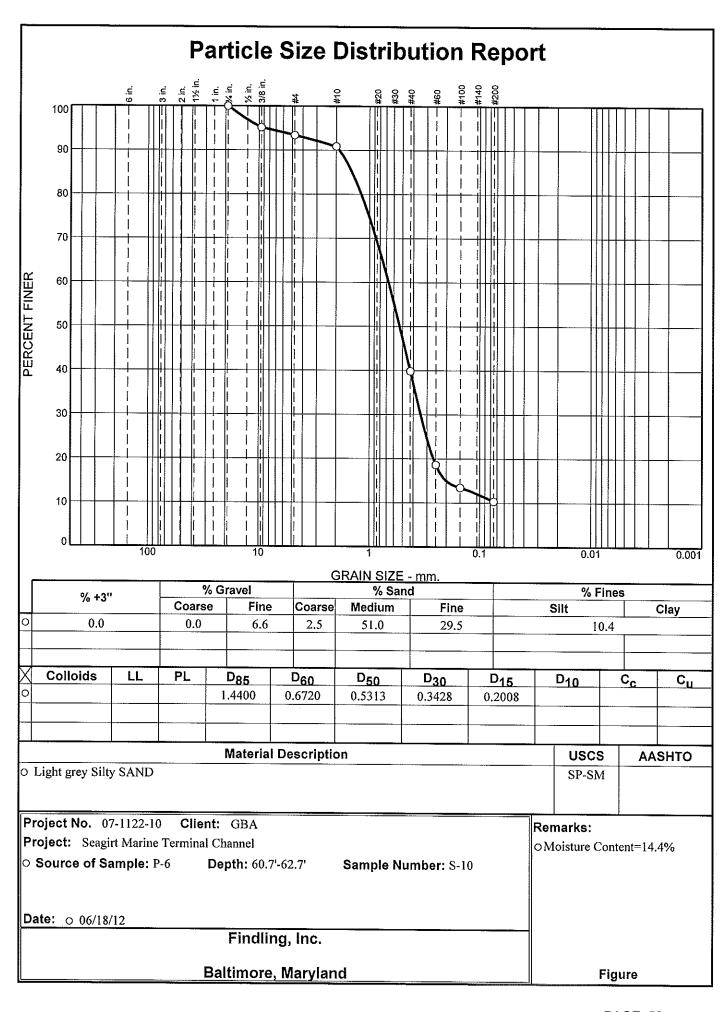



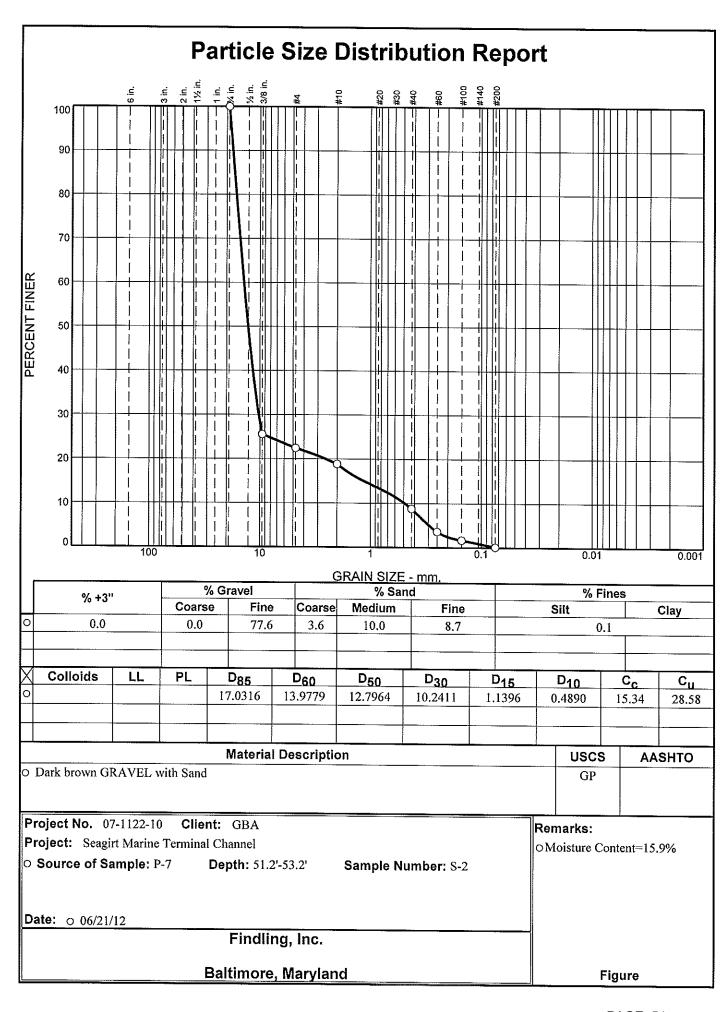



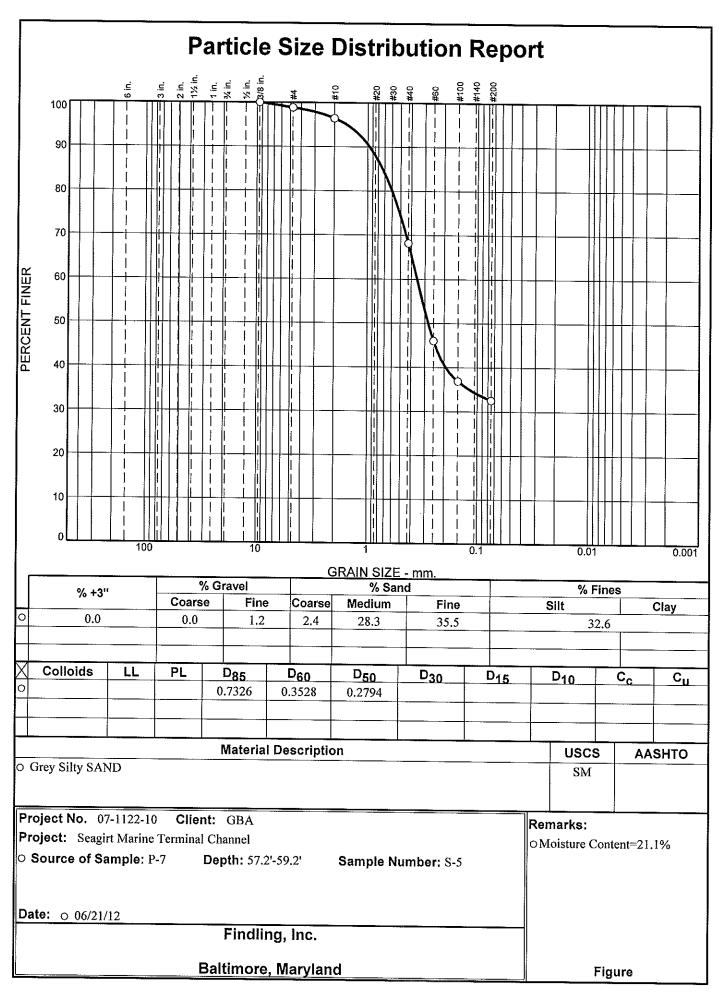



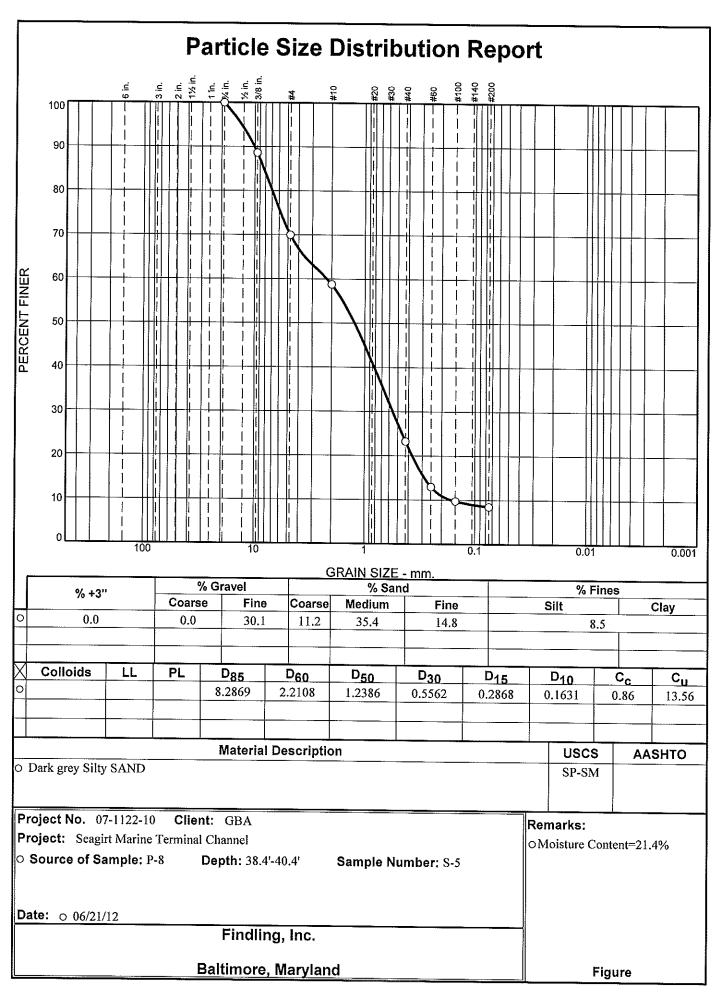



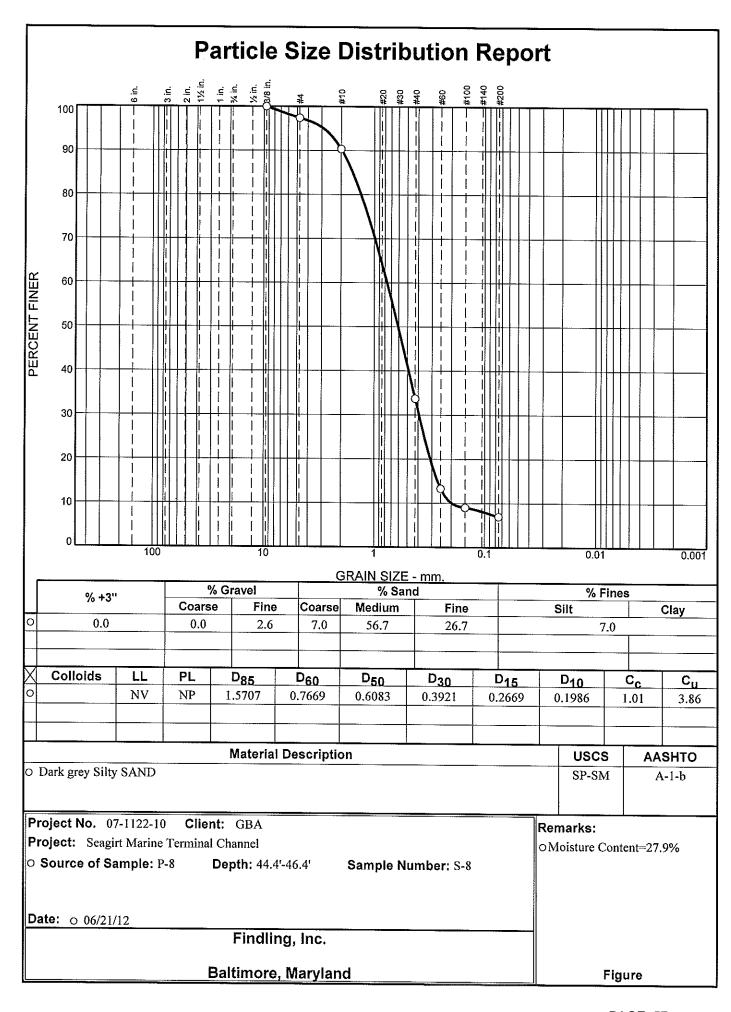



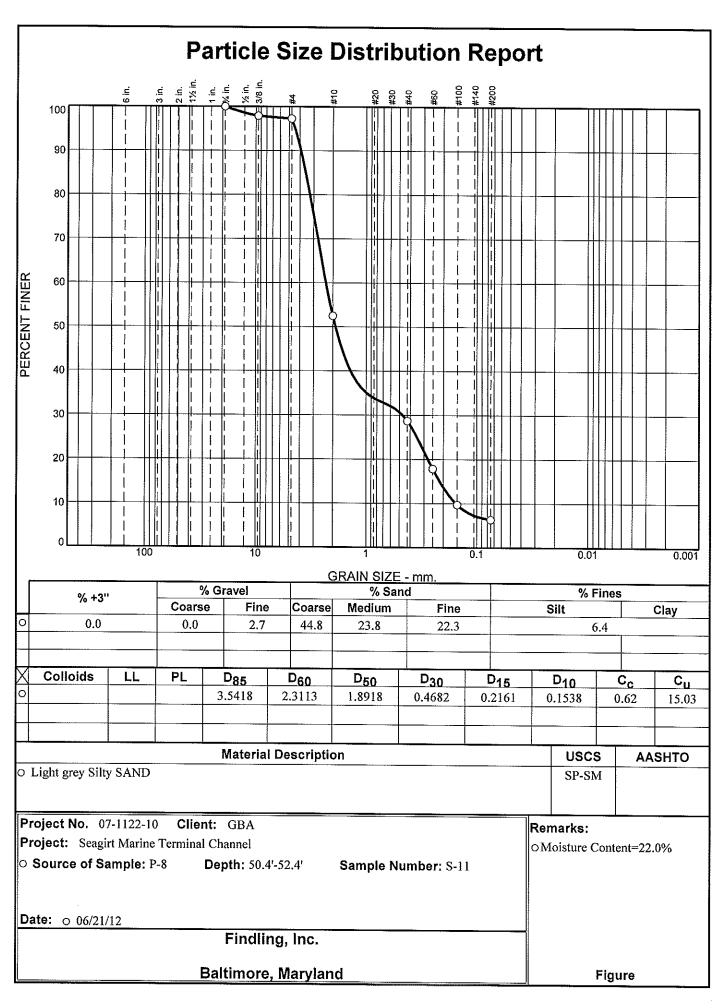



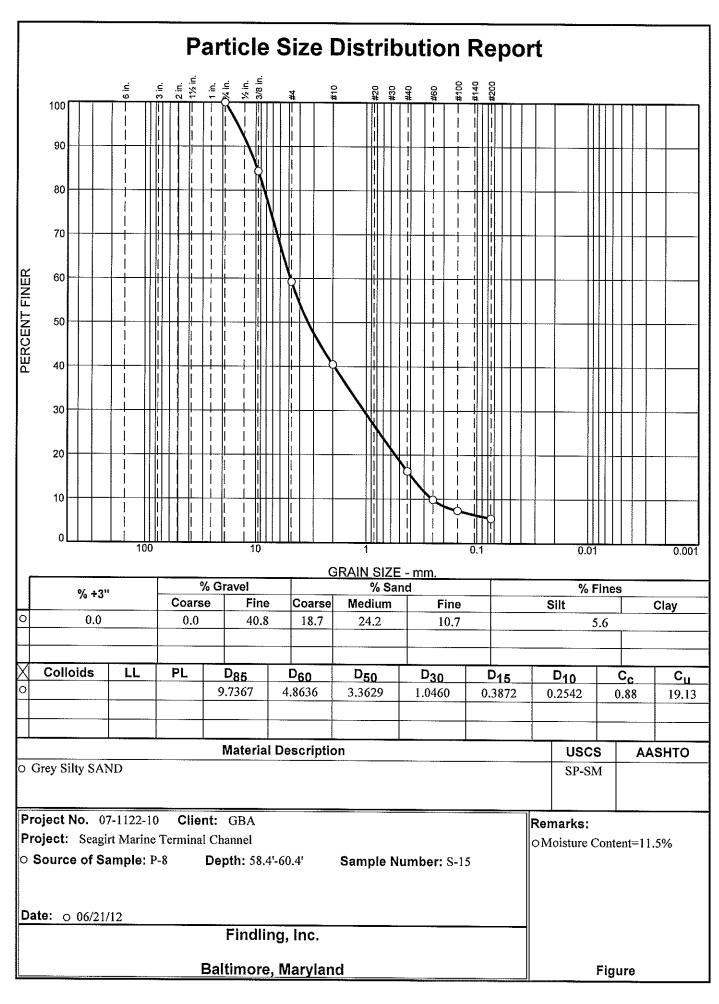



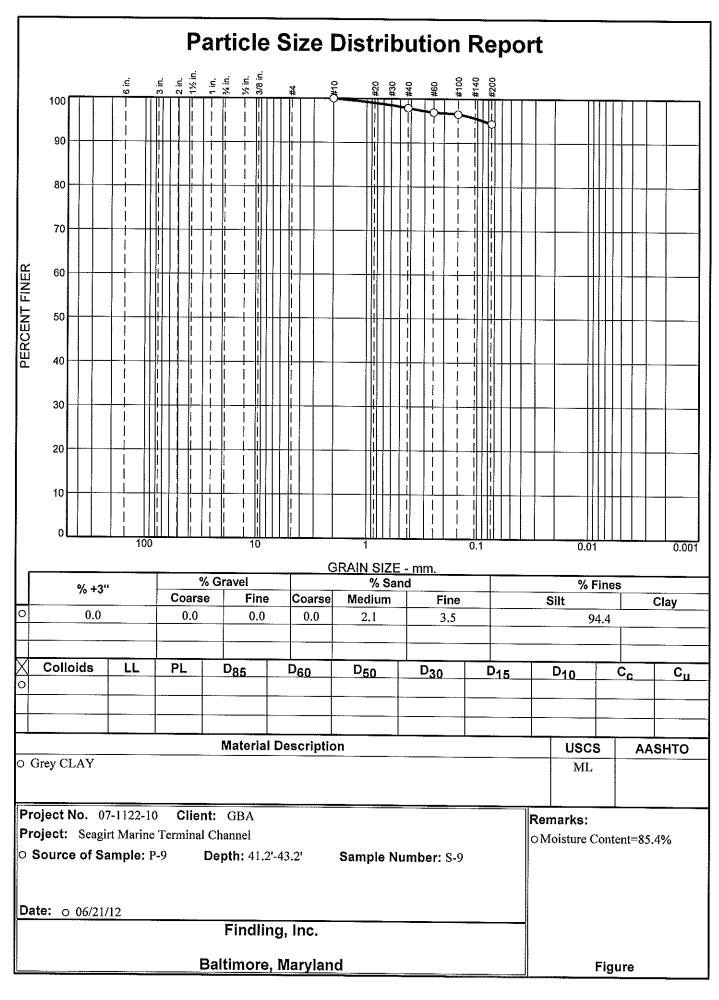



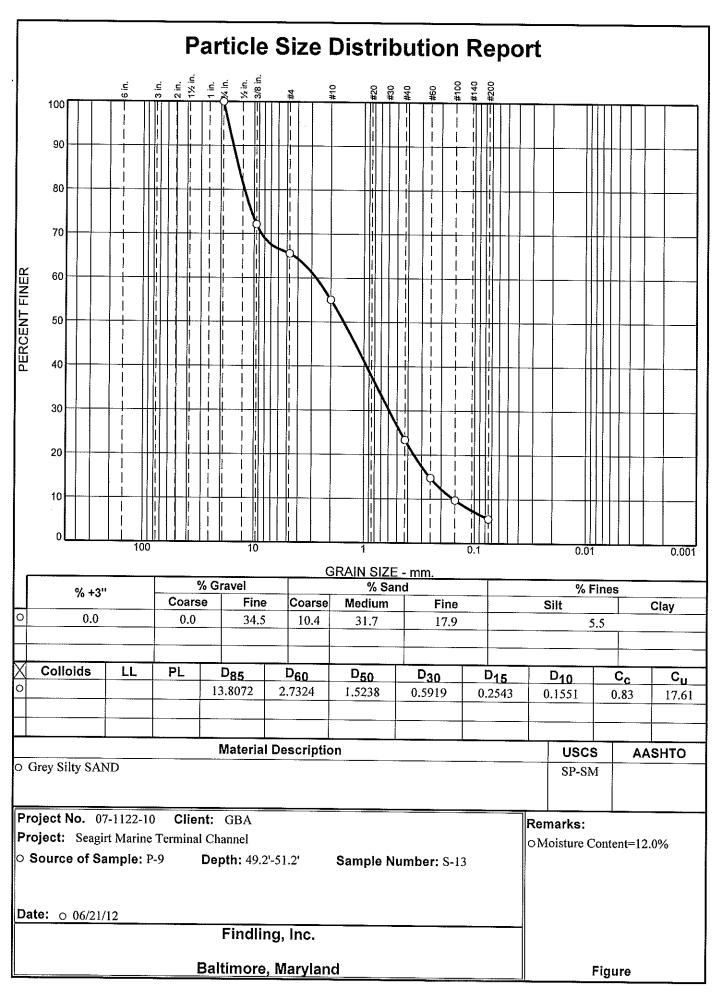



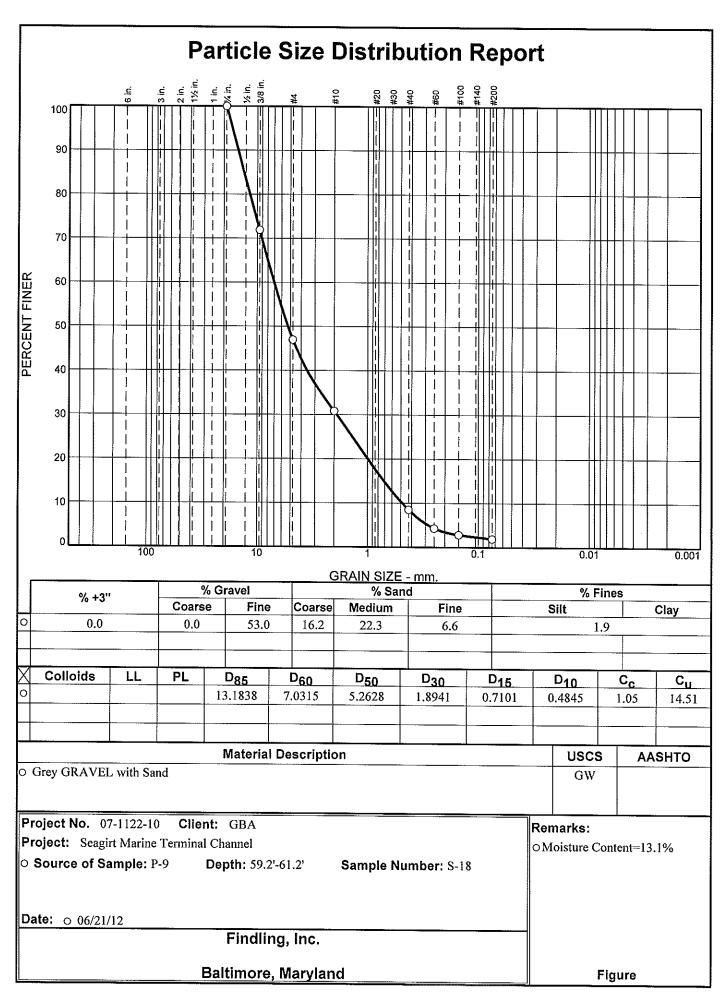



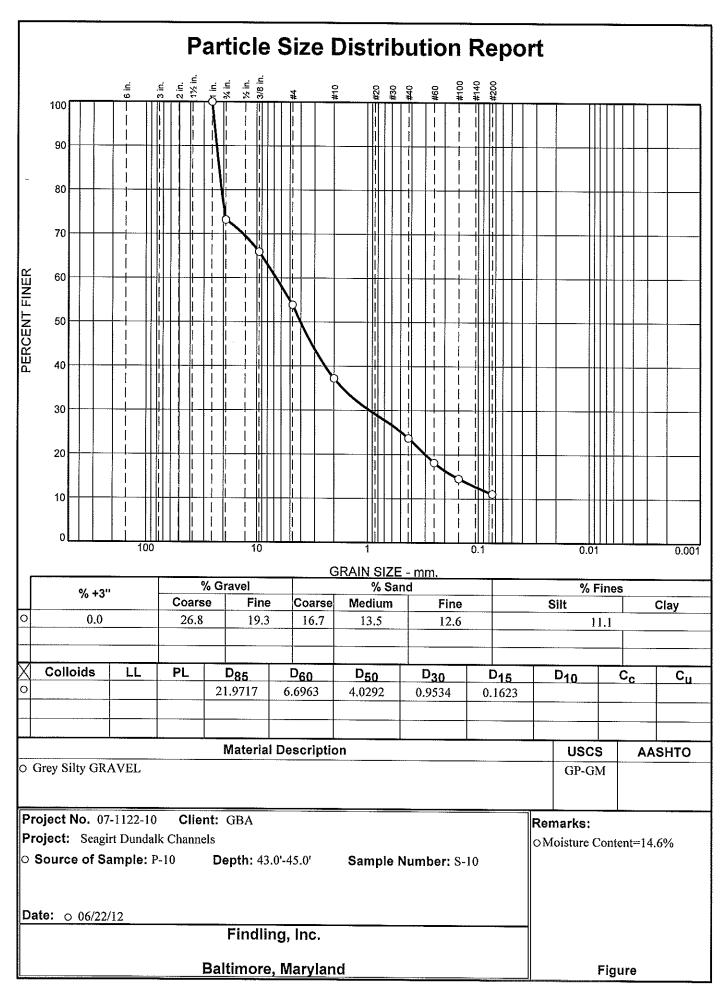



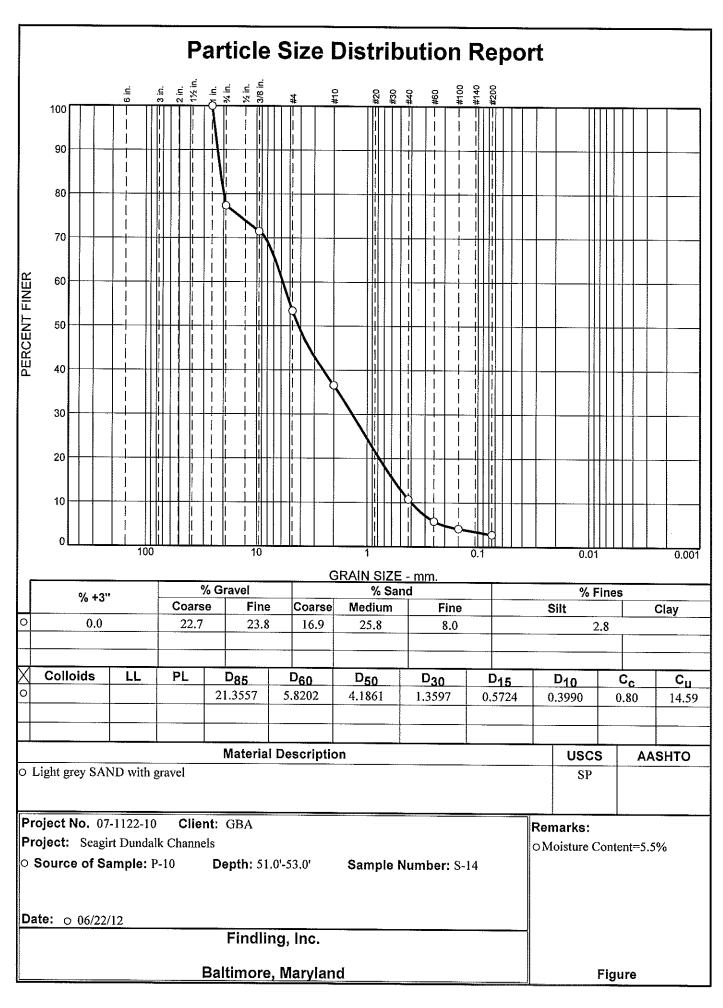



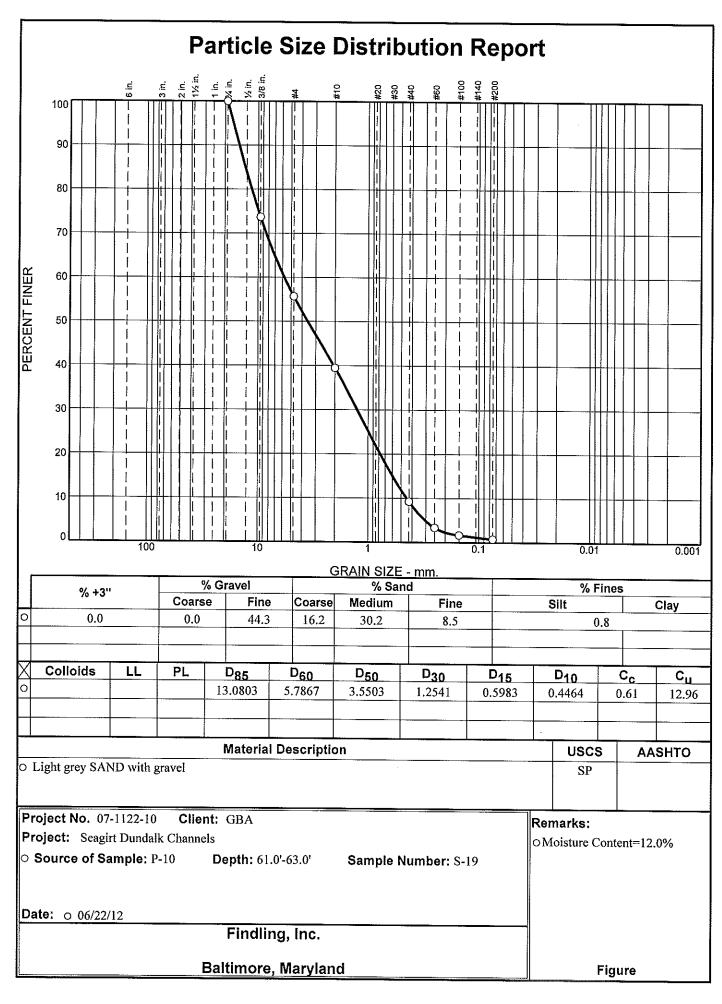



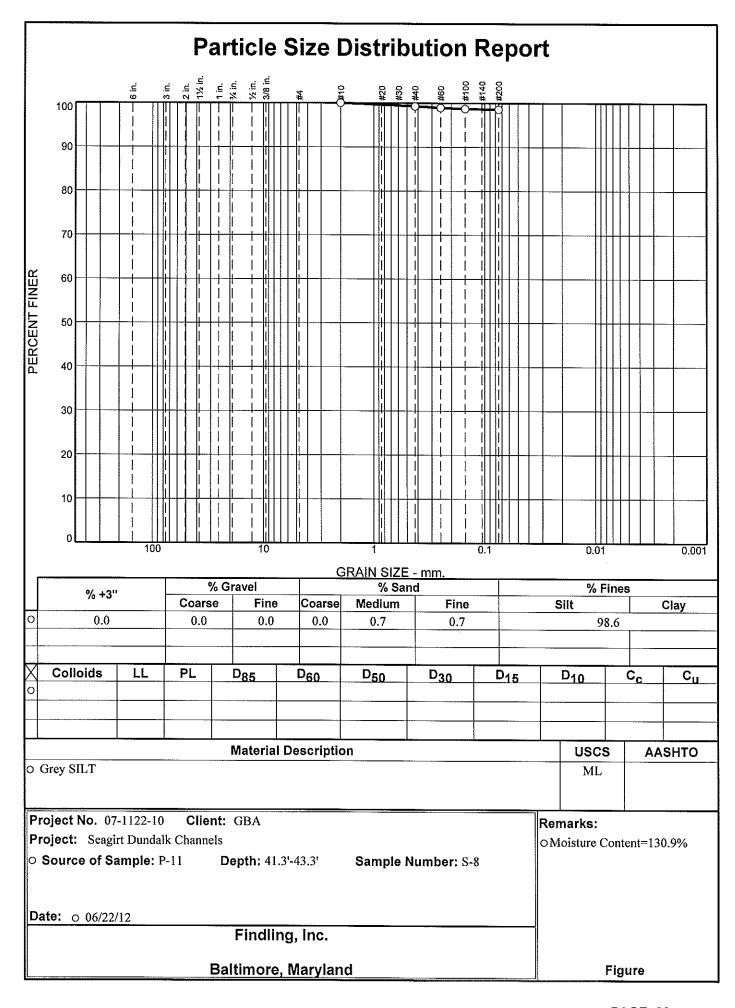



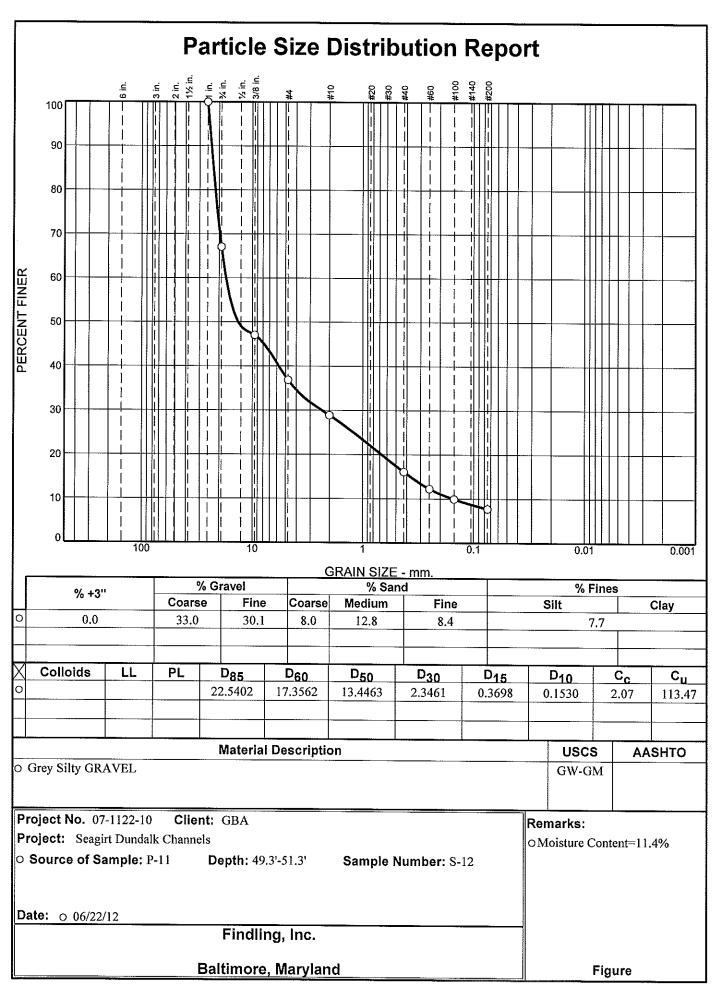



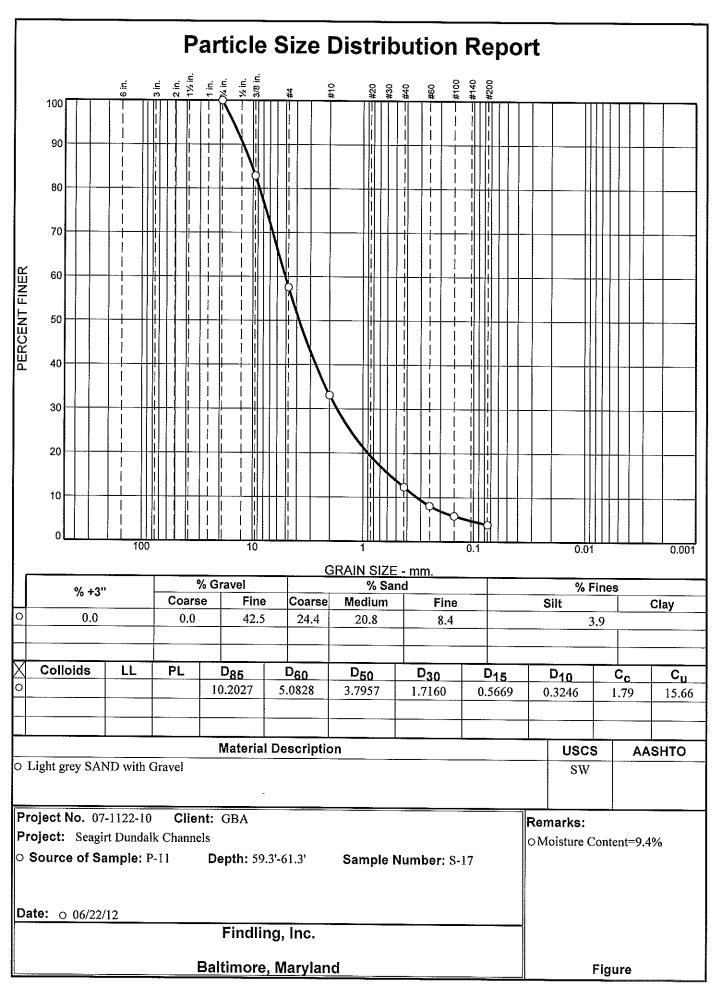














Laboratory Data: Findling, Inc., 2012 (P – Series)

### TABLE 1: Summary of Laboratory Test Results

Seagirt Marine Terminal Channel

Baltimore, MD

			feet /)		feet LW)	tent, %	Att	erberg Lir	mits	Gra	ain Size Ar	ıalysis	uo
- A - A - A - A - A - A - A - A - A - A	Boring No.	Date Drilled	Depth of Water, feet (below MLLW)	Sample Number	Sample Elevation, feet (Depth below MLLW)	Natural Moisture Content, %	LL	PL	PI	Gravel %	Sand %	Fines (Silt+Clay) %	USCS Classification
<u></u>								1		· · · · · · · · · · · · · · · · · · ·			
	-1	6/11/12	21.3	S-1	21.6 - 23.6	154.5							
ļ				S-2	23.6 - 25.6	209.4							····
				S-3	25.6 - 27.6	156.2							
	_			S-4	27.6 - 29.6	203.2						V*************************************	
ļ			William	S-5	29.6 - 31.6	238.1					· · · · · · · · · · · · · · · · · · ·		
<b></b>				S-6	31.6 - 33.6	172.2							
<u> </u>				S-7	33.6 - 35.6	163.2		ļ			***************************************		
L		***		S-8	35.6 - 37.6	165.0	· · · · · · · · · · · · · · · · · · ·				*****		
				S-9	37.6 - 39.6	170.0	11111	ļ					
				S-10	39.6 - 41.6	168.0							
	_			S-11	41.6 - 43.6	160.0	· · · · · · · · · · · · · · · · · · ·					100	
				S-12	43.6 - 45.6	153.7							
<u> </u>		***************************************		S-13	45.6 - 47.6	151.8							
<u></u>				S-14	47.6 - 49.6	148.9						100	
<u></u>				S-15	49.6 - 51.6	144.4							
				S-16	51.6 - 53.6	145.2							
				S-17	53.6 - 55.6	140.1						100	
				S-18	55.6 - 57.6	135.0	· · · · · · · · · · · · · · · · · · ·						
				S-19	57.6 - 59.6	140.1	4.						
				S-20	59.6 - 61.6	127.9						100	
				S-21	61.6 - 63.6	121.7							



### TABLE 1: Summary of Laboratory Test Results

Seagirt Marine Terminal Channel

Baltimore, MD

		feet /)	J.	feet LW)	itent, %	Att	erberg Lir	mits	Gra	ain Size Ar	nalysis	ion
Boring No.	Date Drilled	Depth of Water, feet (below MLLW)	Sample Number	Sample Elevation, feet (Depth below MLLW)	Natural Moisture Content, %	LL	PL	PI	Gravel %	Sand %	Fines (Silt+Clay) %	USCS Classification
P-2	L04440	0.5		los a	4.45.0			1	1			
P-2	6/11/12	25	S-1 S-2	25.0 - 27.0	145.3			***************************************			***************************************	
<u> </u>				27.0 - 29.0	150.7							
	<u> </u>		S-3 S-4	29.0 - 31.0	162.3							
			S-4 S-5	31.0 - 33.0 33.0 - 35.0	171.1						<u> </u>	
-			S-6	35.0 - 37.0	164.9 152.4							
<b></b>			S-7	37.0 - 39.0	147.5						: 	
			S-8	39.0 - 41.0	125.0					W.C		
			S-9	41.0 - 43.0	109.6						***************************************	
			S-10	43.0 - 45.0	92.9				0			
			S-10	45.0 - 47.0	22.0				U	6	94	ML
			S-11	47.0 - 49.0	19.6						<u> </u>	
			S-13	49.0 - 51.0	21.9	NV	NP	NP	15	66	19	SM
<b></b>			S-14	51.0 - 53.0	14.1	144	1.41	141	13	- 00	10	SIVI
			S-15	53.0 - 55.0	9.8	NV	NP	NP	55	40	5	GP-GM
			S-16	55.0 - 57.0	9.2		3.42	1 11	- 00		<del>                                     </del>	GF*GIVI
			S-17	57.0 - 59.0	8.3							
			S-18	59.0 - 61.0	10.7	NV	NP	NP	42	51	6	SP-SM
			S-19	61.0 - 63.0	5.9		• • •	741	- 7 - 4	<u> </u>		31 -01VI

### TABLE 1: Summary of Laboratory Test Results

Seagirt Marine Terminal Channel

Baltimore, MD

		feet /)	16	feet _W)	tent, %	Att	erberg Lir	nits	Gra	ain Size Ar	nalysis	no
Boring No.	Date Drilled	Depth of Water, feet (below MLLW)	Sample Number	Sample Elevation, feet (Depth below MLLW)	Natural Moisture Content, %	LL	PL	PI	Gravel %	Sand %	Fines (Silt+Clay) %	USCS Classification
- D.A	0/4.4/40											
P-3	6/14/12	24.4	S-1	24.4 - 26.2	185.6							
<u> </u>			S-2 S-3	26.2 - 28.2	106.6							
<u></u>				28.2 - 30.2	122.9						***************************************	
			S-4 S-5	30.2 - 32.2 32.2 - 34.2	162.6							
			S-5 S-6	32.2 - 34.2 34.2 - 36.2	155.2	<b></b>						
					151.5		-					
<u> </u>			S-7	36.2 - 38.2	141.3							
			S-8	38.2 - 40.2	140.6	*****		·				
			S-9	40.2 - 42.2	129.4		- 40	4.4				
			S-10	42.2 - 44.2	128.7	90	46	44	0	11	99	MH
			S-11	44.2 - 46.2	100.4							
			S-12	46.2 - 48.2	77.7							
			S-13	48.2 - 50.2	8.4							
			S-14	50.2 - 52.2	8.5				42	54	4	SP
			S-15	52.2 - 54.2	29.8	·····						
			S-16	54.2 - 56.2	34.7							
			S-17	56.2 - 58.2	22.7	*****						~~~
***************************************			S-18	58.2 - 60.2	6.7			-				
			S-19	60.2 - 62.2	8.8				61	37	2	GW
***************************************			S-20	62.2 - 64.2	9.5							
D 4	en anol			40.4 44.4	0744			г	,			
P-4	6/14/12	41.4	S-1 S-2	42.1 - 44.1 44.1 - 46.1								
			S-2 S-3	46.1 - 48.1								
		***************************************	S-3 S-4	48.1 - 48.1		NIV Z	NO	ND		0.4		011
			S-4 S-5	50.1 - 52.1		NV	NP	NP	0	61	39	SM
			S-5	50.1 - 52.1 52.1 - 54.1							ļ	***
			S-7	54.1 - 56.1	45.7 26.3					*****		
			S-8	56.1 - 58.1								
			S-9	58.1 - 60.1	**********					77411		
*****			S-10		21.1							
				60.1 - 62.1	18.6				0	93	7	SP-SM
<b> </b>		]	S-11	62.1 - 64.1	49.2							

### TABLE 1: Summary of Laboratory Test Results

Seagirt Marine Terminal Channel

Baltimore, MD

	***************************************	feet )	<b>L</b>	feet .W)	tent, %	Att	erberg Lir	mits	Gra	ain Size An	alysis	LC C
Boring No.	Date Drilled	Depth of Water, feet (below MLLW)	Sample Number	Sample Elevation, feet (Depth below MLLW)	Natural Moisture Content, %	LL	PL	PI	Gravel %	Sand %	Fines (Silt+Clay) %	USCS Classification
P-5	6/14/12	43.4	S-1	42.6 45.6	24.4.0							
1-3	0/14/12	43.4	S-2	43.6 - 45.6 45.6 - 47.6	214.3 96.1	84	45	39	0	2	98	RALJ
			S-3	47.6 - 49.6	91.3	- 04	73	39			90	MH
		***************************************	S-4	49.6 - 51.6	37.5		77711		0	42	58	ML
			S-5	51.6 - 53.6	81.6					74	30	IVIL
			S-6	53.6 - 55.6	37.4	······································						
	***************************************		S-7	55.6 - 57.6	28.5	V-7						
			S-8	57.6 - 59.6	33.7							
			S-9	59.6 - 61.6	35.2					<b>**</b>		
			S-10	61.6 - 63.6	22.8				0	90	10	SP-SM
	0/45/40	40.0										
P-6	6/15/12	43.2	<u>S-1</u>	43.4 - 44.7	232.6							
			S-2 S-3	44.7 - 46.7 46.7 - 48.7	102.9							
			S-3 S-4	48.7 - 48.7	86.4 7.4				0	6	94	MH
			S-4 S-5	50.7 - 52.7	8.7							
····			S-6	52.7 - 54.7	7.8				51	42	7	CD CM
			S-7	54.7 - 56.7	15.2				31	42	<del>                                     </del>	GP-GM
			S-8	56.7 - 58.7	19.0							
			S-9	58.7 - 60.7	19.3							· · · · · · · · · · · · · · · · · · ·
			S-10	60.7 - 62.7	14.4			www.	7	83	10	SP-SM

### TABLE 1: Summary of Laboratory Test Results

Seagirt Marine Terminal Channel

Baltimore, MD

		feet )	ي	feet .W)	tent, %	Atte	erberg Lir	nits	Gra	ain Size An	alysis	LC.
Boring No.	Date Drilled	Depth of Water, feet (below MLLW)	Sample Number	Sample Elevation, feet (Depth below MLLW)	Natural Moisture Content, %	LL	PL	PI	Gravel %	Sand %	Fines (Silt+Clay) %	USCS Classification
D 7		40.0	0.4	100 510								
P-7	6/18/12	48.0	S-1	49.2 - 51.2	95.5							
			S-2	51.2 - 53.2	15.9				78	22	0	GP
			S-3	53.2 - 55.2	7.4							
			S-4	55.2 - 57.2	7.1							
			S-5	57.2 - 59.2	21.1				1	66	33	SM
			S-6	59.2 - 61.2	22.5							
9			S-7	61.2 - 63.2	16.2							
P-8	6/18/12	29.4	S-1	30.4 - 32.4	184.5							
			S-2	32.4 - 34.4	143.9							
			S-3	34.4 - 36.4	132.6							
			S-4	36.4 - 38.4	54.7							
			S-5	38.4 - 40.4	21.4				30	61	9	SP-SM
			S-6	40.4 - 42.4	16.3							
			S-7	42.4 - 44.4	15.6		(4)					
			S-8	44.4 - 46.4	27.9	NV	NP	NP	3	90	7	SP-SM
			S-9	46.4 - 48.4	143.8							
			S-10	48.4 - 50.4	105.2							
			S-11	50.4 - 52.4	22.0				3	91	6	SP-SM
			S-12	52.4 - 54.4	11.2							
			S-13	54.4 - 56.4	8.7							16
			S-14	56.4 - 58.4	10.4			17				
			S-15	58.4 - 60.4	11.5				41	53	6	SP-SM
			S-16	60.4 - 62.4	26.2		-					

### TABLE 1: Summary of Laboratory Test Results

Seagirt Marine Terminal Channel

Baltimore, MD

		feet )	<u></u>	feet .W)	tent, %	Atto	erberg Lir	nits	Gra	ain Size An	alysis	5
Boring No.	Date Drilled	Depth of Water, feet (below MLLW)	Sample Number	Sample Elevation, feet (Depth below MLLW)	Natural Moisture Content, %	LL	PL	PI	Gravel %	Sand %	Fines (Silt+Clay) %	USCS Classification
P-9	6/18/12	25.2	0.4	050 070	405.5	*****		-				
P-9	0/10/12	25.2	S-1 S-2	25.2 - 27.2	135.5					WWW.		
			S-2 S-3	27.2 - 29.2 29.2 - 31.2	172.8 168.0							
		******	S-3 S-4	31.2 - 33.2	166.3					·······		
		**	S-5	33.2 - 35.2	147.6						*****	
ļ			S-6	35.2 - 37.2	164.3			·				
			S-7	37.2 - 39.2	138.7			177771	***************************************			
			S-8	39.2 - 41.2	119.5					*****		
			S-9	41.2 - 43.2	85.4				0	6	94	ML
l <del></del>			S-10	43.2 - 45.2	36.3				0	-	34	IVIL
		**************************************	S-11	45.2 - 47.2	21.4							
<u> </u>			S-12	47.2 - 49.2	11.3				*****			
			S-13	49.2 - 51.2	12.0				34	60	6	SP-SM
			S-14	51.2 - 53.2	12.7				- •		<u> </u>	<u> </u>
			S-15	53.2 - 55.2	8.0							
			S-16	55.2 - 57.2	7.3			***************************************	******			
			S-17	57.2 - 59.2	9.4					*****		
			S-18	59.2 - 61.2	13.1				53	45	2	GW
			S-19	61.2 - 63.2	9.7							-



### TABLE 1: Summary of Laboratory Test Results

Seagirt Marine Terminal Channel

Baltimore, MD

		feet )	<u>.</u>	feet W)	tent, %	Att	erberg Lir	nits	Gra	ain Size An	alysis	on
Boring No.	Date Drilled	Depth of Water, feet (below MLLW)	Sample Number	Sample Elevation, feet (Depth below MLLW)	Natural Moisture Content, %	LL	PL	PI	Gravel %	Sand %	Fines (Silt+Clay) %	USCS Classification
	1			1 ''								
P-10	6/21/12	25.6	S-1	25.6 - 27.0	109.4							
			S-2	27.0 - 29.0	134.9							
ļ			S-3	29.0 - 31.0	155.9							
			S-4	31.0 - 33.0	156.1						ļ	
			S-5	33.0 - 35.0	145.4							
			S-6	35.0 - 37.0	138.5							
			S-7	37.0 - 39.0	122.5	+						
			S-8	39.0 - 41.0	98.4	***************************************						
			S-9	41.0 - 43.0	129.6							
			S-10	43.0 - 45.0	14.6				46	43	11	GP-GM
			S-11	45.0 - 47.0	29.3		ļ					
			S-12	47.0 - 49.0	100.9							
			S-13	49.0 - 51.0	10.7		ļ					
			S-14	51.0 - 53.0	5.5	×			47	50	3	SP
			S-15	53.0 - 55.0	9.8		ļ					]
			S-16	55.0 - 57.0	14.3							
			S-17	57.0 - 59.0	11.3		<u> </u>	<u> </u>				
			S-18	59.0 - 61.0	7.6				44			
	<u> </u>		S-19	61.0 - 63.0	12.0		<u> </u>	<u> </u>	44	55	1	SP



### TABLE 1: Summary of Laboratory Test Results

Seagirt Marine Terminal Channel

Baltimore, MD

		feet )	L	feet .W)	tent, %	Atte	erberg Lir	mits	Gra	ain Size An	alysis	no
Boring No.	Date Drilled	Depth of Water, feet (below MLLW)	Sample Number	Sample Elevation, feet (Depth below MLLW)	Natural Moisture Content, %	LL	PL	PI	Gravel %	Sand %	Fines (Silt+Clay) %	USCS Classification
P-11	6/21/12	26.4	S-1	27.3 - 29.3	196.3							
1-11	0/21/12	20.4	S-2	29.3 - 31.3	162.3							
			S-3	31.3 - 33.3	166.3							
-			S-4	33.3 - 35.3	163.9	-						
-			S-5	35.3 - 37.3	151.7							
			S-6	37.3 - 39.3	140.9							
			S-7	39.3 - 41.3	139.5							
			S-8	41.3 - 43.3	130.9				0	1	99	ML
			S-9	43.3 - 45.3	127.5							
			S-10	45.3 - 47.3	107.9							
			S-11	47.3 - 49.3	84.2			=				
			S-12	49.3 - 51.3	11.4				63	29	8	GW-GM
			S-13	51.3 - 53.3	11.5							
			S-14	53.3 - 55.3	10.0							
			S-15	55.3 - 57.3	6.2							
			S-16	57.3 - 59.3	9.3							
			S-17	59.3 - 61.3	9.4				42	54	4	SW
			S-18	61.3 - 63.3	12.3							

### TABLE 1: Summary of Laboratory Test Results

Seagirt Marine Terminal Channel

Baltimore, MD

		feet /)		feet LW)	tent, %	Atte	erberg Lii	mits	Gra	ain Size Ar	nalysis	on
Boring No.	Date Drilled	Depth of Water, feet (below MLLW)	Sample Number	Sample Elevation, feet (Depth below MLLW)	Natural Moisture Content, %	LL	PL	PI	Gravel %	Sand %	Fines (Silt+Clay) %	USCS Classification
P-12	6/22/12	37	S-1	270 200	400 A		<u> </u>	T			T	
F-12	0/22/12	37	S-1	37.0 - 39.0 39.0 - 41.0	186.0							
			S-3	41.0 - 43.0	152.3 159.2							
			S-4	43.0 - 45.0	159.2							
			S-5	45.0 - 47.0	146.0							
			S-6	47.0 - 49.0	135.9			<u> </u>		***************************************	· www	
			S-7	49.0 - 51.0	137.3						-	
			S-8	51.0 - 53.0	128.7							····
			S-9	53.0 - 55.0	122.4					****		***************************************
}			S-10	55.0 - 57.0	116.7							
			S-11	57.0 - 59.0	105.1			***************************************				
			S-12	59.0 - 61.0	103.1		· · · · · · · · · · · · · · · · · · ·					
			S-13	61.0 - 63.0	94.7		Himmer					
<u> </u>	<u> </u>		0 10	101.0 00.0	VT.7			<u> </u>				
P-13	6/22/12	40.3	S-1	40.9 - 42.9	138.9		•					
			S-2	42.9 - 44.9	134.3							
			S-3	44.9 - 46.9	143.3							
			S-4	46.9 - 48.9	146.0					1 W. d. d		
			S-5	48.9 - 50.9	142.0						<u> </u>	
			S-6	50.9 - 52.9	135.3					****		
			S-7	52.9 - 54.9	129.0	· · · · · · · · · · · · · · · · · · ·				WILMAN.		
			S-8	54.9 - 56.9						***************************************	,	
			S-9	56.9 - 58.9		****						
			S-10	58.9 - 60.9						4000	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
			S-11	60.9 - 62.9						<del></del>		
			· · · · · · · · · · · · · · · · · · ·				***************************************	.,,,,,,,,	***************************************	****	*******	
P-14	6/25/12	25.9	S-1	27.2 - 29.2	147.8				***************************************			-
			S-2	29.2 - 31.2								
			S-3	31.2 - 33.2	172.2	*****						
			S-4	33.2 - 35.2	162.6					***************************************		
			S-5	35.2 - 37.2	153.9							
			S-6	37.2 - 39.2	146.4					1.0		
			S-7	39.2 - 41.2	142.8							

### TABLE 1: Summary of Laboratory Test Results

Seagirt Marine Terminal Channel

Baltimore, MD

		feet /	<u>.</u>	feet _W)	itent, %	Atto	erberg Lir	mits	Gra	ain Size An	alysis	on
Boring No.	Date Drilled	Depth of Water, feet (below MLLW)	Sample Number	Sample Elevation, feet (Depth below MLLW)	Natural Moisture Content, %	LL	PL	PI	Gravel %	Sand %	Fines (Silt+Clay) %	USCS Classification
		,										
			S-8	41.2 - 43.2	126.5		***************************************			****		
ļ			S-9	43.2 - 45.2	107.8							
			S-10	45.2 - 47.2	92.8					· · · · · · · · · · · · · · · · · · ·		
			S-11	47.2 - 49.2	46.3	***************************************						
			S-12	49.2 - 51.2	41.8					*****		
			S-13	51.2 - 53.2	21.9		********		12	80	8	SP-SM
******			S-14	53.2 - 55.2	21.0							
		· · · · · · · · · · · · · · · · · · ·	S-15	55.2 - 57.2	18.6							
			S-16	57.2 - 59.2	27.8							
			S-17	59.2 - 61.2	23.8							
			S-18	61.2 - 63.2	21.7				3	90	7	SP-SM
D 45	0/00/40	00.0		000 000	400.0							
P-15	6/22/12	22.8	S-1	23.2 - 25.2	106.9							
			S-2	25.2 - 27.2	182.1					77771		
			S-3	27.2 - 29.2	263.7							
			S-4	29.2 - 31.2	216.5							
			S-5	31.2 - 33.2	140.3				*****		· · · · · · · · · · · · · · · · · · ·	
			S-6	33.2 - 35.2	142.4							
			S-7	35.2 - 37.2	168.8							
<u></u>			S-8	37.2 - 39.2	167.1							
			S-9	39.2 - 41.2	164.2							
			S-10	41.2 - 43.2			VVII.		···	***************************************		
			S-11	43.2 - 45.2								
			S-12	45.2 - 47.2						*****		
			S-13	47.2 - 49.2								
			S-14	49.2 - 51.2								
			S-15	51.2 - 53.2								
			S-16	53.2 - 55.2						***************************************		
			S-17	55.2 - 57.2						******		
			S-18	57.2 - 59.2						***************************************		
			S-19	59.2 - 61.2								
			S-20	61.2 - 63.2	124.0							

## BALTIMORE HARBOR ANCHORAGES AND CHANNELS (BHAC)

## MODIFICATION OF SEAGIRT LOOP CHANNEL

### **FEASIBILITY STUDY**

## FINAL INTEGRATED FEASIBILITY REPORT & ENVIRONMENTAL ASSESSMENT

## APPENDIX B2: Design Vessel and Air Draft Analysis

Baltimore Harbor Anchorages and Channels (BHAC)
Modification of Seagirt Loop Channel Feasibility Study

moffatt & nichol

(410)563-7300 www.moffattnichol.com

### **MEMORANDUM**

To: MPA and MES PDT

From: Moffatt & Nichol

Date: July 5, 2022

Subject: Design Vessel and Air Draft Clearance [REV 2]

**M&N Job No.:** 10848-07 BHAC Seagirt Loop Deepening Feasibility

The purpose of this memorandum is to evaluate the selection of design vessels for the BHAC Seagirt Loop Channel Deepening Feasibility in regard to compatibility with Seagirt Marine Terminal, the existing vessel services on the East Coast, and air draft clearance under the bridges, accounting for future sea level rise.

### Design Vessel

Two vessel classes have been identified for use in the Seagirt Loop Deepening Feasibility Study: Post Panamax (PPX) Generation III and Generation III Max containerships with capacity of 13,800 – 16,000 TEU Capacity. PPX III vessels represent the existing vessels calling at Seagirt Marine Terminal (SMT) Berth 4 and will be accommodated at Berth 3 following ongoing upgrades to the berth.

SMT cargo cranes will be able to handle vessels loaded with container stacks up to 22 containers wide with a working boom height of 164 feet. PPX III vessels (up to 14,000 TEU) are typically loaded 20 containers wide. PPX III Max vessels (up to 16,000 TEU) up to 22 containers wide can take full advantage of the capacity of the upgrade to SMT.

Two representative vessels were selected as prototypes for evaluating the relative dimensions of the design vessels as shown in Table 1. Two draft design values are provided in Table 1:

Design Draft The draft of the vessel upon which the naval architecture stability and

performance of the vessel hull are based.

Scantling Draft The maximum structural draft for which the ship hull and supporting

structures are designed. Typically, greater than the design draft and

represents the maximum limit to which a ship can be loaded.

PPX III Vessels currently call at SMT Berth 4 on a regular basis. According to AIS records from Jan 2019 to Jun 2020, 46 vessels greater than 1,180 feet called at SMT 4, or an average of 30 per year. In 2018, only 8 vessels in this class called at SMT, therefore the trend shows increasing calls of vessels of this size and it is anticipated to continue with SMT Berth 3 upgrades.

PPX III MAX vessels began to work routes on the US East Coast beginning in 2021. The *CMA CGM Marco Polo* made its first calls to US East Coast in May 2021 stopping at Halifax, New York, Norfolk, Charleston and Savannah. The *CMA CGM Marco Polo* and her sister ships have established a rotating service between South Asian Ports and US West and East Coasts as shown in Figure 1. During 2021, three *Marco Polo*-class vessels called at East Coast Ports.. While these vessels were the largest containerships in the world when constructed in 2012, newer vessels greater than 20,000 TEU have supplanted them on the high volume Asia-Europe/Asia-West Coast services and the PPX III MAX vessels are therefore providing more service on East Coast routes. Berth 4 at SMT currently has sufficient water depth and crane capacity to service PPX III MAX vessels. Starting in 2022, Berth 3 will have the same capability, providing 2 berths in Baltimore equipped for PPX III MAX vessels.

Parameter	PPX III	PPX III Max
Prototype	MSC Beatrice	CMA CGM Marco Polo
Number of Vessels in Peer Group*	54	18
Nominal TEU Capacity	13,800	16,000
Length Overall (LOA)	1200 ft	1299 ft
Beam (B)	168.0 ft	175.9 ft
Design Draft (T)	47.6 ft	46 ft
Scantling Draft	51.2 ft	52.5 ft
Keel to Masthead	220 ft	227.9 ft
Air Draft**	168.8 - 172.4 ft	175.4 – 181.9 ft

Table 1. Design Vessel Characteristics

^{**} Range of values reflect possible air draft between scantling and design draft



Figure 1. Planned Service Routes for CMA CGM PPX III MAX Containerships

### Air Draft

Efficient access to Baltimore Harbor for the design vessels will be constrained both by the channel dimensions (width and depth) and the two bridges which vessels must pass under to reach Baltimore: The William Preston Lane Jr. Memorial Bridge ("Bay Bridge") and the Francis Scott Key Bridge ("Key Bridge"). The Air Draft of the vessel is defined as the distance from the water surface to the highest point on a vessel. Figure 2 presents definitions important to defining clearance distance under the controlling bridges. It should be noted that Figure 2 is not to scale and should only be used for relevant term definitions or as a general schematic.

KTM Keel to Masthead. Distance from the bottom of the hull of the vessel to the highest point on the mast atop the wheelhouse.

HST Air draft. Distance from water surface to the top of the vessel mast.

^{*} Represents number of vessels in world fleet with similar dimensions and cargo capacity, as reported by Clarkson Register 2021

T Vessel draft under water surface.

ADC Air Draft Clearance. Distance from the top of the ship mast to the lowest point on the

overhanging bridge.

UKC Distance from lowest point on ship hull to the mudline of the channel.

To pass under the bridge safely, a minimum air draft clearance is required. The clearance is determined by the elevation of the water surface at a given time, the draft to which the vessel is loaded, and the speed of transit. The charted clearance of the two bridges is given by NOAA on the nautical chart relative to the mean high water (MHW) elevation (see Figure 3 and Figure 4):

Chesapeake Bay Bridge 182 feet MHW Francis Scott Key Bridge 185 feet MHW

The charted channel depths are given relative to mean lower low water (MLLW). Therefore, to calculate the vertical clearance available at a given time, the water surface elevation must be computed accounting for stage of the tide and any additional allowance, such as sea level rise (SLR). Figure 2 illustrates the variability in the water surface elevation with tide and future SLR. The tidal datum elevations from the NOAA tide gauge at Baltimore (8574680) and Annapolis (8575512) for the current tidal epoch (1983 – 2001) relative to NAVD88 are shown in Table 2.

Table 2. Tidal datum conversions at Baltimore and Annapolis relative to NAVD88 (Tidal Epoch 1983-2001).
---------------------------------------------------------------------------------------------------------

Tidal Datum	Elevation, NAVD88 [ft]			
Tidal Datum	Baltimore	Annapolis		
Mean Higher High Water (MHHW)	0.82	0.66		
Mean High Water (MHW)	0.53	0.42		
NAVD88	0.00	0.00		
Mean Sea Level (MSL)	-0.03	-0.05		
Mean Low Water (MLW)	-0.62	-0.55		
Mean Lower Low Water (MLLW)	-0.84	-0.77		

The general trend of air draft of a vessel (based on the vessel design draft) with increasing TEU capacity is presented in Figure 5. The data is based on general arrangement drawings of vessels from the annual publication *Significant Ships* (RINA, 2004-2019). For reference the bridge clearances of the Bay Bridge and Key Bridge are included as horizontal lines. Above 16,000 TEU, the best fit trend line and data exceed the height of the bridges (at MHW). Therefore, the selection of design vessels appears to represent the feasible maximum under present day bridge constraints. The accessibility of the design vessels is examined in more detail below.

### Air Draft of Design Vessels

The dimensions of the prototype Post Panamax Generation III vessel (*MSC Beatrice*) air draft at design draft is 172.4 feet and therefore can clear both bridges at any tide stage and has margin to transit when loaded lighter than design draft. Air draft for PPX III vessels is evaluated on a case-by-case basis, as shown in Figure 5 there are vessels in this class with air draft greater than *MSC Beatrice*.

The Post Panamax Generation III Max vessel (Marco Polo) keel to masthead height is such that at the maximum operating draft of 47.5 feet (corresponding to the existing 50-foot channel), the vessel air draft

is 180.3 feet, therefore this class of vessel must manage ballast and cargo to take advantage of the 50 - foot channel both on approach and departing Baltimore to clear the bridge.

### Sea Level Rise Effect on Air Draft

The Bay Bridge and Key Bridge are fixed bridges (i.e., do not fold up or retract) and therefore SLR will act to decrease the ADC unless properly managed by supplying additional ballast to vessels transiting below the Bay and Key Bridges. The impact of SLR to navigation of the design vessels (e.g., *MSC Beatrice and CMA CGM Marco Polo*) in the future to Baltimore Harbor is assessed below.

Relative SLR (RSLR) projections were obtained from the USACE Sea-Level Change Curve Calculator (Version 2021.12) for the years 2022 to 2130 using measured data relative to the current tidal epoch (1983 - 2001) from the NOAA tide gauge in Baltimore and Annapolis. The Sea-Level Change Curve Calculator provides three possible RSLR scenarios: low, intermediate, and high. The RSLR projections are shown in Figure 6 and tabulated in Table 3.

The SLR projections from the Baltimore tide gauge were used to assess future vessel ADC at the Key Bridge while the SLR projections from the Annapolis tide gauge were used at the Bay Bridge due to the location of the gauges relative to the bridges of interest. For reference, the Key Bridge is about 4.25 miles southwest of the Baltimore tide gauge and the Bay Bridge is about 5.50 miles east-northeast of the Annapolis tide gauge.

The future ADC of the PPX III and PPX III MAX Vessels are reported below in Table 4 and Table 5, respectively, for the three RSLR scenarios relative to MHW. Note that the tables use the charted bridge clearance and not the air gap sensor. Based on the measured tide gauge records at Baltimore and Annapolis, there has been 0.32 ft and 0.37 ft of SLR, respectively, from the middle of the current tidal epoch (i.e., 1992) to 2022. Therefore, the observed SLR values from 1992 – 2022 were added to the MHW tidal datum, relative to NAVD88, to account for SLR at Baltimore and Annapolis since the current tidal datums were established.

The future ADC of the PPX III MAX vessel is shown graphically in Figure 7 as the future masthead elevation (relative to MHW) due to SLR for the three RSLR projection scenarios. The controlling elevation of the Bay Bridge (relative to MHW) is also shown in Figure 7. The intersection between the Bay Bridge elevation (black) and the future vessel masthead elevation (blue, orange, and gray) indicates the time where air draft is project to exceed the charted clearance of the bridge.

It is important to emphasize that the ADC with future SLR incorporated assumes that both vessels are transiting at the channel design draft of 47.5 ft draft. For lighter loaded vessels, the vessel water draft will decrease with a concomitant decrease in ADC. For the PPX III Max, the vessel must be ballasted or loaded to the maximum allowable channel draft of 47.5 feet to provide sufficient ADC.

The Bay Bridge with lower clearance controls the allowable air draft into Baltimore. For the PPX III Max vessel transiting at high tide (e.g., MHW), there is approximately 1.3 feet of ADC to the charted bridge height under present day conditions. For the intermediate SLR scenario, the ADC decreases to 0.90 feet in 2045 and 0.45 feet in 2065. For the high SLR scenario, the ADC reduces to 0.83 feet and 0.36 feet in 2035 and 2045, respectively.

### Air Gap Sensors and ADC Management

Both bridges into Baltimore have suspension spans over the navigation channel, therefore the bridge deck elevation changes with factors such as temperature and auto traffic volume. The charted bridge clearance is based on the design conditions with bridge deck at its lowest elevation (i.e. high temperature and traffic). Under most conditions the clearance to the lower structural steel of the bridge is more than 3 feet higher than the charted value. Two air gap sensors have been installed at each bridge and are reported through the NOAA PORTS reporting system. The Association of Maryland Pilots (Pilots) use this data to evaluate the bridge clearances and manage ship ballast during approach or upon departure. Each sensor is placed below the lowest structural steel elements of the bridge: the Bay Bridge the sensor is 1.4 feet below structural steel and the Francis Scott Key sensor is 5.47 feet below structural steel.

Figure 8 plots the percent of time that the gap between the water and structural steel exceeds given elevations. For both bridges, the available clearance exceeds the charted value 99% of the time. The Pilots utilize the sensors to evaluate required air draft for each vessel and will transit at air drafts higher than the charted values if the sensors show adequate clearance. However, if the sensors are non-functional or non-reporting then the pilots will revert to the charted values.

### Additional Considerations

### Squat

The ADC will vary by individual vessel, loading conditions, speed of transit, and environmental conditions at the time of transiting under the bridge. The ADC presented in Table 4 and Table 5 does not account for squat of the vessel underway, which will increase ADC. Vessel squat is a sinkage of the hull lower in the water due to the effects of water running past the hull. EM 1110-2-1613 provides a simplified expression to estimate squat (see below) which is proportional to the square of velocity. Assuming a typical transit speed in the upper Chesapeake of 10 knots, the resultant squat for the *CMA CGM Marco Polo* is approximately 1.9 feet, which would provide additional ADC to a vessel passing under the bridge.

$$Z_{max} = \frac{C_b BTV^2}{4.573Lh}$$

 $Z_{max}$  = Squat in feet

C_b = Vessel block coefficient (~0.68 for large containerships)

L = Vessel length (feet)

h = water depth (feet)

V = vessel speed through water (knots)

### Sea Level Rise and Dredged Channels

The existing channels are maintained to a grade of -50 feet MLLW based on the current tidal epoch (1983 - 2001). As sea level rises, channels maintained to the same mudline will become concomitantly deeper. For example, a 0.5 ft increase in sea level, would increase channel depth to 50.5 feet relative to MLLW measured against the 1983 - 2001 tidal epoch. Therefore, vessels could take advantage of the deeper water to transit at a deeper draft and offset the reduction in ADC due to sea level rise. However, when the tidal epoch is updated (next update in 2025 for the 2002-2000 epoch) the MLLW elevation will change with sea level rise. This offset is dependent on how the maintained depth of the channel is defined as water levels change and is a USACE policy issue outside the purview of this memorandum. For the purposes of the analysis, any increase in operational channel depth is neglected.

### **Conclusion**

Recent trends in container service to the US East Coast indicates the PPX II Max Class will become more common at East Coast ports. Based on both the air draft trend in the world fleet and the 100-year projected SLR, the PPX III Max class (16,000 TEU) represents the practical maximum feasible design vessel for the Seagirt Loop Channel that can call at the Seagirt Marine Terminal with the present-day air gap clearance of the Bay Bridge.

The effects of SLR on the ADC of the PPX III Max class vessels showed to be dependent on both the assumed projection scenario (low, intermediate, high) and the tide stage when the vessel would pass beneath the Chesapeake Bay Bridge. The low, intermediate, and high SLR projection showed that ADC at MHW will be approximately 0.5 feet by 2095, 2060, and 2045, respectively. However, actual operational air draft regularly exceeds the charted value by several feet and by utilizing air gap sensors, use of the channel by the design vessel will be extended in all three RSLR scenarios. Note that for the design vessels, ballast and cargo will have to be managed to maintain a draft of 47.5 feet to provide reliable air draft clearance. Therefore, the design vessel requires the full, 50-foot dredged channel depth.

The main restriction for vessel access is the height of the Chesapeake Bay Bridge. Maryland Transportation Authority has commissioned studies for replacement of the span and the Tier 1 Draft Environmental Impact Study (DEIS) was released for public comment in February 2021. Replacement of the span could alleviate the ADC restrictions and allow unimpeded access by PPX III Max class vessels (and larger). The DEIS focused on alternatives for accommodating traffic volumes in 2040. Under the High RSLR scenario, ADC may limit the PPX Class III Max vessels starting in 2045, therefore bridge replacement by 2040 would alleviate this restriction.

Given present-day bridge clearance, utilization of air gap sensors, and anticipated future improvements to the bridge spans, the selection of the PPX Class III Max vessels as the maximum design vessel for the Seagirt Loop Deepening is appropriate..

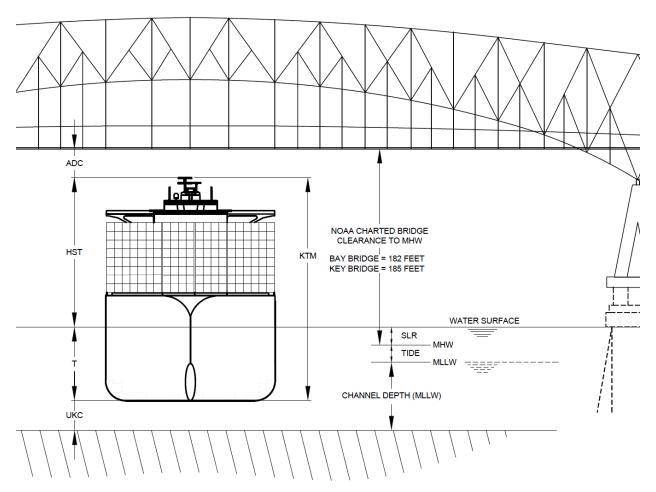
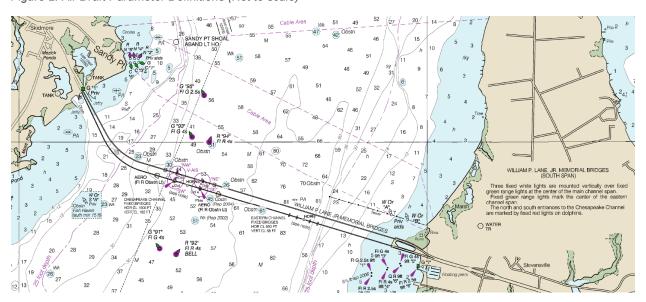




Figure 2. Air Draft Parameter Definitions (Not to scale)



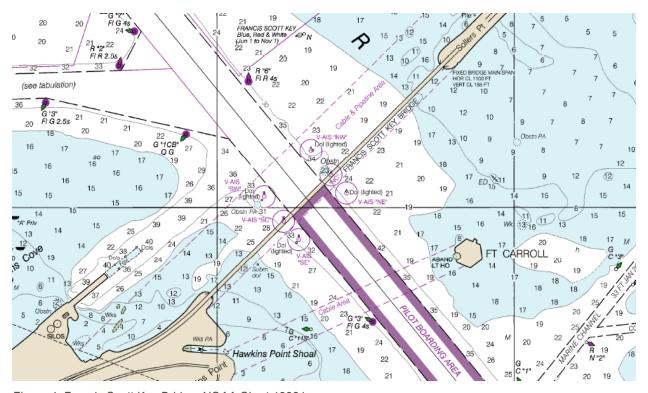



Figure 3. William P. Lane Jr. Memorial Bridge, NOAA Chart 12270

Figure 4. Francis Scott Key Bridge, NOAA Chart 12281

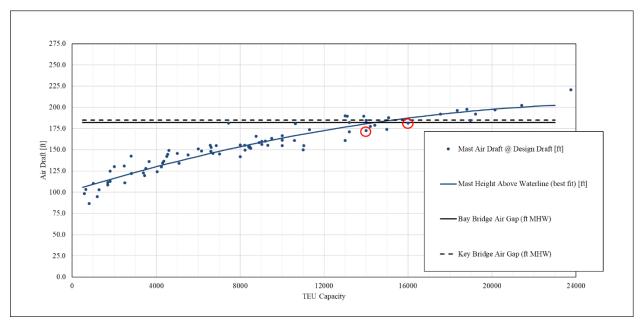



Figure 5. Air Draft Trend for Containerships (RINA), design prototype vessels circled in red

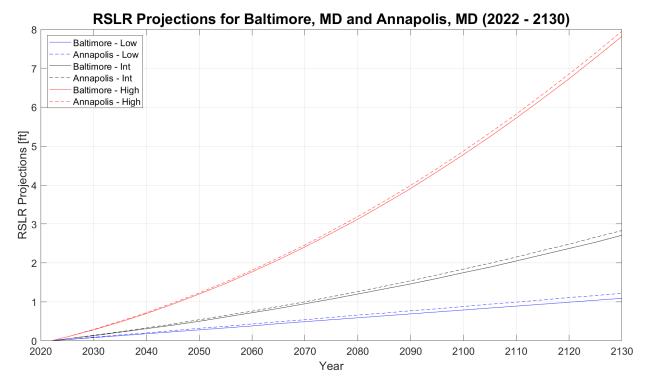



Figure 6. RSLR projections (low, intermediate, and high) from USACE Sea-Level Change Calculator (Version 2021.12) at Baltimore (8574680) and Annapolis (8575512)

Table 3. Tabulated RSLR projections (low, intermediate, and high) from USACE Sea-Level Change Calculator (Version 2021.12) at Baltimore (8574680) and Annapolis (8575512)

	Relative Sea Level Rise (RSLR) [ft]					
Year	Baltimore (8574680)			Annapolis (8575512)		
	Low	Intermediate	High	Low	Intermediate	High
2022	0.00	0.00	0.00	0.00	0.00	0.00
2025	0.03	0.05	0.10	0.03	0.05	0.10
2030	0.08	0.13	0.28	0.09	0.14	0.29
2035	0.13	0.22	0.48	0.15	0.23	0.50
2040	0.18	0.31	0.70	0.20	0.33	0.72
2045	0.23	0.40	0.94	0.26	0.43	0.97
2050	0.28	0.50	1.20	0.32	0.54	1.23
2055	0.33	0.61	1.47	0.37	0.65	1.51
2060	0.38	0.72	1.77	0.43	0.76	1.81
2065	0.44	0.83	2.08	0.49	0.88	2.13
2070	0.49	0.95	2.41	0.54	1.00	2.46
2075	0.54	1.07	2.76	0.60	1.13	2.82
2080	0.59	1.20	3.12	0.66	1.26	3.19
2085	0.64	1.33	3.51	0.71	1.40	3.58
2090	0.69	1.46	3.91	0.77	1.54	3.99
2095	0.74	1.60	4.34	0.82	1.69	4.42
2100	0.79	1.75	4.78	0.88	1.84	4.87
2105	0.84	1.89	5.24	0.94	1.99	5.34
2110	0.89	2.05	5.72	0.99	2.15	5.82
2115	0.94	2.21	6.22	1.05	2.32	6.33
2120	0.99	2.37	6.73	1.11	2.48	6.85
2125	1.04	2.53	7.27	1.16	2.66	7.39
2130	1.09	2.71	7.82	1.22	2.83	7.95

Table 4. Air Draft Clearance (ADC) of MSC Beatrice* with Sea Level Rise Projection

	Air Draft Clearance** (ADC) [ft] at MHW					
Year	Bay Bridge			Key Bridge		
	Low	Inter	High	Low	Inter	High
2022	9.13	9.13	9.13	12.18	12.18	12.18
2025	9.10	9.08	9.03	12.15	12.13	12.08
2030	9.04	8.99	8.84	12.10	12.05	11.90
2035	8.98	8.90	8.63	12.05	11.96	11.70
2040	8.93	8.80	8.41	12.00	11.87	11.48
2045	8.87	8.70	8.16	11.95	11.78	11.24
2050	8.81	8.59	7.90	11.90	11.68	10.98
2055	8.76	8.48	7.62	11.85	11.57	10.71
2060	8.70	8.37	7.32	11.80	11.46	10.41
2065	8.64	8.25	7.00	11.74	11.35	10.10
2070	8.59	8.13	6.67	11.69	11.23	9.77
2075	8.53	8.00	6.31	11.64	11.11	9.42
2080	8.47	7.87	5.94	11.59	10.98	9.06
2085	8.42	7.73	5.55	11.54	10.85	8.67
2090	8.36	7.59	5.14	11.49	10.72	8.27
2095	8.31	7.44	4.71	11.44	10.58	7.84
2100	8.25	7.29	4.26	11.39	10.43	7.40
2105	8.19	7.14	3.79	11.34	10.29	6.94
2110	8.14	6.98	3.31	11.29	10.13	6.46
2115	8.08	6.81	2.80	11.24	9.97	5.96
2120	8.02	6.65	2.28	11.19	9.81	5.45
2125	7.97	6.47	1.74	11.14	9.65	4.91
2130	7.91	6.30	1.18	11.09	9.47	4.36

^{*} Vessel analyzed at channel design draft of 47.5 ft.

^{**} ADC computed based on charted bridge clearance, additional clearance may be available from air gap sensors

Table 5. Air Draft Clearance (ADC) of CMA CGM Marco Polo* with Sea Level Rise Projection

		Ai	r Draft Clearan	ce** [ft] at M	HW	
Year		Bay Bridge			Key Bridge	
	Low	Inter	High	Low	Inter	High
2022	1.33	1.33	1.33	4.38	4.38	4.38
2025	1.30	1.28	1.23	4.35	4.33	4.28
2030	1.24	1.19	1.04	4.30	4.25	4.10
2035	1.18	1.10	0.83	4.25	4.16	3.90
2040	1.13	1.00	0.61	4.20	4.07	3.68
2045	1.07	0.90	0.36	4.15	3.98	3.44
2050	1.01	0.79	0.10	4.10	3.88	3.18
2055	0.96	0.68	-0.18	4.05	3.77	2.91
2060	0.90	0.57	-0.48	4.00	3.66	2.61
2065	0.84	0.45	-0.80	3.94	3.55	2.30
2070	0.79	0.33	-1.13	3.89	3.43	1.97
2075	0.73	0.20	-1.49	3.84	3.31	1.62
2080	0.67	0.07	-1.86	3.79	3.18	1.26
2085	0.62	-0.07	-2.25	3.74	3.05	0.87
2090	0.56	-0.21	-2.66	3.69	2.92	0.47
2095	0.51	-0.36	-3.09	3.64	2.78	0.04
2100	0.45	-0.51	-3.54	3.59	2.63	-0.40
2105	0.39	-0.66	-4.01	3.54	2.49	-0.86
2110	0.34	-0.82	-4.49	3.49	2.33	-1.34
2115	0.28	-0.99	-5.00	3.44	2.17	-1.84
2120	0.22	-1.15	-5.52	3.39	2.01	-2.35
2125	0.17	-1.33	-6.06	3.34	1.85	-2.89
2130	0.11	-1.50	-6.62	3.29	1.67	-3.44

^{*} Vessel analyzed at channel design draft of 47.5 ft.

^{**} ADC computed based on charted bridge clearance, additional clearance may be available from air gap sensors

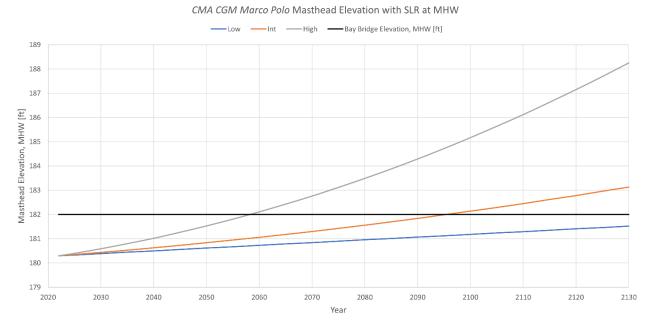



Figure 7. Figure Masthead elevation of the CMA CGM Marco Polo transiting at MHW, draft 47.5 feet, with the three SLR scenarios (blue, orange, and grey) applied. The controlling Bay Bridge elevation is shown (black) to reflect the change in ADC due to SLR.

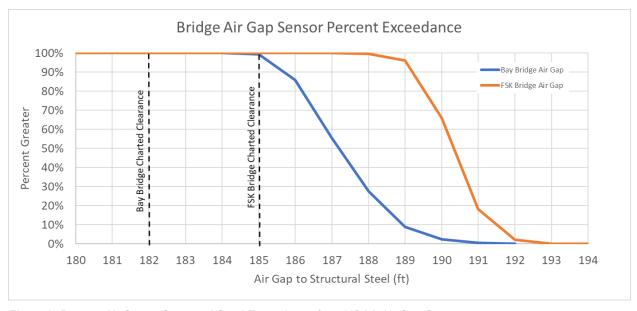



Figure 8. Percent Air Gap to Structural Steel Exceedance from NOAA Air Gap Sensors

### References

Clarkson Research. (2021). The Containership Register. Clarkson Research.

Royal Institute of Naval Architects. (2009-2012). Significant Ships.

- US Army Corps of Engineers. (2006). *EM 1110-2-1613 Hydraulic Design of Deep Draft Navigation Projects*.
- US Army Corps of Engineers. (2019). (ER) 1100-2-8162, Incorporating Sea Level Change in Civil Works Programs.
- US Army Corps of Engineers. (2019). Engineer Pamphlet (EP) 1100-2-1, Procedures to Evaluate Sea Level Change: Impacts, Responses, and Adaptation.
- US Army Corps of Engineers. (2020). Engineering and Construction Bulletin (ECB) 2018-14, Guidance for Incorporating Climate Change Impacts to inland Hydrology in Civil Works Studies, Designs, and Projects.
- US Department of Transportation, Federal Highway Adminstratoin, and Maryland Transportation Authority. (2021). *Cheapeake Bay Crossing Stdy: Tier 1 NEPA Draft Environmental Impact Statement*. MDTA.

http://www.cma-cgm.com/products-services/line-services/flyer/CJX

https://tidesandcurrents.noaa.gov/ports/ports.html?id=8575432&mode=show_all

https://tidesandcurrents.noaa.gov/ports/ports.html?id=8574730&mode=show_all

## BALTIMORE HARBOR ANCHORAGES AND CHANNELS (BHAC)

## MODIFICATION OF SEAGIRT LOOP CHANNEL

### **FEASIBILITY STUDY**

### FINAL INTEGRATED FEASIBILITY REPORT & ENVIRONMENTAL ASSESSMENT

# APPENDIX B3: Maritime Institute of Technology and Graduate Studies (MITAGS) Study

Baltimore Harbor Anchorages and Channels (BHAC)
Modification of Seagirt Loop Channel Feasibility Study



## Full Mission Ship Simulation for Seagirt Simulation Study



Provided by The Maritime Institute of Technology and Graduate Studies (MITAGS)

**April 30 - May 4, 2018** 

The Maritime Institute of Technology & Graduate Studies-Pacific Maritime Institute (MITAGS-PMI) was pleased to provide this desktop and Full Mission Bridge Navigation Simulation Study.





RFP Name	Seagirt West Loop Improvement Simulation Study
Project Location	Seagirt Marine Terminal, Baltimore, MD
Purpose	Validate channel improvements
Customer	Maryland Port Administration
Customer Representative	Mr. Daniel Behnke, Gahagan & Bryant Associates, Inc.
Bidder Legal Name and Location	The MMP MATES Program, DBA the Maritime Institute of Technology & Graduate Studies, and the Pacific Maritime Institute (MITAGS-PMI).  MITAGS-PMI  692 Maritime Boulevard  Linthicum Heights, MD 21090-1952  Web: <a href="http://www.mitags-pmi.org">http://www.mitags-pmi.org</a>
Bidder Description	The MM&P Mates Program is a 501(c)9 VEBA Non-profit Trusteeship. The "MATES Program" was founded by the International Organizations of Masters, Mates and Pilots and the leading U.S. Flag ship operators in 1968. Its mission is to enhance professionalism through the development and presentation of internationally recognized programs in leadership, education, training and safety for the maritime industry. MITAGS and PMI are the primary training and simulation centers for the MMP professional deck officers and pilots.  Tax ID Number: 13-2577386.  MD Tax Exemption Number: 31000665  Dun and Bradstreet Number: 010094977
Report Release Date	December 4, 2018
MITAGS Project Leader	Ms. Colleen Schaffer
Project Review	Mr. Glen Paine, Executive Director, MMP MATES Program
Authorized Signature	M more

MITAGS-PMI accepts no liability for the use of the findings, conclusions and recommendations provided by the conning pilots in this simulation study. Additionally, MITAGS-PMI cannot be held responsible for errors in the data provided by the client and other third parties used for the programming of the simulator hydrodynamic ship / tug models, and databases.

The recommendations provided within this report are for guidance. The final decision on whether it is safe to transit rests with the master of the vessel and the local pilot.



## **TABLE OF CONTENTS**

1.	Background and Purpose					
	1.1	Object	ives	7		
	1.2	Assum	ptions and Limitations of Simulation	7		
	1.3	MITAG	S Simulation Facilities and Project Team	8		
2.	Vessel	Modelin	ng	11		
3.	Databa	ase Deve	elopment	12		
	3.1	Bathyn	netry	12		
	3.2	Enviro	nmental Parameters	14		
		3.2.1	Wind Parameters	14		
		3.2.2	Currents/TIDE	14		
		3.2.3	Waves	14		
		3.2.4	Visibility and Time of Day	14		
4.	Results	S		15		
	4.1	Swept	Path Analysis	18		
	4.2	Power	Resources Analysis	75		
	4.3	Pilot ai	nd Tug Master Evalutations	78		
		4.3.1	Pilot Evaluations	78		
		4.3.2	Tug Master Evaluations	82		
5.	Conclu	ision Sur	nmary	90		
6.	Appen	dix A – P	Pilot Cards	92		
7.	Appen	ndix B - Reserve Power Analysis Plots94				
8.	Appen	dix C – N	MITAGS/PMI Information	128		
		MITA	GS LOCATION AND GENERAL FACILITY DESCRIPTION	128		
		PMI L	OCATION AND GENERAL FACILITY DESCRIPTION	128		



## TABLE OF FIGURES

Figure 1-1: Site location (provided by Google Earth)	6
Figure 1-2: Bridge 1 FMSS, simulation control room, and tug bridge	8
Figure 3-1: Display of Widener A and Widener B designs (GBA)	13
Figure 3-2: Databases showing Widener A and Widener B designs	14
Figure 4-1: Channel boundaries and Widener A and B designs	18
Figure 4-2: All runs summary	19
Figure 4-3: Run 1 – Overall view	20
Figure 4-4: Run 1 – Zoomed in view	21
Figure 4-5: Run 2 – Overall view	22
Figure 4-6: Run 2 – Zoomed in view	23
Figure 4-7: Run 3 – Overall view	24
Figure 4-8: Run 3 – Zoomed in view	25
Figure 4-9: Run 4 – Overall view	26
Figure 4-10: Run 4 – Zoomed in view	27
Figure 4-11: Run 5 – Overall view	28
Figure 4-12: Run 5 – Zoomed in view	29
Figure 4-13: Run 6 – Overall view	30
Figure 4-14: Run 6 – Zoomed in view	31
Figure 4-15: Run 7 – Overall view	
Figure 4-16: Run 7 – Zoomed in view	
Figure 4-17: Run 8 – Overall view	
Figure 4-18: Run 8 – Zoomed in view	35
Figure 4-19: Run 9 – Overall view	
Figure 4-20: Run 9 – Zoomed in view	
Figure 4-21: Run 10 – Overall view	
Figure 4-22: Run 11 – Zoomed in view	
Figure 4-23: Run 12 – Zoomed in view	
Figure 4-24: Run 13 – Zoomed in view	
Figure 4-25: Run 14 – Zoomed in view	
Figure 4-26: Run 15 – Overall view	
Figure 4-27: Run 15 – Zoomed in view	
Figure 4-28: Run 16 – Zoomed in view	
Figure 4-29: Run 17 – Overall view	
Figure 4-30: Run 17 – Zoomed in view	
Figure 4-31: Run 18 – Zoomed in view	
Figure 4-32: Run 19 – Overall view	
Figure 4-33: Run 19 – Zoomed in view	
Figure 4-34: Run 20 – Zoomed in view	
Figure 4-35: Run 21 – Zoomed in view	
Figure 4-36: Run 22 – Zoomed in view	
Figure 4-37: Run 23 – Overall view	
Figure 4-38: Run 23 – Zoomed in view	
Figure 4-39: Run 24 – Overall view	
Figure 4-40: Run 24 – Zoomed in view	
Figure 4-41: Run 25 – Overall view	
Figure 4-42: Run 25 – Zoomed in view	
Figure 4-43: Run 26 – Overall view	
Figure 4-44: Run 26 – Zoomed in view	
Figure 4-45: Run 27 – Overall view	62



Figure 4-46: Run 27 – Zoomed in view	63
Figure 4-47: Run 28 – Zoomed in view	64
Figure 4-48: Run 29 – Overall view	65
Figure 4-49: Run 29 – Zoomed in view	66
Figure 4-50: Run 30 – Overall view	67
Figure 4-51: Run 30 – Zoomed in view	68
Figure 4-52: Run 31 – Overall view	69
Figure 4-53: Run 31 – Zoomed in view	70
Figure 4-54: Run 32 – Zoomed in view	71
Figure 4-55: Run 33 – Overall view	72
Figure 4-56: Run 33 – Zoomed in view	73
Figure 4-57: Run 34 – Zoomed in view	
Figure 5-1: Summary of all runs	90
Figure 5-2: Channel modifications (dotted green lines) in addition to the Widener A and B designs.	90
Figure 8-1: Aerial photograph of MITAGS campus and location	129
TABLE OF TABLES	
Table 1-1: MITAGS support team	9
Table 1-2: Participants	
Table 2-1: Ship models	11
Table 2-2: Tug models	11
Table 4-1: Test matrix	15
Table 4-2: Reserve power analysis	76
Table 4-3: Pilot ratings	78
Table 4-4: Pilot evaluation comments	79
Table 4-5: Tug master ratings	83
Table 4-6: Tug master evaluation comments	84



## 1. BACKGROUND AND PURPOSE

The Maryland Port Administration (MPA) is evaluating channel improvements for the Seagirt Terminal's East and West Loop in order to facilitate ULCV transits. The improvements include:

- 1. The creation of a turning basin between Berth 4 and the Dundalk Marine Terminal.
- 2. Expansion of channel width off Berth 3 in order to accommodate ULCVs.
- 3. Expansion of Seagirt East and West Access Channel for facilitating ULCV movements.

MPA has selected Gahagan & Bryant Associates (GBA), a leading marine engineering consultancy, to complete engineering and design plans for these improvements. As part of the design validation and optimization processes, GBA desires to conduct a full-mission ship navigation simulation study.

The study was conducted at the Maritime Institute of Technology and Graduate Studies (MITAGS) conducted the study on April 30 to May 4, 2018.

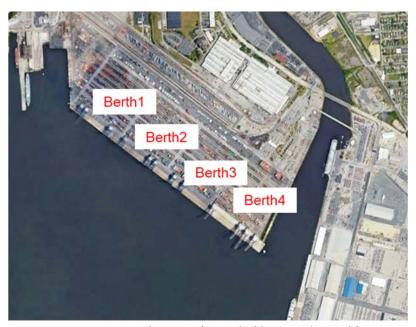



Figure 1-1: Site location (provided by Google Earth)



#### 1.1 OBJECTIVES

The following objectives were evaluated throughout the study:

- Determine if with channel improvements, the 14,000 TEU container vessel (*Kalina*) can transit to/from Berth 3 with ULCV at Berth 4 via East Loop
- Determine if with channel improvements, the 14,000 TEU container vessel (*Kalina*) can transit from Berth 3 and Berth 4 via West Loop
- Determine if with channel improvements, the 18,000 TEU container vessel (*Ben Franklin*) can transit to/from Berth 3 with ULCV at Berth 4 via East Loop
- Determine if with channel improvements, the 18,000 TEU container vessel (*Ben Franklin*) can transit from Berth 3 and Berth 4 via West Loop

### 1.2 ASSUMPTIONS AND LIMITATIONS OF SIMULATION

MITAGS used the following assumptions for this study:

- The MITAGS ship models selected by the client are reflective of what is expected to call on the container terminals
- The client provided environmental data that is sufficiently accurate for the purposes of this preliminary study
- The primary focus of the study was ship maneuvering behavior

The fidelity of the hydrodynamic model is dependent on the accuracy of the source data, mathematical formulas, and recommended adjustments provided by subject matter experts (captains). The model behaviors are based on the pilot card, windage, general arrangement plans, squat table, and any other data provided by the client or other sources. The model behaviors, as calculated by the simulator, are adjusted based on the consensus opinion of MITAGS and the pilots. Since the adjustments are subjective, the recommended model adjustments may vary depending on the collective experience of the testing captains and pilots at each session.

The MITAGS simulator provides a close approximation of vessel squat in shallow water. However, an adequate safety margin needs to be used in order to account for changes in squat due to vessel speeds, displacements, channel shoaling, and tidal actions.

Model behavior is highly dependent on the accuracy of the bathymetry, the current, and wind flows. In real world situations, such forces could vary significantly over the operating area. In addition, the models used in these tests were representative of vessel classes similar in size and displacement. Vessels of the same class may have significant differences in handling characteristics in real-word conditions. During berthing exercises, the simulator does not account for the forces on the fendering system due to a ship rolling in a swell.



The auto-tug feature of the simulator provided a more realistic simulation of the assist tug than vector forces, but is not as accurate as having a tug bridge integrated with the full-mission simulator. Auto-tugs and a tug bridge were used.

### 1.3 MITAGS SIMULATION FACILITIES AND PROJECT TEAM

MITAGS used a full-mission ship simulator (FMSS) for the study (April 30 to May 4, 2018) as well as two integrated tug bridges.

Past studies that specifically focused on the safe navigation transits of ultra large container vessels (ULCVs) included Philadelphia (Packer Avenue), Port of NY/NJ, PortMiami, Port of Baltimore and Chesapeake Bay, Puget Sound (Port of Tacoma), Houston (Bayport and Barbour's Cut), and Savannah. International container ports studies included the Port of Itapoá (Brazil), Superport Acu (Brazil), Port of Antofagasta (Chile), Port of Colombo (Sri Lanka), and the Port of San Antonio (Chile).

Additionally, we have worked on cruise, LNG, oil, and bulk carrier projects for ports / pilot groups in Bermuda, Mauritania, Peru, Columbia, and Canada. Future ULCV simulation projects include the Port of New York / New Jersey, and potentially, Freeport Bahamas.

The MITAGS simulators are capable of providing the most realistic 360° presentation, from the perspective of a pilot / master / tug operator, in the world. The theater projection area is over twenty-four meters wide and twelve meters in height. This provides unsurpassed depth perception and visual accuracy.

Additionally, the large simulator control room had ample space for client representatives to remotely observe the entire simulation including visuals, environmental conditions, pilot orders and their effects on the vessel behavior. The full-mission shiphandling simulator met or exceeded the Det Norske Veritas (DNV) Class A standards. MITAGS-PMI is DNV certified as a Maritime Training and Simulation Center. Please refer to the MITAGS-PMI Simulation Capability & Facilities Guide for further details on team member qualifications and simulation capabilities.



Figure 1-2: Bridge 1 FMSS, simulation control room, and tug bridge



The simulator was supported by a highly experienced in-house simulation modeling team and ship handling experts (listed below in Table 1-1). In addition to the Maryland Pilots, MITAGS provided an experienced maritime pilot (Captain Bergin). MITAGS also provided an experienced simulator operator (Commander Birch). The simulation engineering team provided on-site simulation, hydrodynamic modeling, and engineering support during the Study.

Table 1-1: MITAGS support team								
Attendees	Position and Duties							
Mr. Glen Paine	Responsible for overall coordination with client representatives							
Executive Director	and ensure the necessary resources are allocated to this project.							
Mr. Hao Cheong Direct of Simulation Engineering	Responsible for the overall simulation technical support of project. Assisted in collection of data necessary to model the terminal, vessel under the expected environmental conditions. Served as liaison with MITAGS Simulation Engineering Staff.							
Mr. Robert Weiner	Responsible for the programming of the ship models. Also							
Naval Architect	provided support for simulator projection system and							
Hydrodynamic Ship Modeler	maintenance during tests. Assisted in review of report.							
Ms. Colleen Schaffer Coastal Engineer	Responsible for overseeing simulation project and preparing report on findings, conclusions, and recommendations with supporting data.							
Commander Allen Birch Simulator Operator	Responsible for operating the simulator during the tests.							
Captain Larry Bergin Shiphandling Consultant	Responsible for validating the ship models and databases. Responsible for conning the simulated vessels and providing expertise in the handling of the ships. Provided support as needed.							
Captain Steve Thalheimer	Responsible for assisting in running the simulated tug bridges and providing expertise in the handling of the tugs.							
Captain Jonathan Steinberg	Responsible for assisting in running the simulated tug bridges and providing expertise in the handling of the tugs.							
	Table 1-2: Participants							
Attendees	Company							
Captain Mike Flanagan	Association of Maryland Pilots							
Captain John Traut	Association of Maryland Pilots							
Captain Bruce Morse-Ellington	Association of Maryland Pilots							
Captain Kevin Hanna	Association of Maryland Pilots							
Captain Tad Whitin	Association of Maryland Pilots							
Captain Carroll Cudworth	Association of Maryland Pilots							
Captain Jim Hickey	Association of Maryland Pilots							
Captain Mike Reagoso	McAllister							
Captain Bob Dempsey	McAllister							
Captain John Shellenberger	McAllister							
Captain Paul Swensen	Moran							



Captain Eddie Lucas	Moran			
Captain Matt Barranco	Moran			
Captain Wes Southward	Moran			
Dan Behnke	GBA			
Dennis Urso	GBA			
Captain Greg Brooks	Towing Solution			
Dave Bibo	Maryland Port Administration			
Shawn Kiernan	Maryland Port Administration			
Ryan Barry	Maryland Port Administration			
Joe Greco	Ports of America			

MITAGS is uniquely qualified to conduct this type of study. MITAGS has the ship / tug hydrodynamic ship models that provide the level of fidelity needed to conduct this type of study. MITAGS-PMI has a large library of vetted ship and assist tug models.

Our organization has over 30 years of experience in ship simulators, modeling, and is among the leading maritime training and simulation centers. The center is supported by experienced shiphandling consultants, and full-time simulation engineering staff. MITAGS has the ship / tug hydrodynamic ship models that provide the level of fidelity needed to conduct this type of study. MITAGS-PMI has a large library of vetted container ships and assist tug models. For more information on the MITAGS, please visit <a href="http://www.mitags-pmi.org/">http://www.mitags-pmi.org/</a> and YouTube® for videos of simulation projects at <a href="http://www.youtube.com/user/MaritimeInstitute">http://www.youtube.com/user/MaritimeInstitute</a>.



### 2. VESSEL MODELING

The Kalina (14,000 TEU) and Ben Franklin (18,000 TEU) were the two container vessels used in this study. The specific ship parameters are listed in Table 2-1; the Pilot Cards are available in Appendix A. In the majority of the runs, only three tugs were used with a fourth on standby. Two tugs were simulated as live tugs using the integrated tug bridges. The remaining two tugs were controlled by the simulator operator using AutoTug mode — one was a 60 t ASD tug and the other a 40 t ASD tug. The two live tugs were simulated using the Z-Tech 7500 had a bollard pull of 75 t; however, the tug operators attempted to limit the bollard pull to 60 t.

Each hydrodynamic model was pre-validated by the MITAGS-PMI shiphandling experts comparing the model to sea trial data, tank tests (if available), pilot / captain reports, and vessels of similar class and size. (Please see the MITAGS-PMI Simulation Guide for more details on model validation processes).

Table 2-1: Ship models						
Parameters	Kalina	Ben Franklin				
NA - del Nieve -	Container	Container Ben				
Model Name	Kalina_Seagirt	Franklin_Seagirt				
Displacement	192,245	213,040				
Loaded (tons)						
Length (m)	366	399.2				
Beam (m)	51.2	54				
Trim	Even	Even				
Load Draft (m)	14.3	14.3				
Engine (kW)	2 x 73,340	2 x 63,910				
Propeller	Fixed pitch	Fixed pitch				
Bow Thrusters	2 (1700 kW)	2 (2043 kW)				

Table 2-2: Tug models							
arameters	Z-Tech 6500	Z-Tech 7500					
Length (m)	30	30					
Beam (m)	12	12					
Trim	Even	Even					
Load Draft (m)	5	5					
	65 t	85 t					
Bollard Pull	Limited to 60 t for Tug 2	Limited to 60 t					
	Limited to 40 t for Tug 3						



### 3. DATABASE DEVELOPMENT

### 3.1 BATHYMETRY

MITAGS programmed and validated a hydro-dynamically accurate geographic area database that included detailed visual scenes, RADAR, and ECDIS images. The local chart and bathymetric data were assembled to form the base layer of the database from the Army Corps of Engineers and NOAA. The MITAGS Simulation Engineering Department used proprietary Transas® database modeling software to import the electronic chart display information system (ECDIS) data. This software automatically transferred the information from ECDIS into the simulator database and linked the visual and radar databases. The ECDIS data transferred included:

- Hydrographic: depth points, depth lines, depth contours, drying areas, three dimensional (3D) channel bottom.
- Landmass: 3D terrain, DEM data, coastlines, islands, pier structures, etc.
- Navigation Aids: buoys, ranges, and lighthouses.
- Navigation Signals: color, light timing, light sector, etc.

Bathymetric surveys from the Army Corps of Engineers from 2018 were used to populate the channel and surrounding areas. Figure 3-1 shows the two widener designs that were visible to the Pilots and Tug Masters on their ECDIS displays. In addition to the loop channel at Seagirt, the areas in the Wideners were dredged to 51 ft.



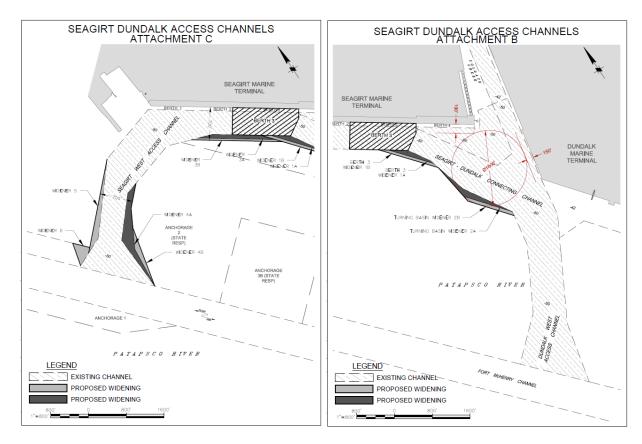
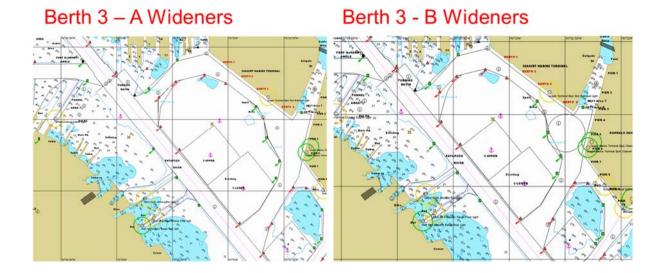




Figure 3-1: Display of Widener A and Widener B designs (GBA)

Two databases were created to execute the design and are shown below in Figure 3-2.





# West Loop – A Wideners

# West Loop - B Wideners




Figure 3-2: Databases showing Widener A and Widener B designs

## 3.2 ENVIRONMENTAL PARAMETERS

### 3.2.1 WIND PARAMETERS

Wind speeds ranging from 15 kts to 30 kts were simulated from several directions including the S, SW,SE, W, WNW, WSW, NW, and NE. However, the majority of the runs simulated wind from either the WNW or NW. The wind was simulated as a static wind.

## 3.2.2 CURRENTS/TIDE

No current was used in the simulations simulating slack water. No tide was used in the simulations as all simulations were conducted at Mean Lower Low Water.

## 3.2.3 WAVES

No waves were used in the simulation except negligible wind waves originating from the same direction as the wind in all of the runs.

## 3.2.4 VISIBILITY AND TIME OF DAY

Tests were conducted in clear visibility. However, the simulator operator is able to simulate rain, squalls, fog, and low-altitude clouds if needed in future simulations.



## 4. RESULTS

This section includes an analysis of the swept path, reserve power analysis, and a summary of the Pilot and Tug Master evaluations. Table 4-1 shows the test matrix summarizing each simulation and the conditions tested. Each run was recorded and can be reviewed by the client or MITAGS.

Table 4-1: Test matrix

	Ship	Run Scenario	Route	Wind		
Run				Dir (FROM)	Speed (knot)	Notes
1	Kalina	In	Familiarization; Berth 3 Via East Loop	S	15	
2	Kalina	ln	Berth 3 Via East Loop	WNW	20	
3	Kalina	Out	Berth 3 Via East Loop	WNW	20	Grounded in Widener 3
4	Kalina	Out	Berth 3 Via East Loop	WNW	25	
5	Kalina	Out	Berth 3 Via East Loop	WNW	30	
6	Kalina	In	Berth 3 Via East Loop	WNW	25	
7	Kalina	In	Berth 3 Via East Loop	WNW	30	
8	Kalina	Out	Berth 3 Via East Loop	SW	25	Re-started exercise halfway through
9	Kalina	Out	Berth 3 Via West Loop	NW	15	
10	Kalina	Out	Berth 3 Via West Loop	NW	20	Grounded in Widener 3



	Ship	Run Scenario	Route	Wind		
Run				Dir (FROM)	Speed (knot)	Notes
11	Kalina	Out	Berth 3 Via West Loop	NW	20	
12	Kalina	Out	Berth 3 Via West Loop	NW	30	
13	Kalina	Out	Berth 3 Via West Loop	SE	30	
14	Kalina	Out	Berth 3 Via West Loop	SW	25	Tug 4 hit ship
15	Kalina	Out	Berth 3 Via East Loop	NW	20	
16	Kalina	Out	Berth 3 Via East Loop	WSW	25; gusts	
17	Ben Franklin	In	Berth 3 Via East Loop	NW	20	
18	Ben Franklin	Out	Berth 3 Via East Loop	W	25	
19	Ben Franklin	Out	Berth 3 Via East Loop	NW	25	
20	Ben Franklin	Out	Berth 3 Via West Loop	NW	25	No tug commands received due to radio issues
21	Ben Franklin	Out	Berth 3 Via West Loop	NW	25	Tug 2 hit Buoy 10
22	Ben Franklin	Out	Berth 3 Via West Loop	SW	25	
23	Kalina	In	Berth 3 Via West Loop	W	20	
24	Kalina	In	Berth 3 Via East Loop	SE	20	



	Ship	Run Scenario	Route	Wind		
Run				Dir (FROM)	Speed (knot)	Notes
25	Kalina	Out	Berth 3 Via East Loop	WNW 292	20	
26	Kalina	Out	Berth 3 Via East Loop	W	25	
27	Kalina	Out	Berth 3 Via East Loop	315/330	25;	
28	Kalina	Out	Berth 3 Via East Loop	215	25	
29	Ben Franklin	In	Berth 3 Via East Loop	NW	25	
30	Ben Franklin	Out	Berth 3 Via East Loop	S	15	
31	Ben Franklin	Out	Berth 3 Via East Loop	NW	25	
32	Ben Franklin	Out	Berth 3 Via West Loop	NW	20	
33	Ben Franklin	In	Berth 3 Via West Loop	NW	20	
34	Ben Franklin	Out	Berth 3 Via East Loop;	NW	20	Dead engine in Tug 2 (stern tug)



#### 4.1 SWEPT PATH ANALYSIS

In this section, each run's swept path is plotted. Each run is shaded according to its time throughout the run where dark red represents the beginning of the run (time = 0 sec) and dark blue represents the end of the run. Tug 1, Tug 2, Tug 3, and Tug 4 are represented by the blue, red, green, and turquoise tugs respectively as shown in the legend. The light blue lines show the existing channel boundaries while the yellow lines represent the Widener A design and the red lines represent that Widener B design (Figure 4-1). Each ship and tug are also plotted in 45 second intervals. Figure 4-2 shows all of the runs and the overall area the swept paths used with Both Widener A and Widener B designs laid over it. As the figure shows, the additional space provided from these wideners was used.




Figure 4-1: Channel boundaries and Widener A and B designs






Figure 4-2: All runs summary



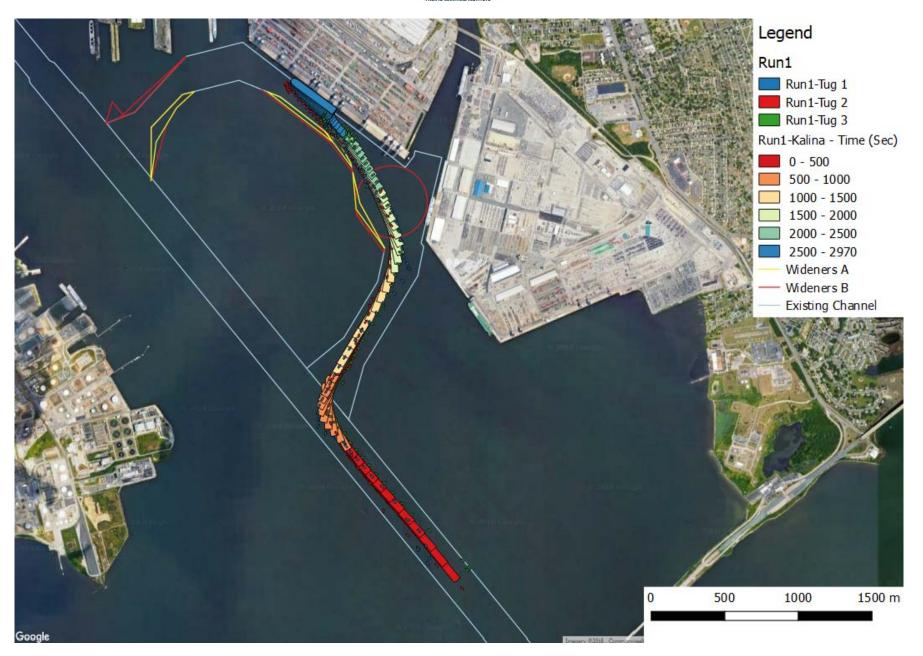



Figure 4-3: Run 1 – Overall view



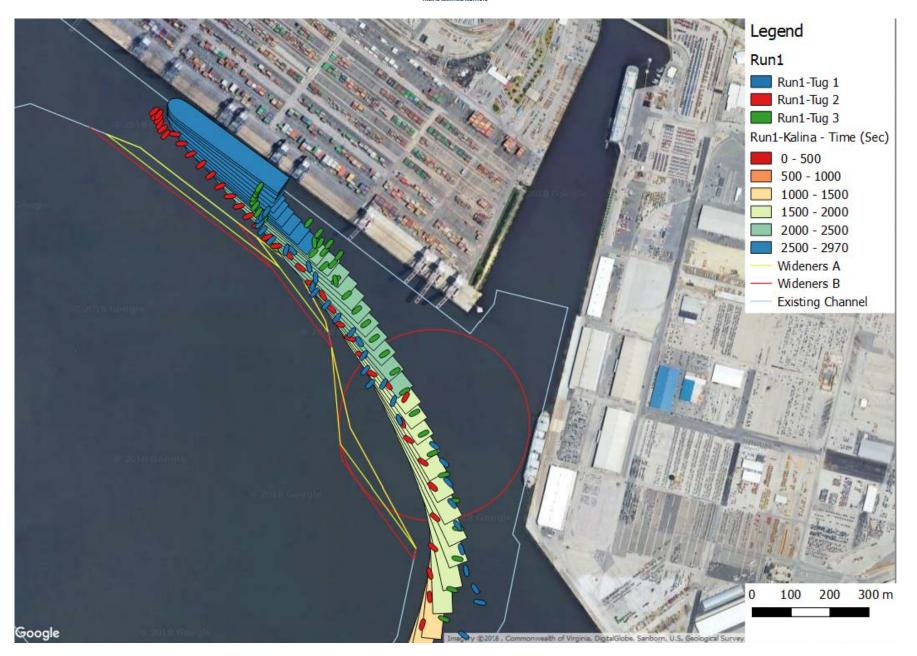



Figure 4-4: Run 1 – Zoomed in view



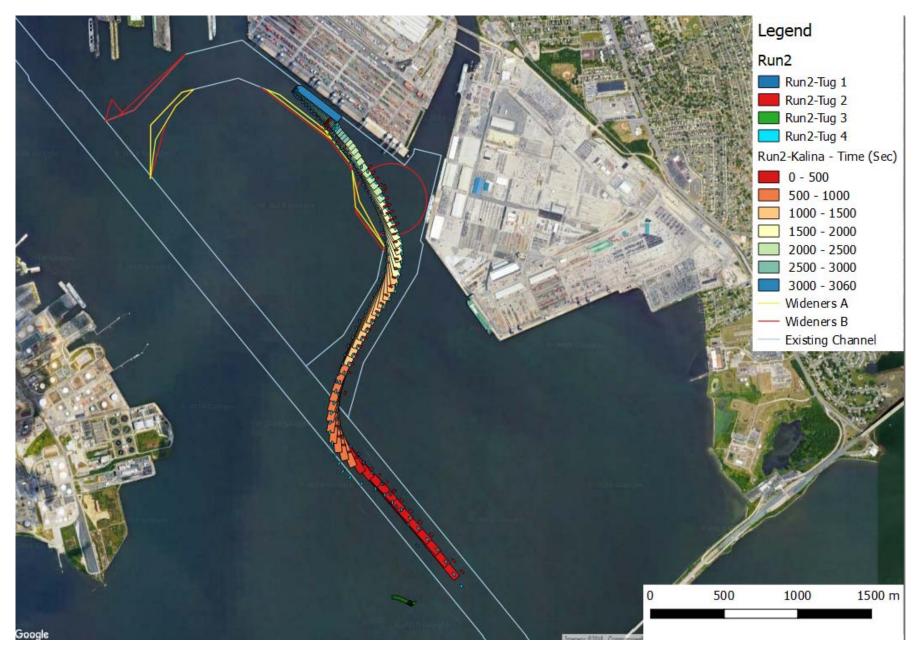



Figure 4-5: Run 2 – Overall view



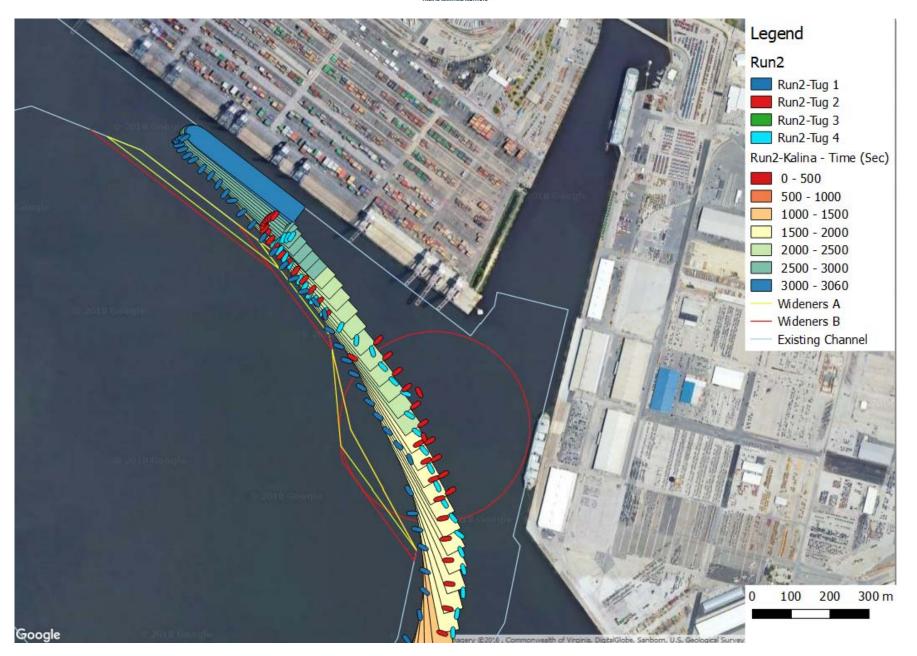



Figure 4-6: Run 2 – Zoomed in view






Figure 4-7: Run 3 – Overall view



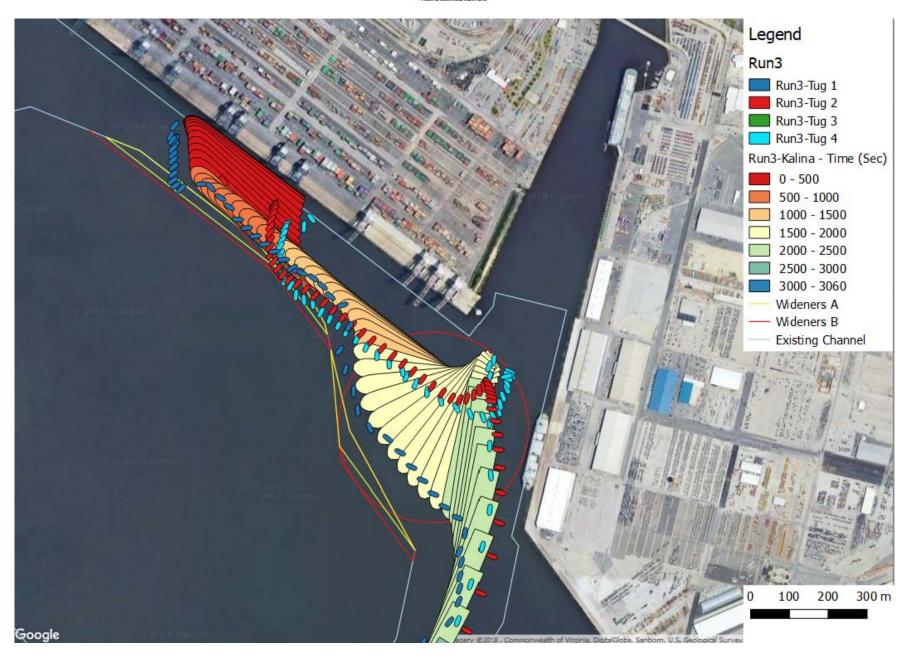



Figure 4-8: Run 3 – Zoomed in view



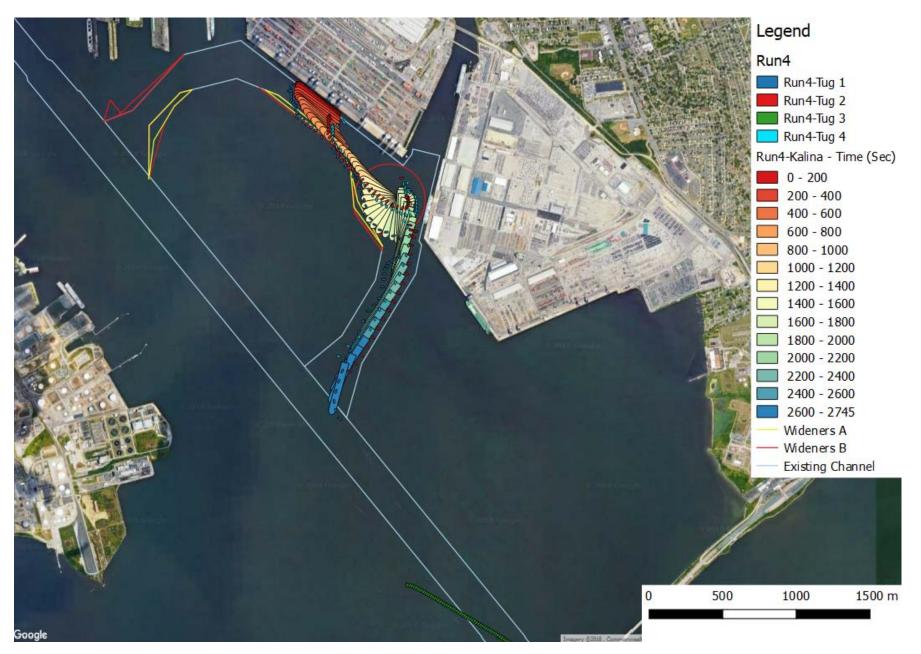



Figure 4-9: Run 4 – Overall view



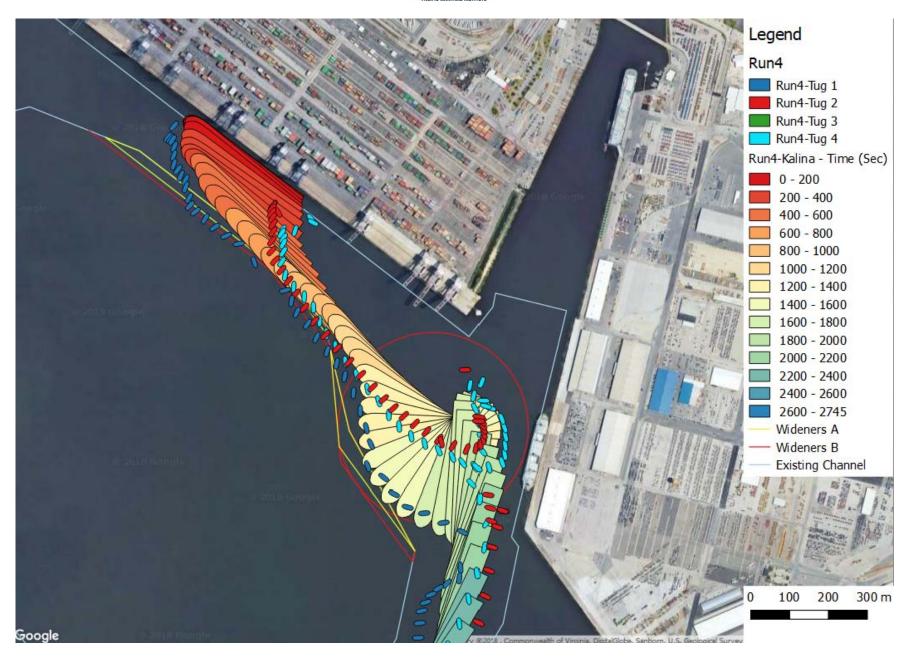



Figure 4-10: Run 4 – Zoomed in view



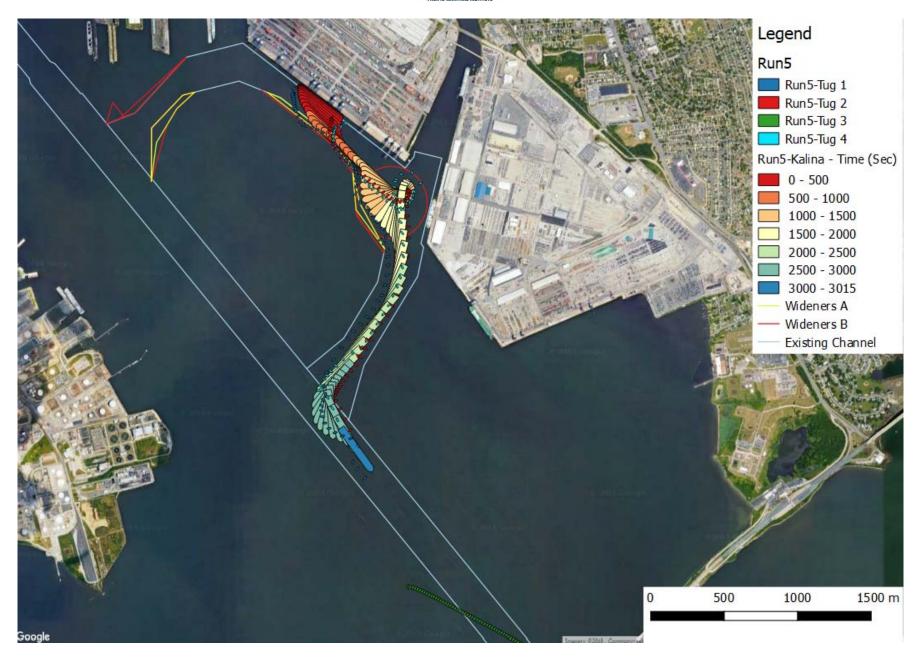



Figure 4-11: Run 5 – Overall view



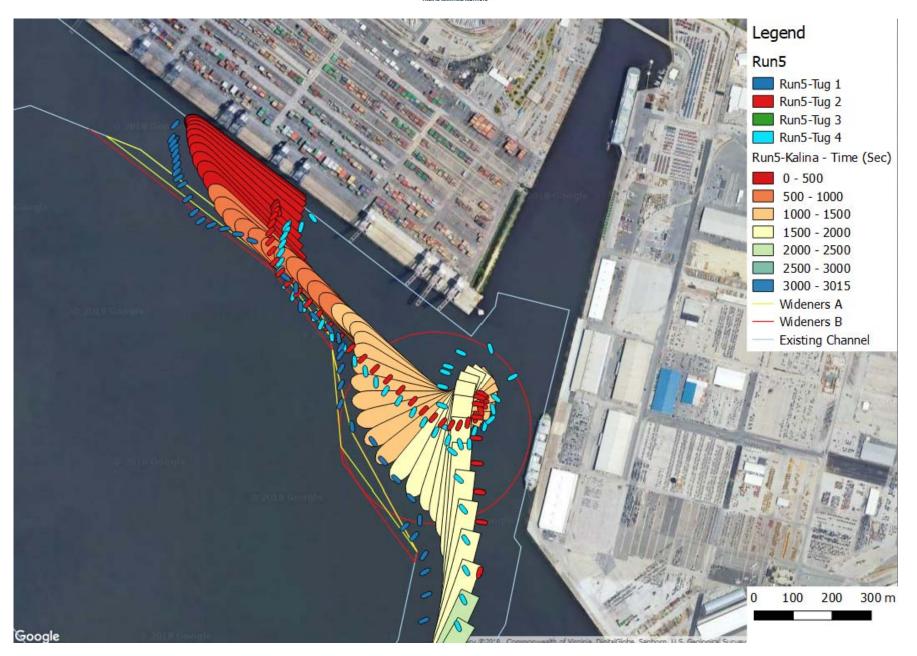



Figure 4-12: Run 5 – Zoomed in view






Figure 4-13: Run 6 - Overall view



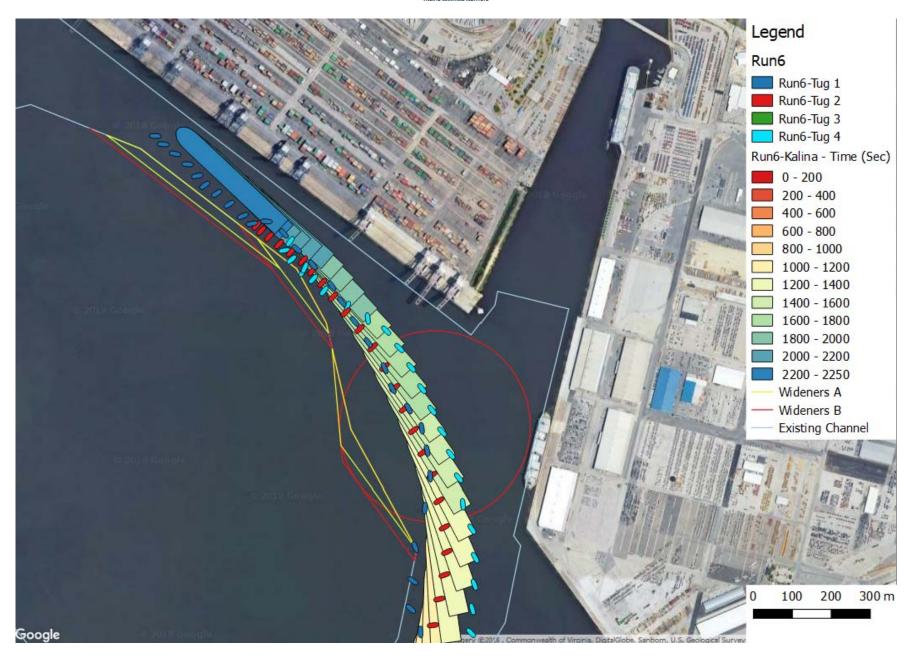



Figure 4-14: Run 6 – Zoomed in view



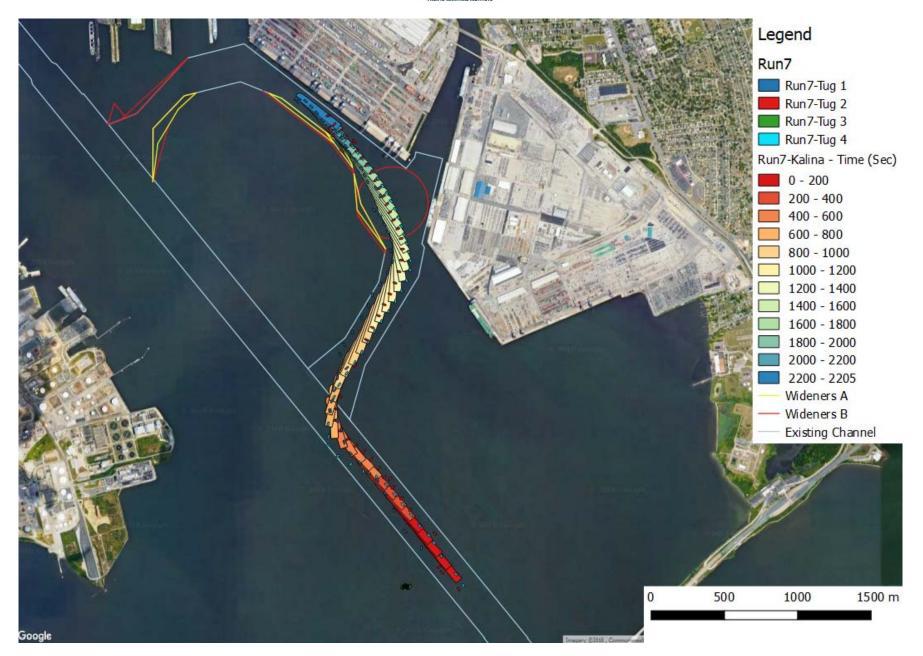



Figure 4-15: Run 7 – Overall view



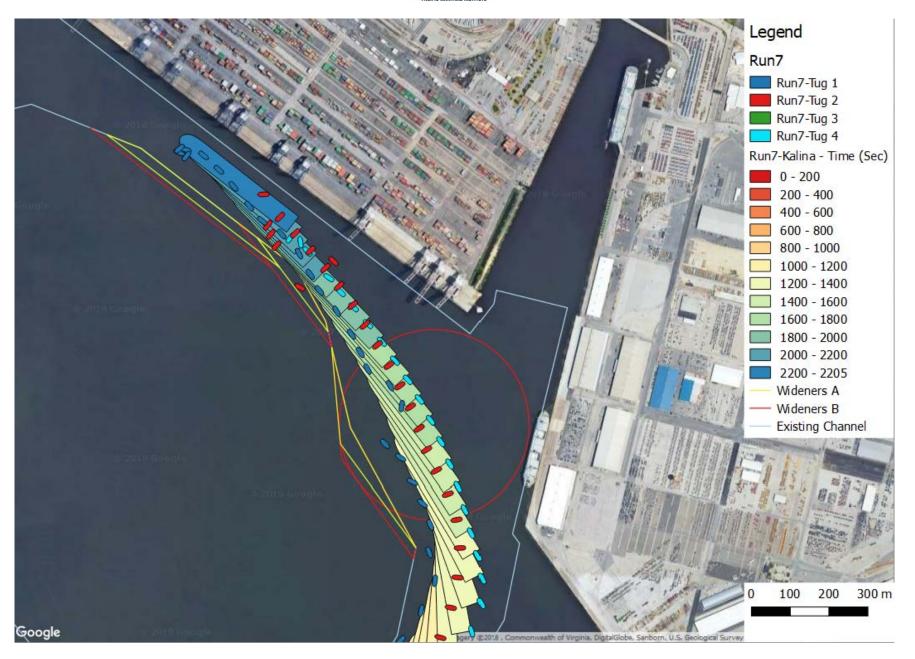



Figure 4-16: Run 7 – Zoomed in view



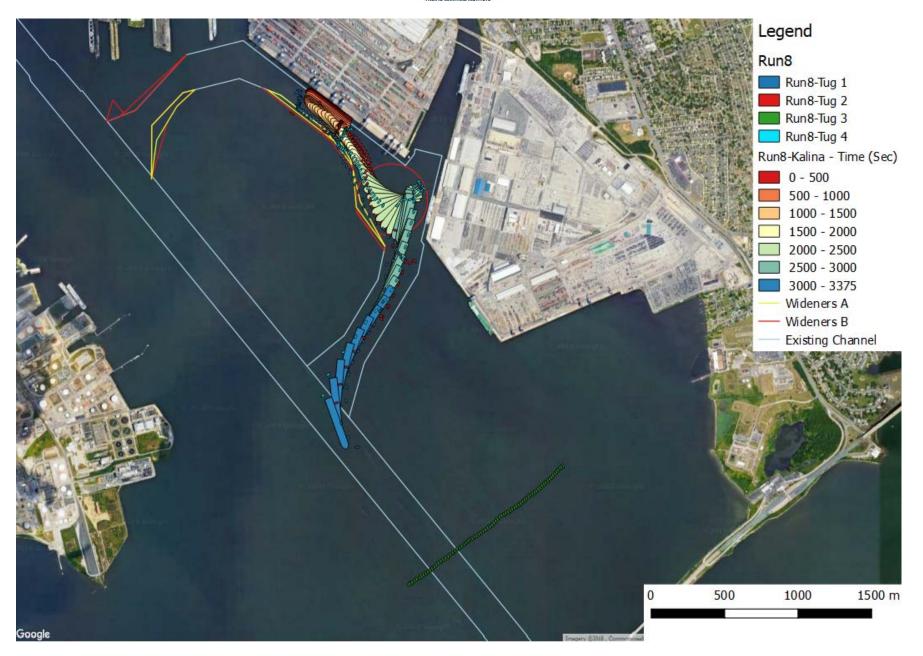



Figure 4-17: Run 8 - Overall view



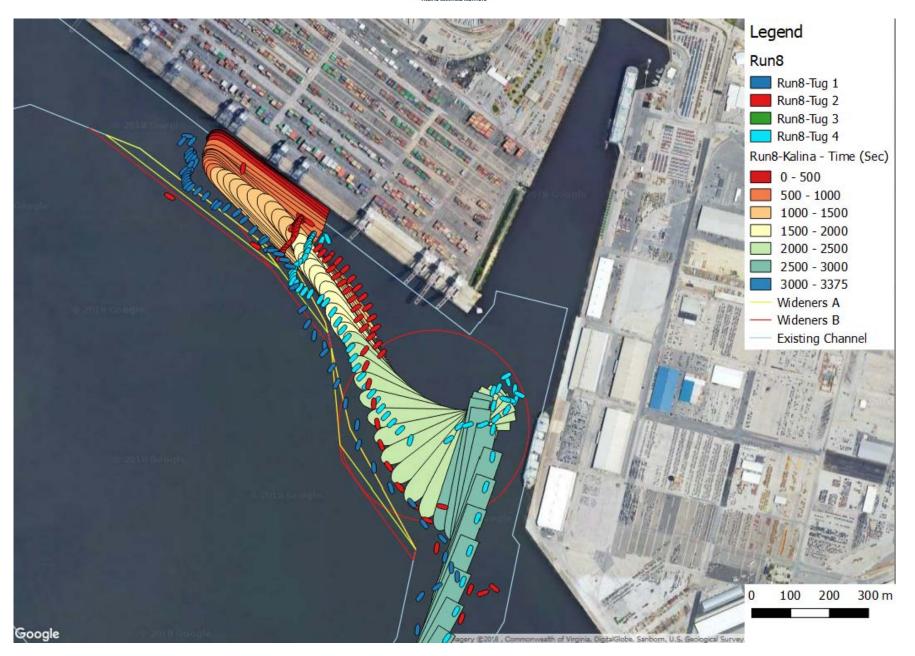



Figure 4-18: Run 8 – Zoomed in view





Figure 4-19: Run 9 - Overall view



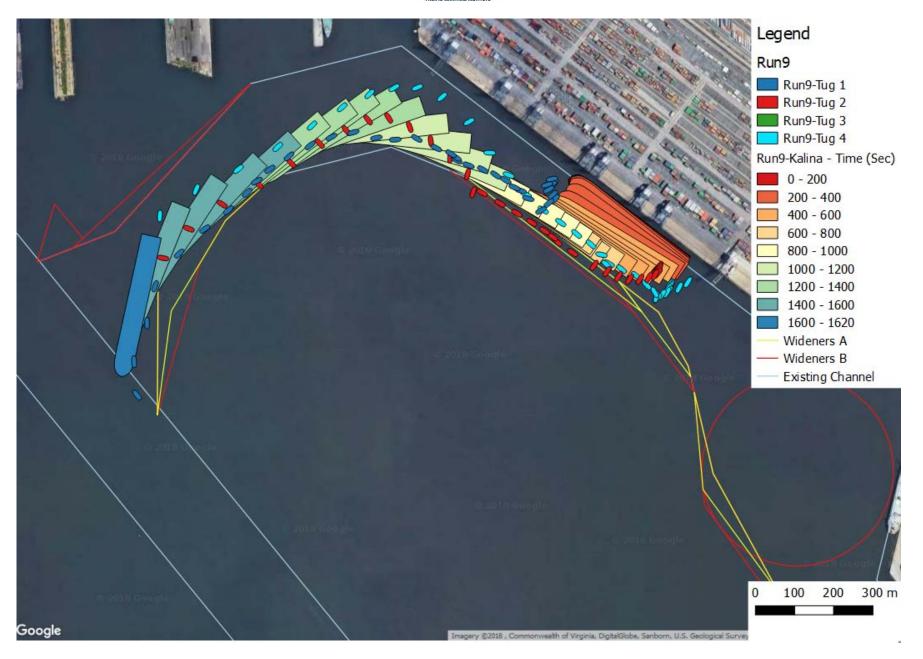



Figure 4-20: Run 9 – Zoomed in view



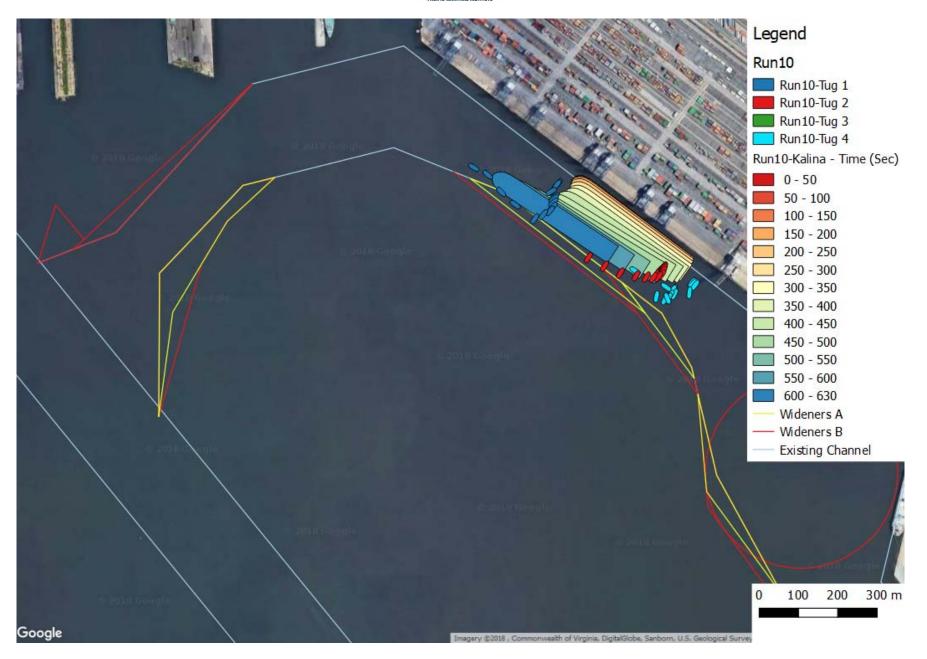



Figure 4-21: Run 10 – Overall view



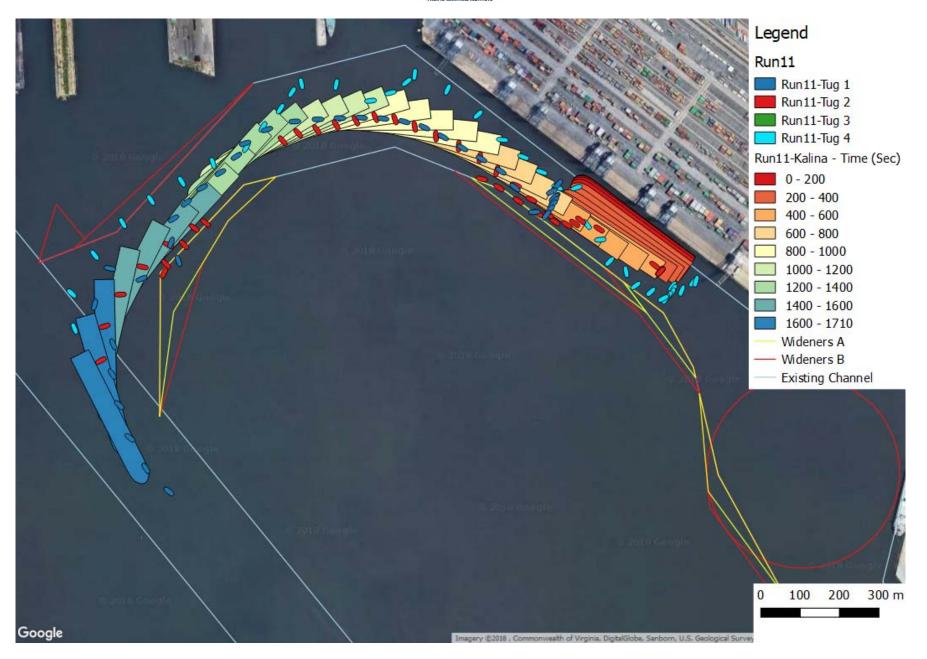



Figure 4-22: Run 11 – Zoomed in view



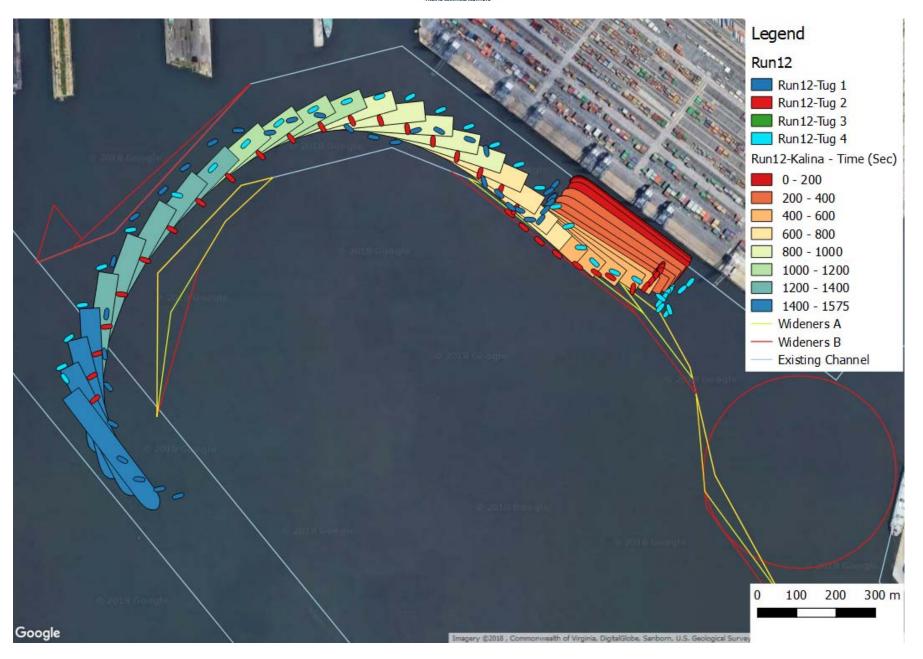



Figure 4-23: Run 12 – Zoomed in view



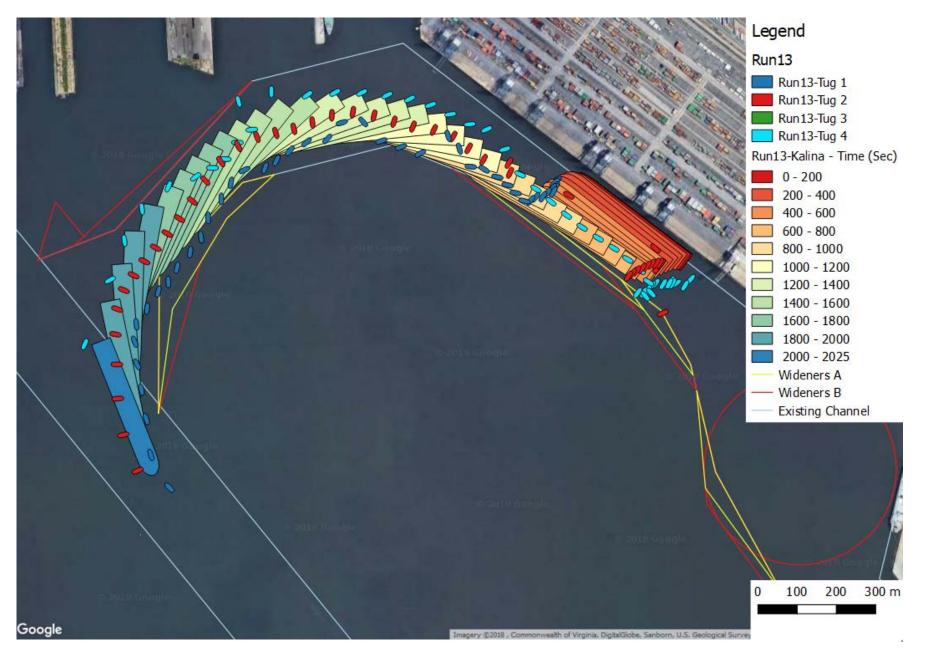



Figure 4-24: Run 13 – Zoomed in view



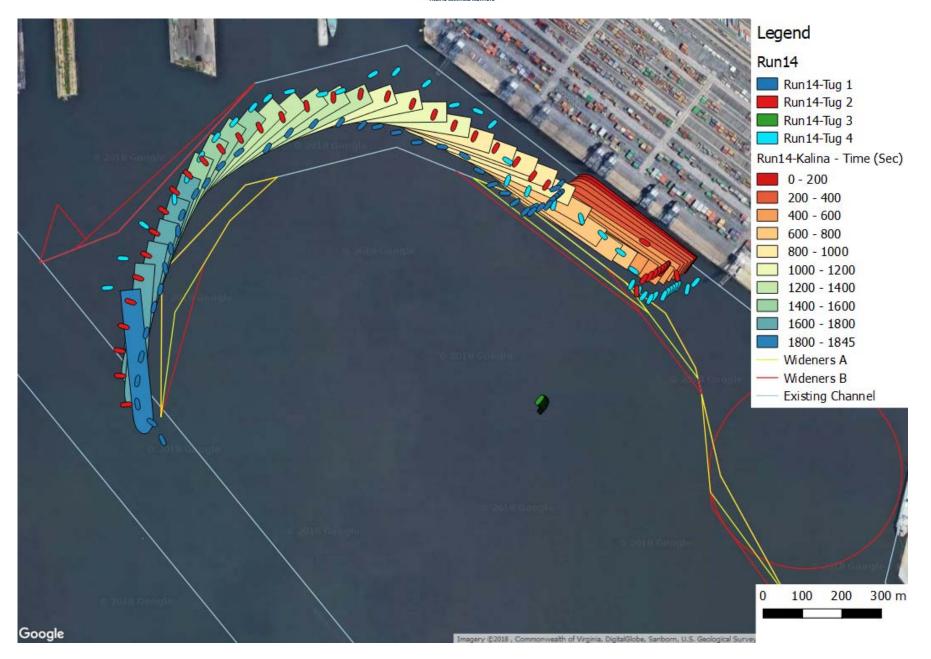



Figure 4-25: Run 14 – Zoomed in view



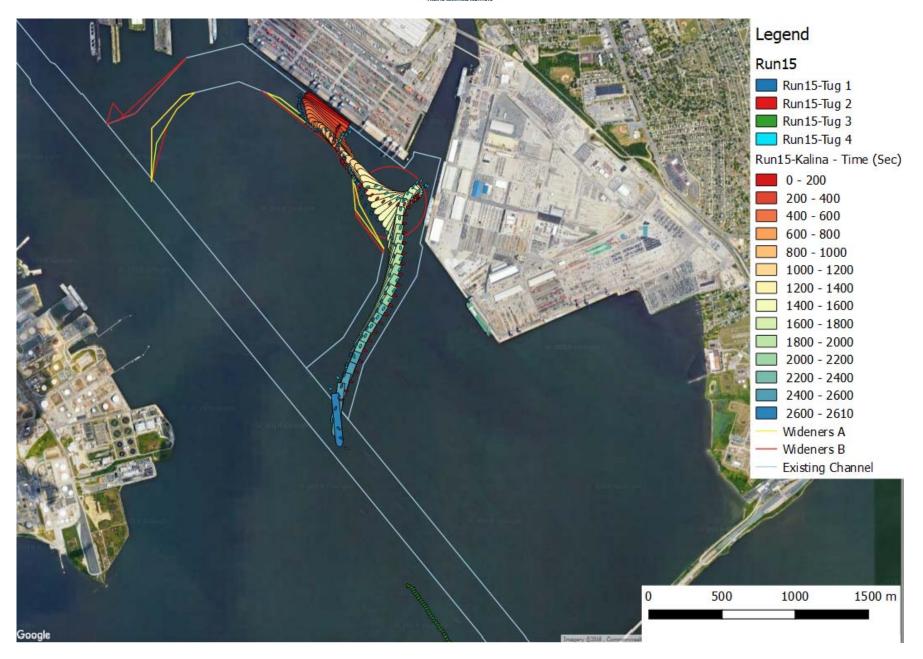



Figure 4-26: Run 15 – Overall view



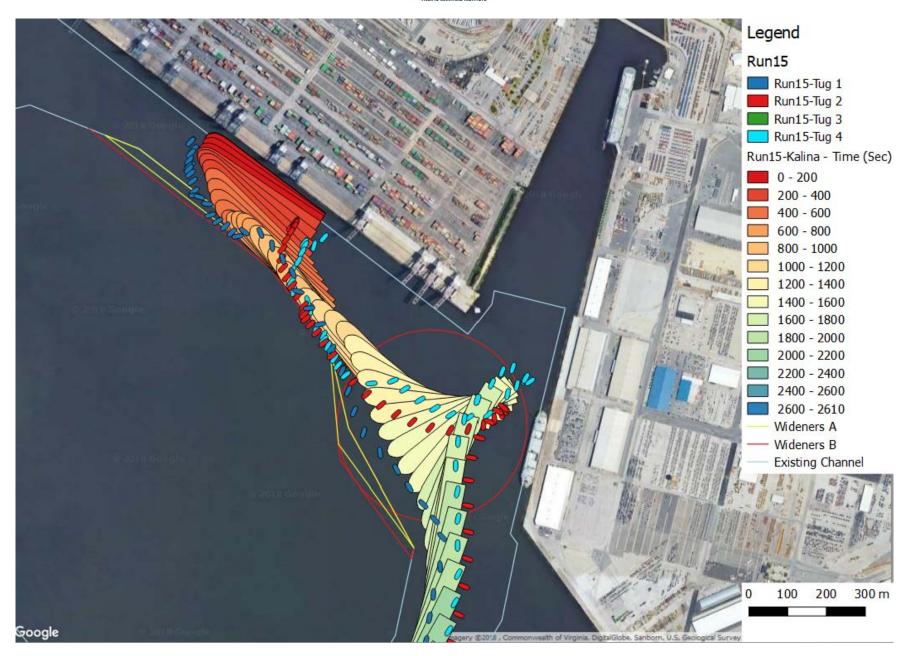



Figure 4-27: Run 15 – Zoomed in view



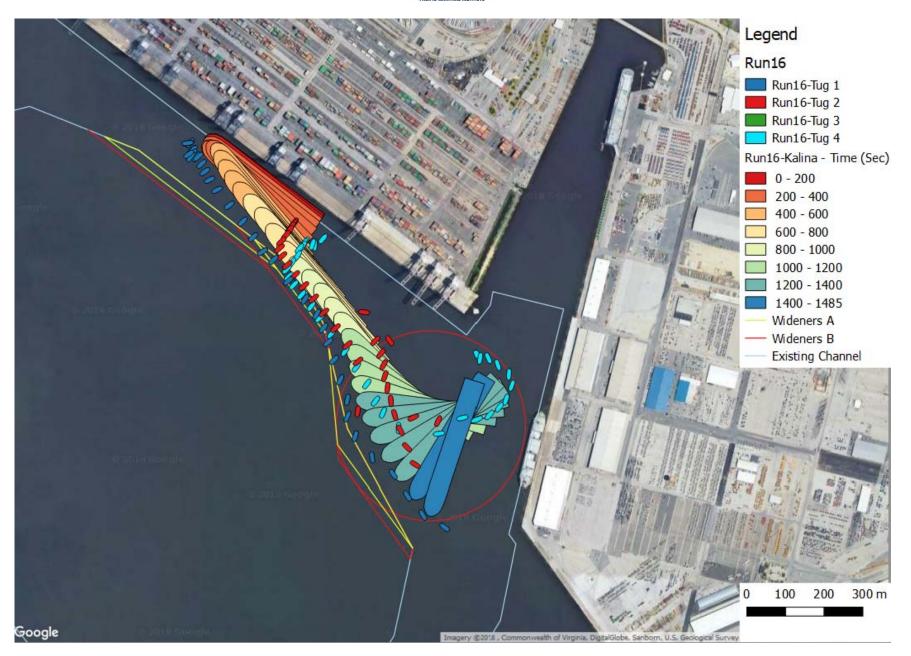



Figure 4-28: Run 16 – Zoomed in view



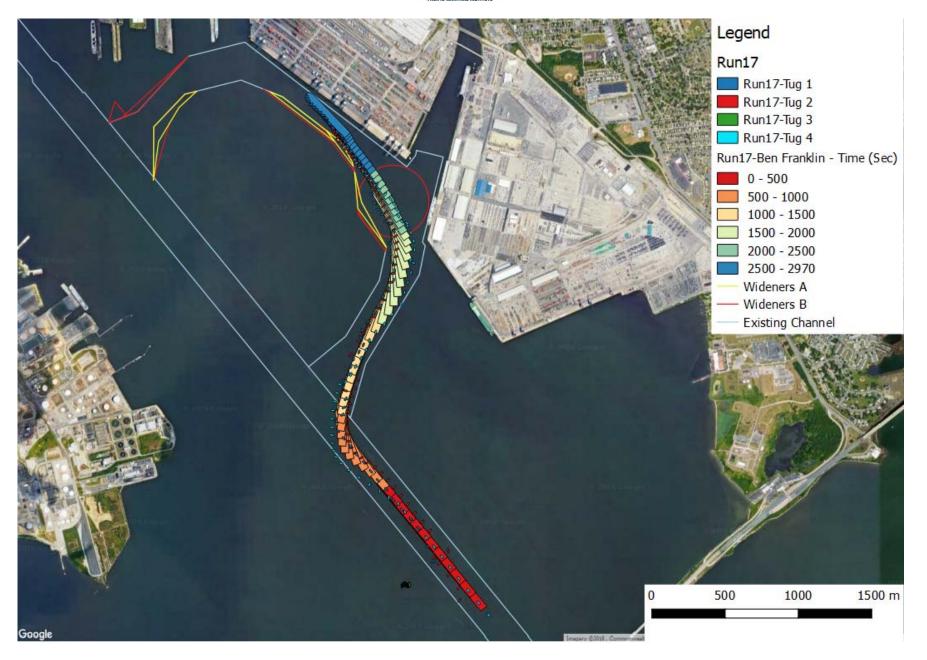



Figure 4-29: Run 17 – Overall view



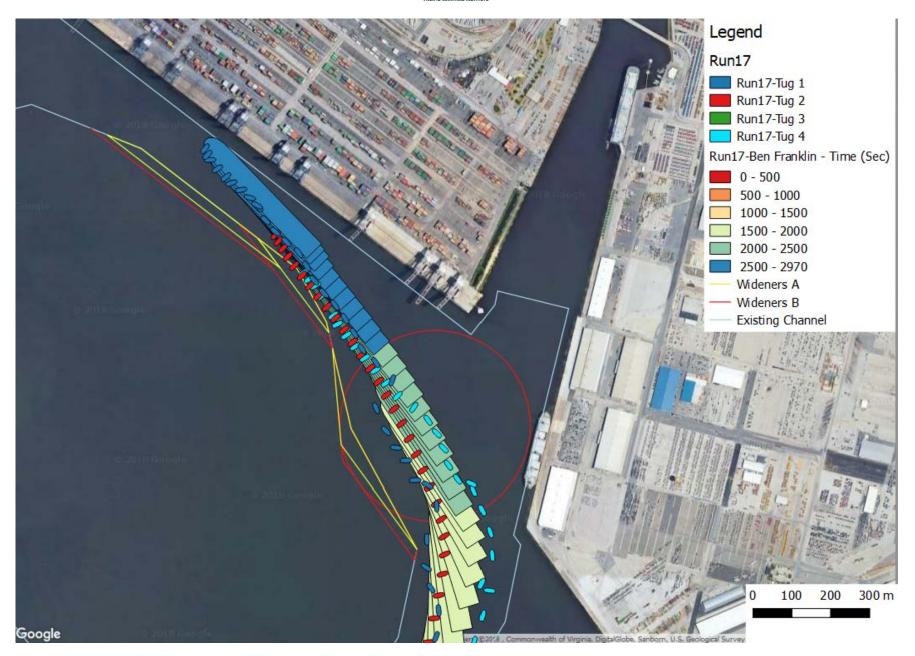



Figure 4-30: Run 17 – Zoomed in view



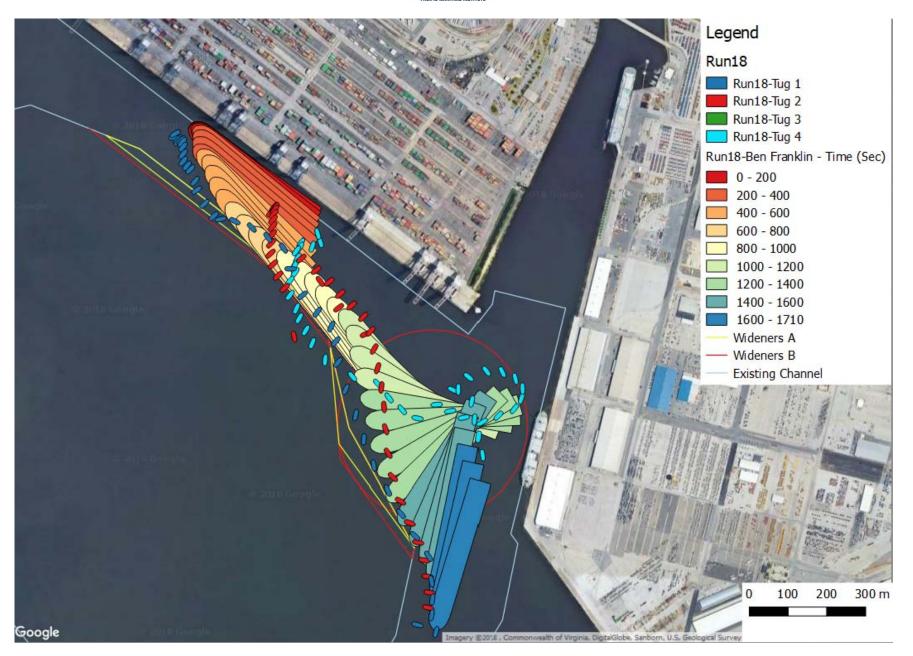



Figure 4-31: Run 18 – Zoomed in view



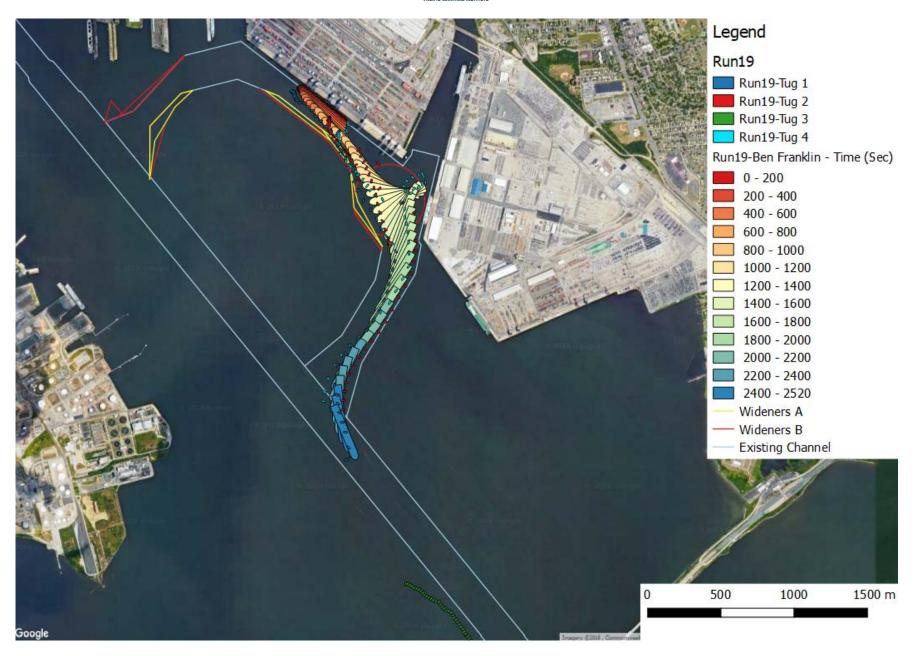



Figure 4-32: Run 19 – Overall view



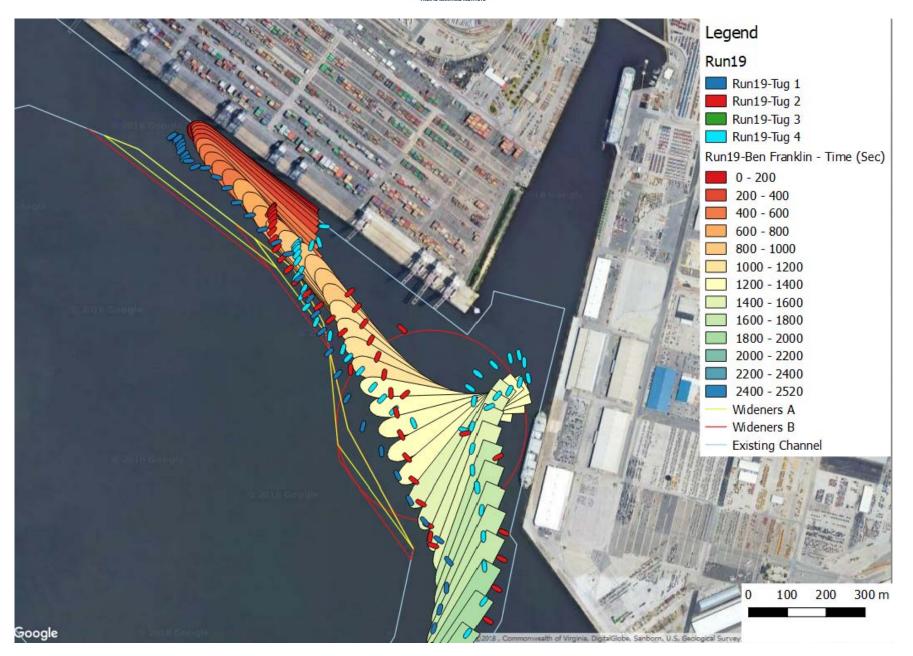



Figure 4-33: Run 19 – Zoomed in view



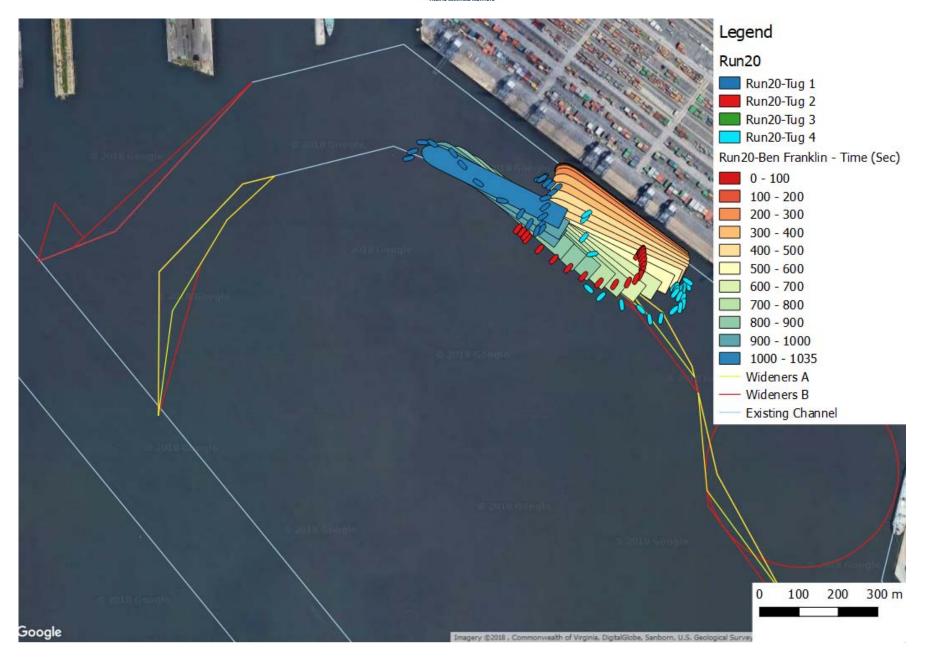



Figure 4-34: Run 20 – Zoomed in view





Figure 4-35: Run 21 – Zoomed in view





Figure 4-36: Run 22 – Zoomed in view



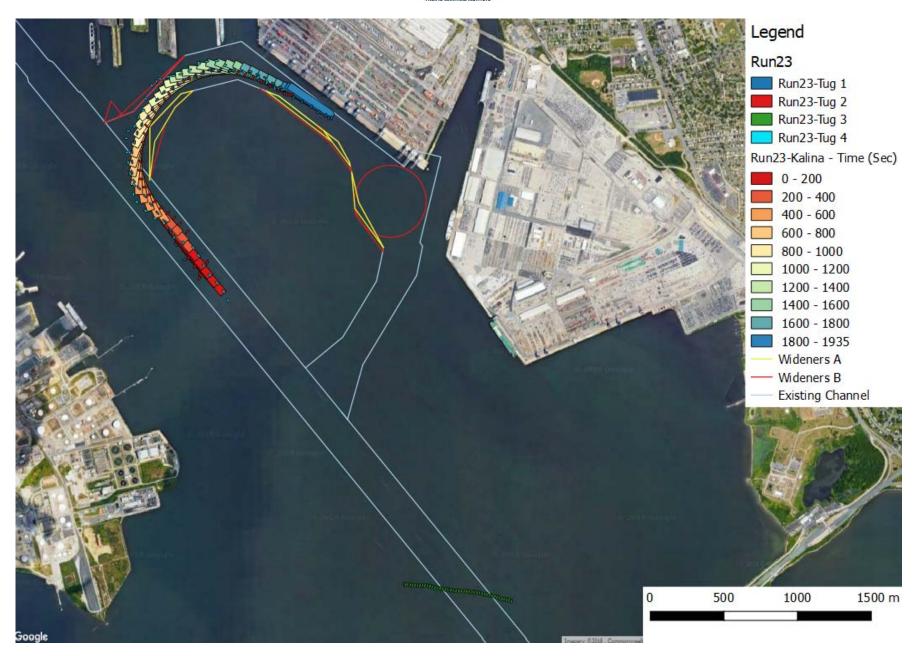



Figure 4-37: Run 23 – Overall view



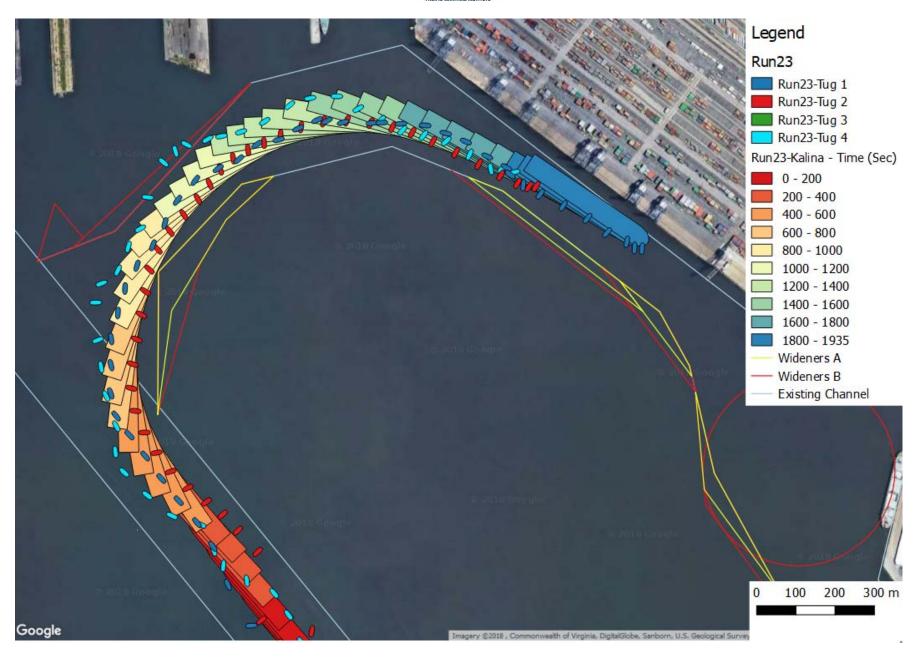



Figure 4-38: Run 23 – Zoomed in view



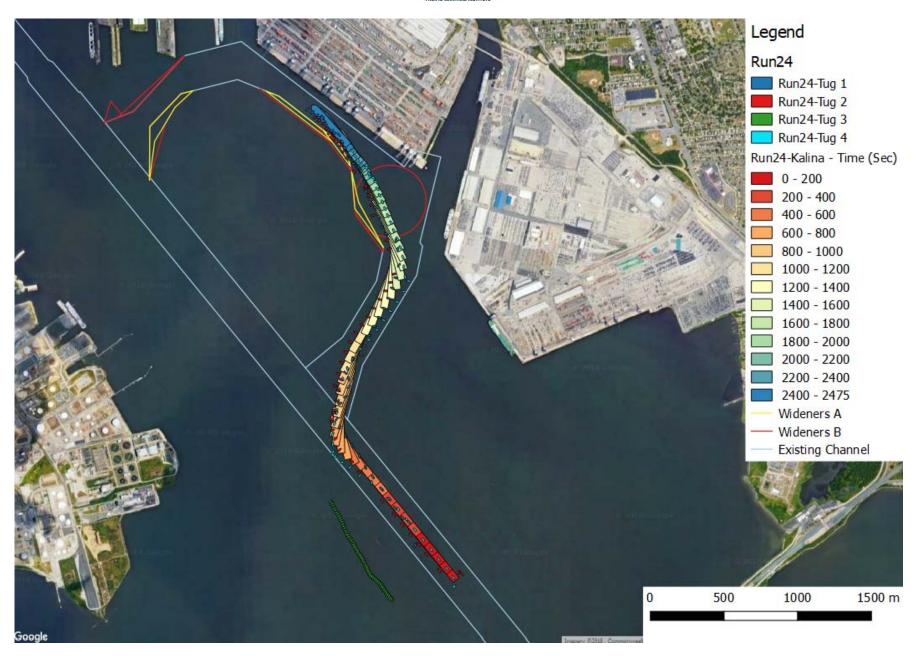



Figure 4-39: Run 24 – Overall view



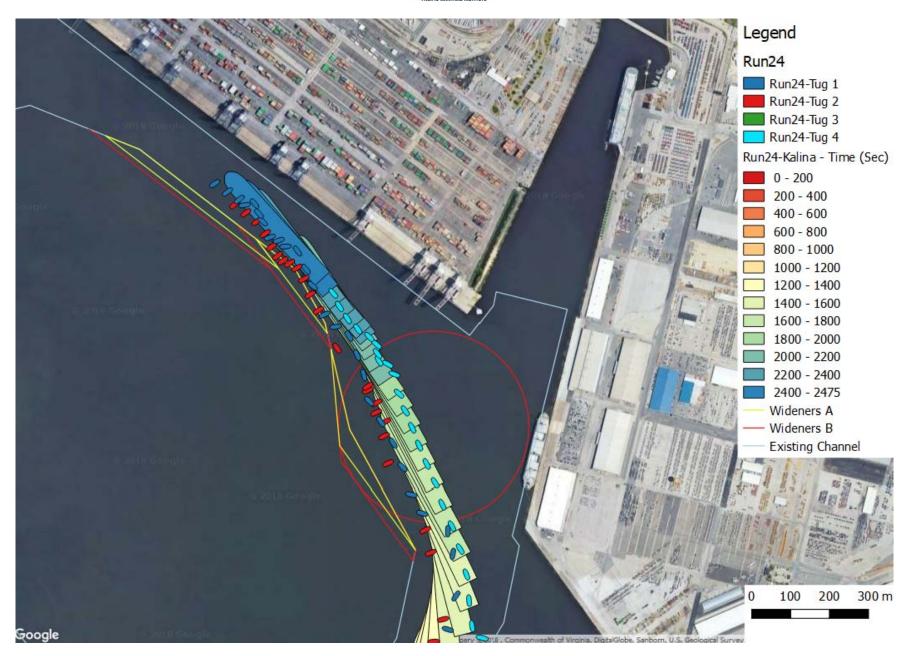



Figure 4-40: Run 24 – Zoomed in view



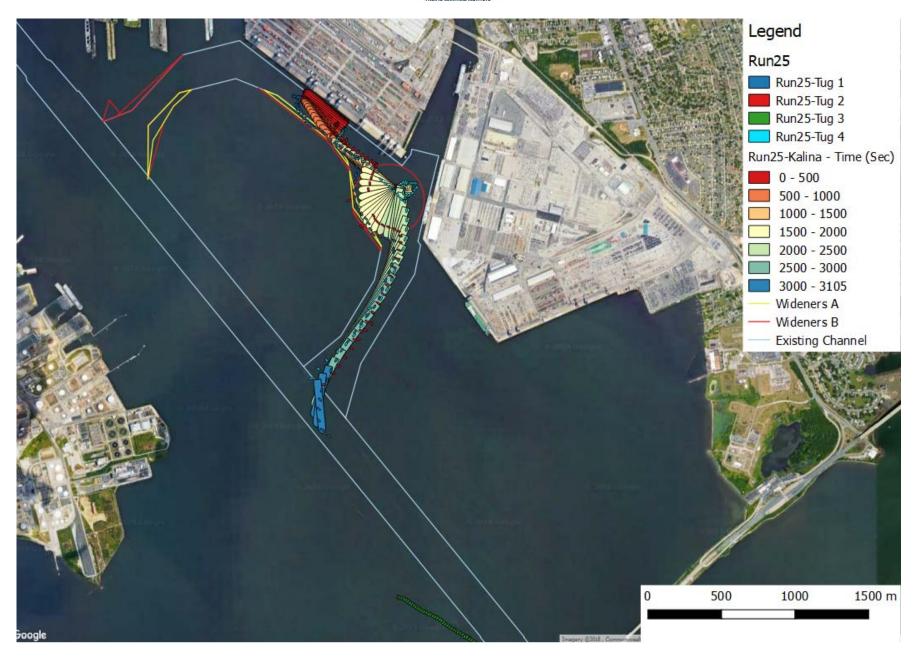



Figure 4-41: Run 25 – Overall view



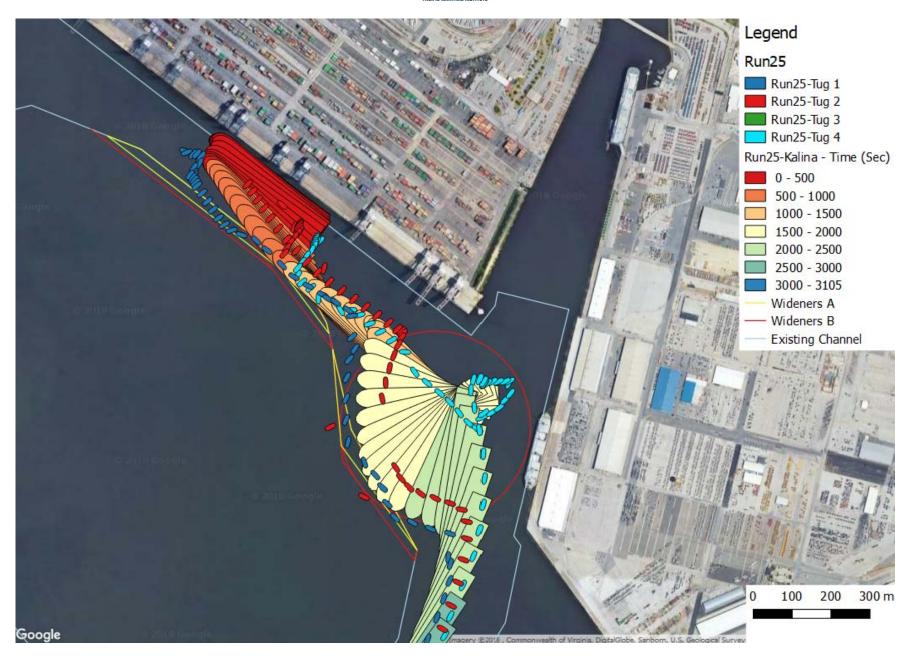



Figure 4-42: Run 25 – Zoomed in view



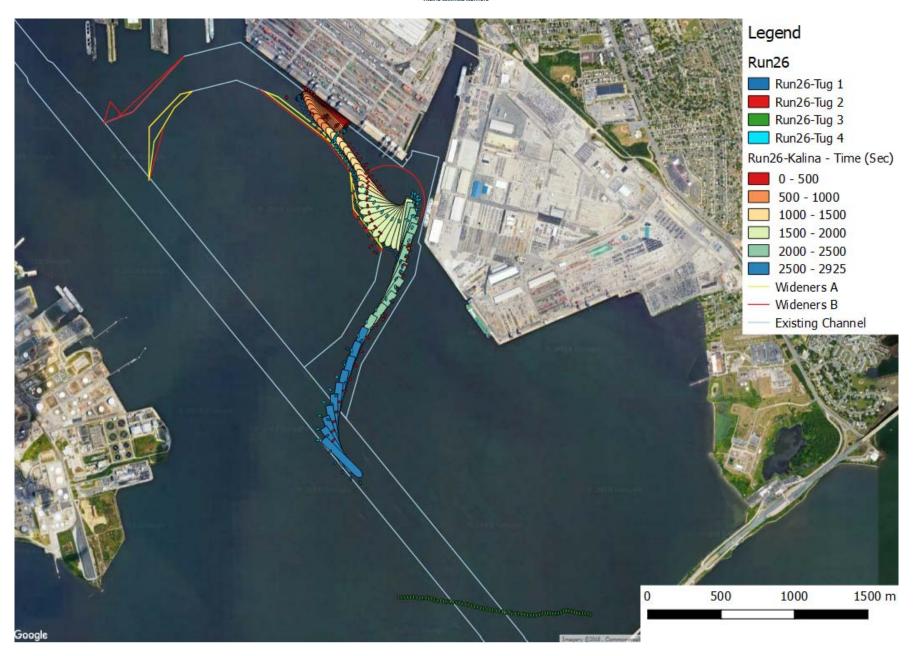



Figure 4-43: Run 26 – Overall view



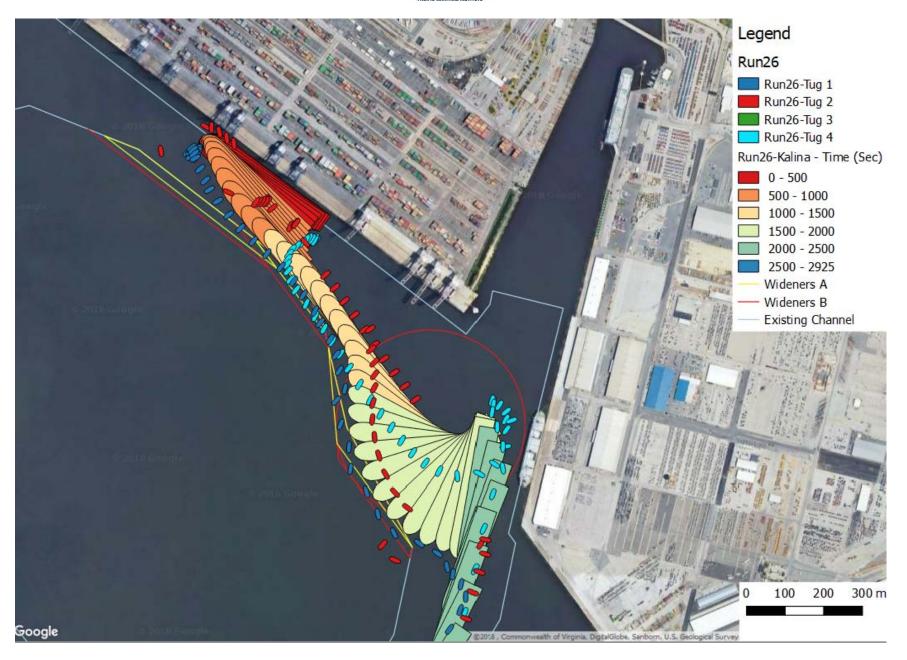



Figure 4-44: Run 26 – Zoomed in view



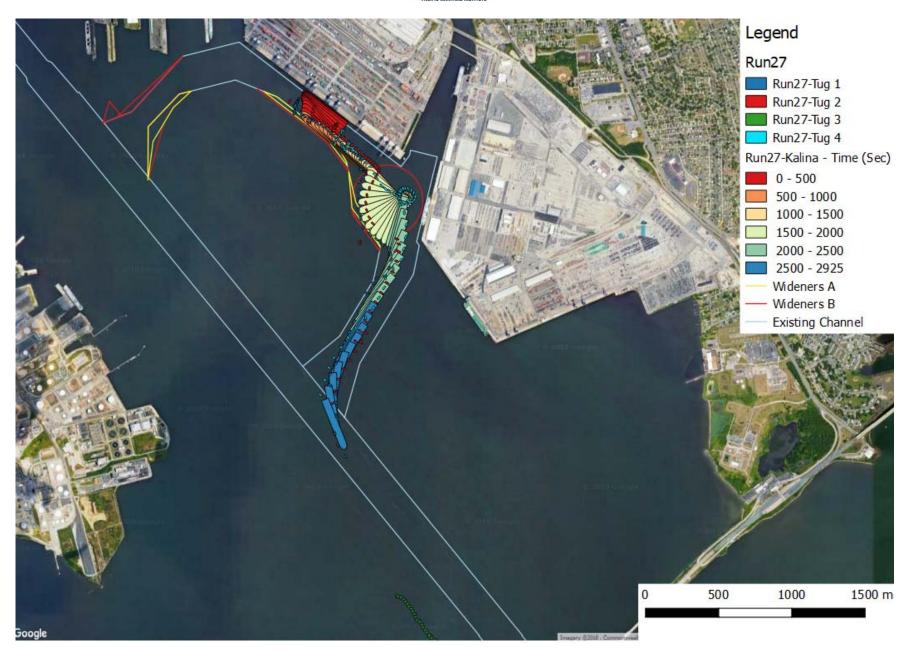



Figure 4-45: Run 27 – Overall view



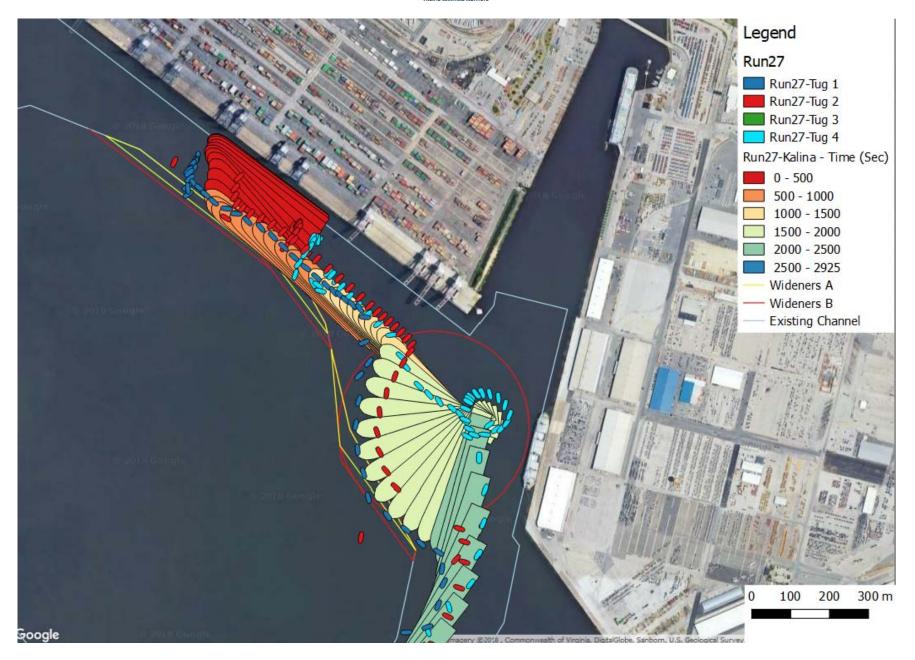



Figure 4-46: Run 27 – Zoomed in view



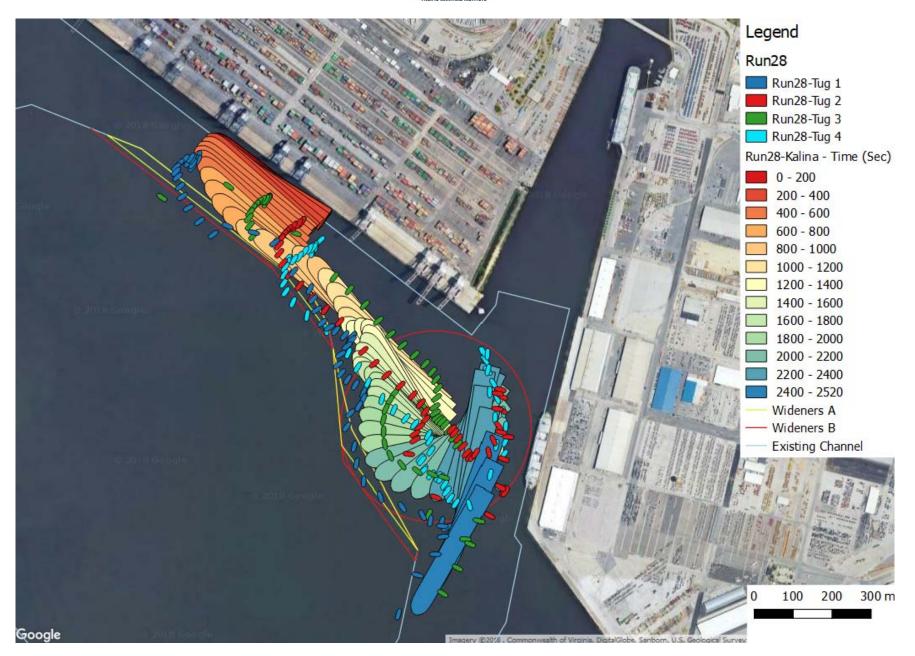



Figure 4-47: Run 28 – Zoomed in view



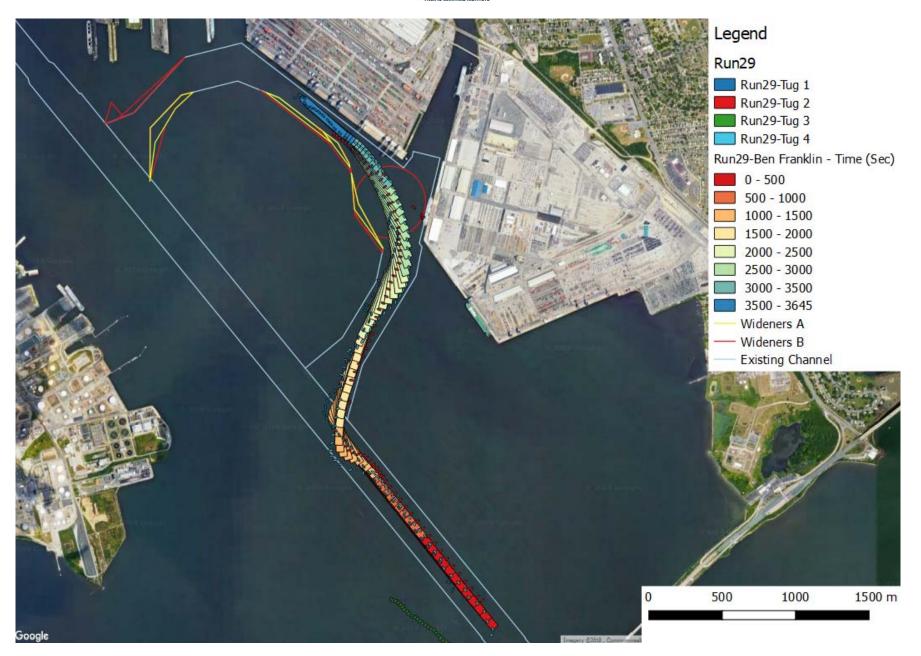



Figure 4-48: Run 29 – Overall view



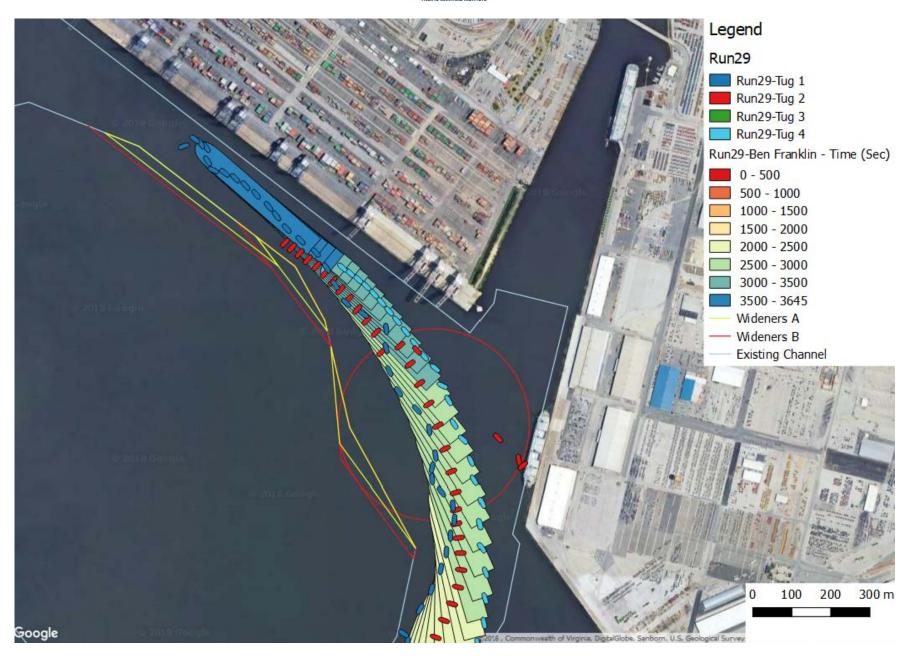



Figure 4-49: Run 29 – Zoomed in view



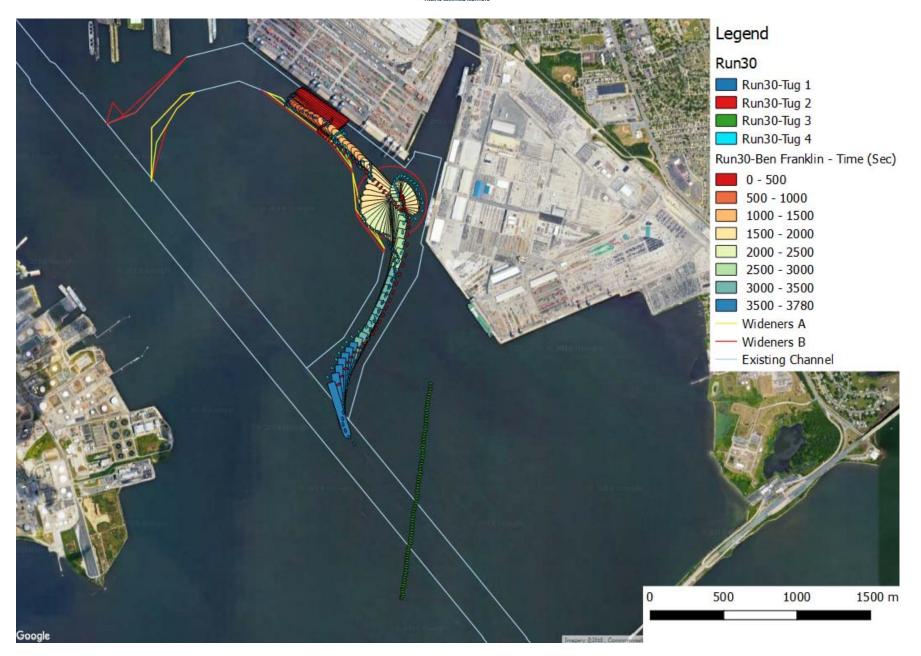



Figure 4-50: Run 30 – Overall view



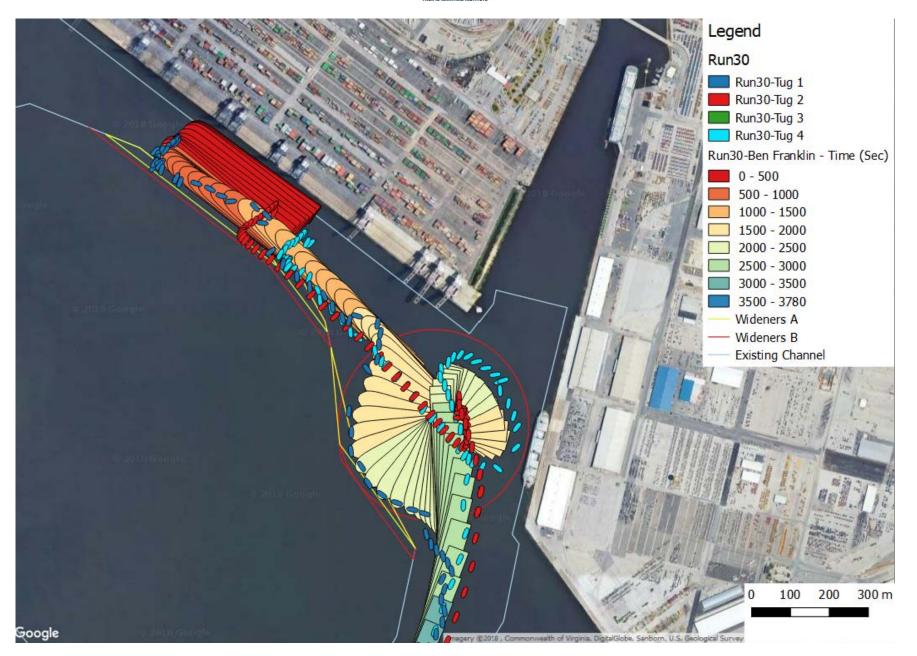



Figure 4-51: Run 30 – Zoomed in view



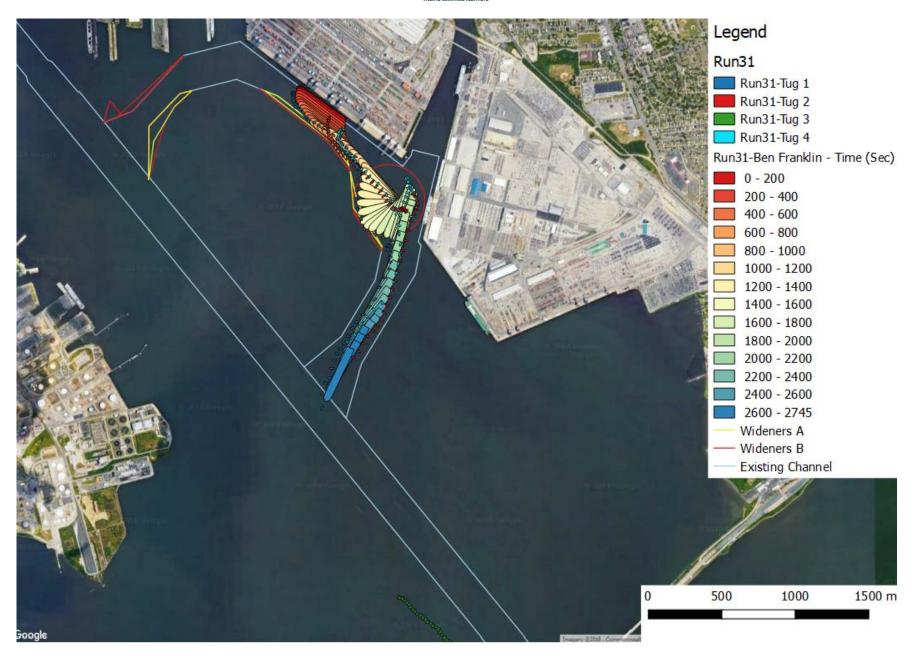



Figure 4-52: Run 31 – Overall view



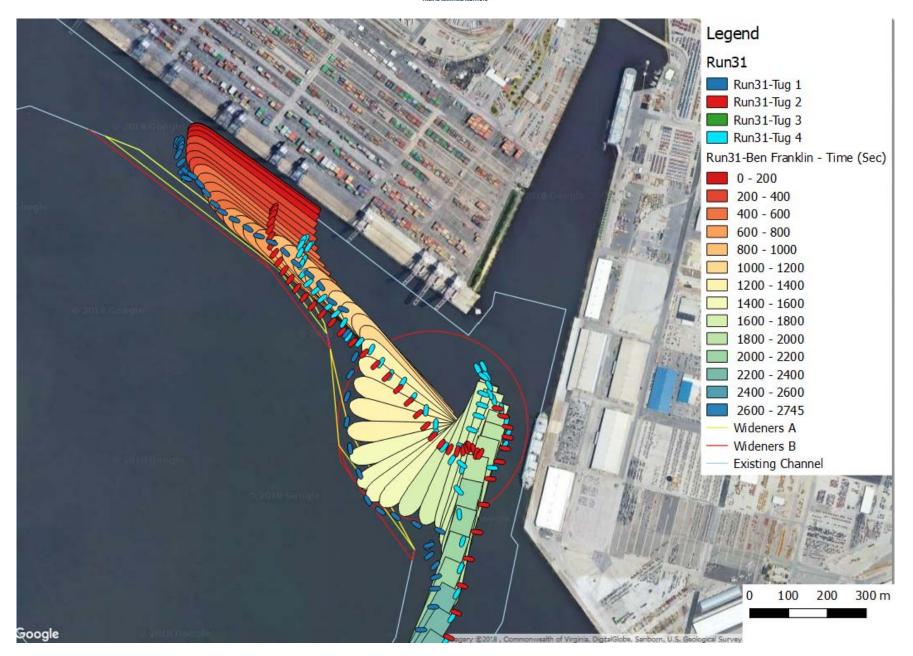



Figure 4-53: Run 31 – Zoomed in view



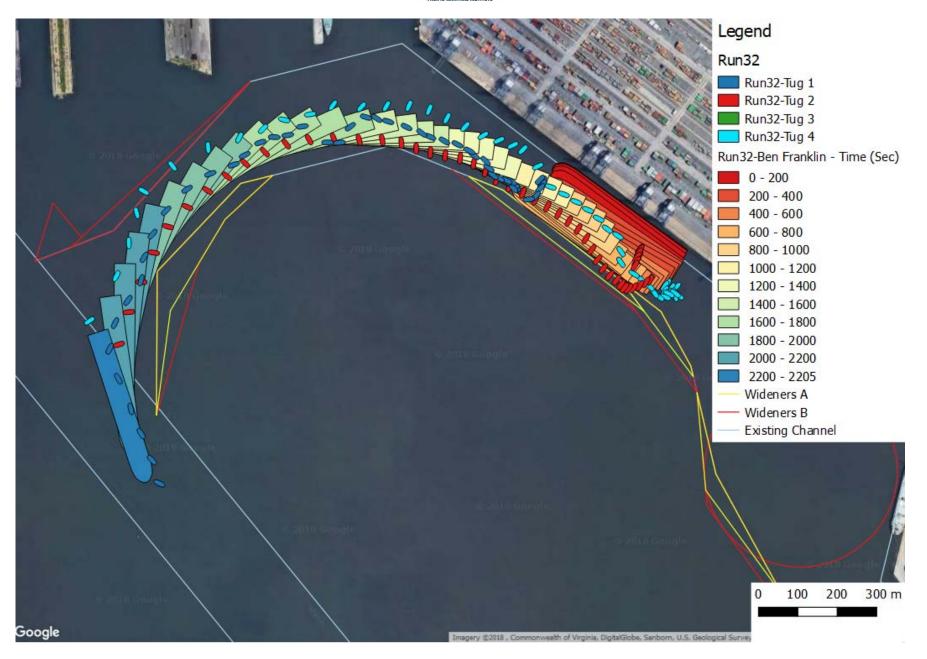



Figure 4-54: Run 32 – Zoomed in view



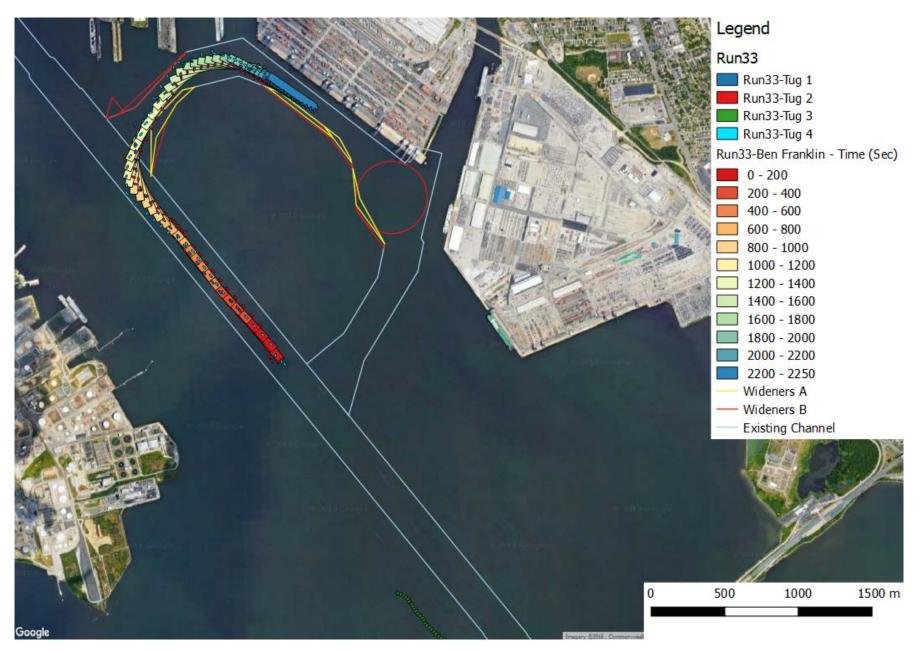



Figure 4-55: Run 33 – Overall view



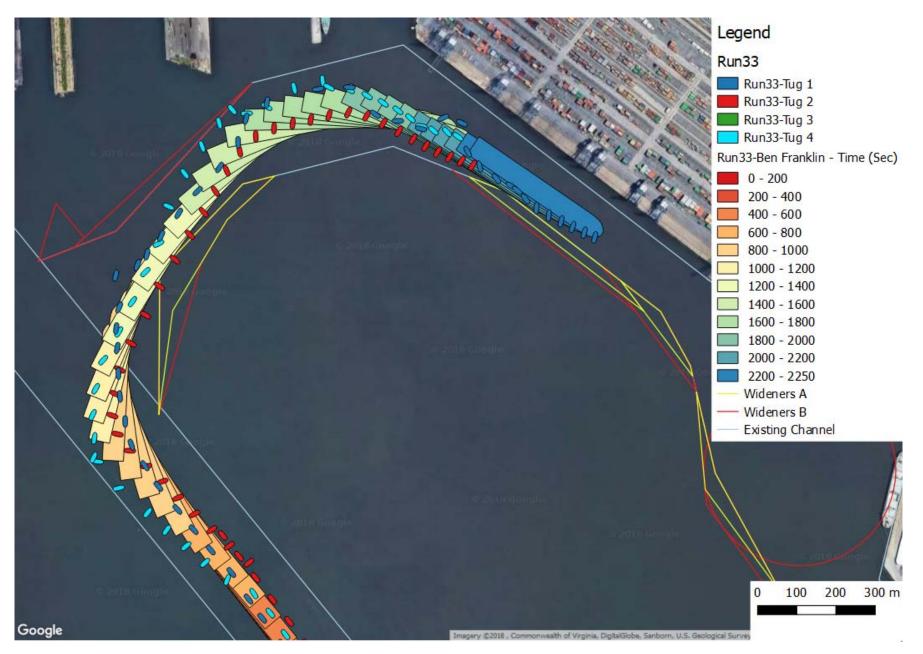



Figure 4-56: Run 33 – Zoomed in view



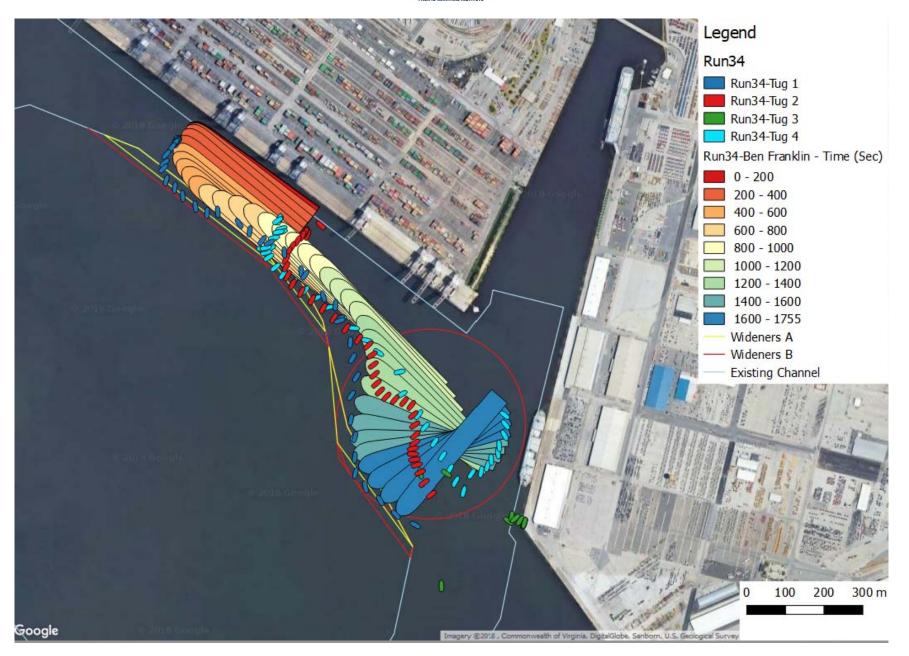



Figure 4-57: Run 34 – Zoomed in view



#### 4.2 POWER RESOURCES ANALYSIS

Table 4-3 shows the maximum power order used and the duration it was used for each tug, ship's engine order, and bow power order. To fully understand the reserve power capacity, all three variables need to be analyzed together. The column titled "Power Used Simultaneously?" contains four sub-columns. The first sub-column addresses if all three power sources (tugs, ship's engine, and bow thruster) were used simultaneously at maximum power of each. The second and third sub-columns describe if all three tugs and/or four tugs were used at the same time respectively. The adjacent sub-column lists the duration that this occurred if this event occurred. If the duration occurred longer than 2 minutes, the value is highlighted in blue. All power sources (all tugs, ship's engine, and bow thrusters) were never used at 100%. In most runs, there was sufficiently more reserve power than that. All runs only used 3 tugs with the exception of Run 28 where all 4 tugs were used but not at 100% bollard pull at the same time. In several of the runs, three tugs were operated at 100% of their bollard pull or higher at the same time leaving no reserve tug power. When this occurred for longer than 2 minutes, the value is highlighted in blue. This only occurred in Runs 12, 16, and Run 24.

The next columns list each tug individually and shows the maximum amount of bollard pull used in each run and the longest continuous duration that it was used at 100%. If the tug never reached 100%, no duration is provided. Values highlighted in blue indicate values that are 2 minutes or longer. This value was selected by the tug master who stated using a tug's full engine for 2 minutes or less is not problematic. After this 2-minute range, tug masters will ask the pilot to decrease their power usage in order to avoid overheating their engines. Tug 1 and 4 were operated as live tugs by local tug masters. The tugs used as live tugs in the simulations had a bollard pull of 75 t; because this value is higher than the 60 t available in the harbor, the tug masters were asked to limit their bollard pull to 60 t. So any value above 100% in the table for Tugs 1 and 4 represents more than 60 t bollard pull being used. It should also be noted the bollard pull values for Tugs 1 and 4 are a 30 second average. Tugs 2 and 3 were operated as Autotugs and were operated with 60 t and 40 t bollard pulls respectively.

The container ship's maximum engine order is listed. If it reached 100%, its duration is also listed. Positive engine orders indicate the ship is moving ahead while negative engine orders indicate the ship is moving astern. The ship's engine was never used at 100%. 70% was the maximum engine power used in any of the runs.

The last columns describe the ship's bow thruster orders. Positive orders indicate the thruster was used on the starboard side and negative indicate thruster use on the port side. Bow thrusters are designed to be used extensively during berthing. Therefore they can be used for a longer duration at maximum power than the tugs' or ship's engines. Any thruster use lasting longer than 15 minutes is highlighted in blue. This did not occur in any of the runs.

Plots for each run showing each tug's maximum bollard pull as a percentage, the percent of engine used, and the percent of bow thruster used as each varies in time is available in Appendix B.



Table 4-2: Reserve power analysis

Run	Ship		Used Sim			Perc Bolla Usec	ig 1 ent of rd Pull I (60t)	Perce Bollar Used	· · · ·	Perce Bolla Used	ig 3 ent of rd Pull I (40t)	Bollar Used	ent of d Pull (60t)	Power	Engine Order		order
		All Sources?	3 Tugs?	4 Tugs?	Dur. (sec)	Max (%)	Dur. (sec)	Max (%)	Dur. (sec)	Max (%)	Dur. (sec)	Max (%)	Dur. (sec)	Max (%)	Dur. (sec)	Max (%)	Dur. (sec)
1	Kalina	No	No	No		117	200	89		100	400			40		100	89
2	Kalina	No	No	No		86		100	148	0		86		40		100	164
3	Kalina	No	No	No		93		100	330	0		112	119	40		100	629
4	Kalina	No	No	No		104	28	100	477			114	84	40		100	484
5	Kalina	No	Yes	No	40	110	128	100	521			106	135	40		100	515
6	Kalina	No	No	No		8		100	212	0		0		60		100	126
7	Kalina	No	Yes	No	7	115	106	100	238	0		116	78	40		100	251
8	Kalina	No	No	No		125	599	100	589			132	160	70		100	495
9	Kalina	No	Yes	No	48	119	90	100	636			131	79	40		100	155
10	Kalina	No	No			66		5				92		40		100	104
11	Kalina	No	Yes	No	116	116	36	100	210	0		144	253	50		100	132
12	Kalina	No	Yes		141	134	172	100	278			108	142	70		100	219
13	Kalina	No	No	No		133	104	100	139			130	181	60		100	214
14	Kalina	No	Yes	No	118	139	413	100	402	0		133	161	60		100	232
15	Kalina	No	Yes		82	135	82	100	362			126	143	40		100	480
16	Kalina	No	Yes	No	130	155	716	100	269			115	264	40		99	
17	Ben Franklin	No	No	No		107	37	100	81	0		86		40		100	247
18	Ben Franklin	No	Yes	No	40	137	30	100	436			119	327	40		100	463
19	Ben Franklin	No	Yes	No	62	146	240	100	438			154	331	60		100	704
20	Ben Franklin	No	No	No		25		100	207			125	32	60		100	114

Port of Baltimore – Seagirt Channel Modifications

Page 76 of 129



Run	Ship	Power	Used Sim	ultaneous	ily?	Perc Bolla	ig 1 ent of rd Pull I (60t)	Perce Bollar	g 2 ent of d Pull (60t)	Perc Bolla	ig 3 ent of rd Pull I (40t)		ent of d Pull	Ship's Power	Engine Order	Ship's Thru Power	
		All Sources?	3 Tugs?	4 Tugs?	Dur. (sec)	Max (%)	Dur. (sec)	Max (%)	Dur. (sec)	Max (%)	Dur. (sec)	Max (%)	Dur. (sec)	Max (%)	Dur. (sec)	Max (%)	Dur. (sec)
21	Ben Franklin	No	Yes	No	20	116	27	100	379			154	126	60		100	324
22	Ben Franklin	No	Yes	No	44	128	41	100	427			131	324	60		99	02:
23	Kalina	No	No	No		57		100	178			162	86	70		99	88
24	Kalina	No	Yes	No	176	122	183	100	373			137	325	40		100	194
25	Kalina	No	No	No		0		100	378			136	191	70		100	558
26	Kalina	No	No	No		137	299	100	344			161	546	70		100	468
27	Kalina	No	No	Yes	33	119	275	100	472			124	158	50		100	327
28	Kalina	No	Yes	No	30	123	385	100	237	100	287	2	0	60		100	577
29	Ben Franklin	No	No	No		73		100	329			123	227	60		100	500
30	Ben Franklin	No	No	No		100	5	100	390			108	101	60		100	582
31	Ben Franklin	No	Yes	No	109	121	107	100	272			136	305	70		100	587
32	Ben Franklin	No	Yes	No	57	114	127	100	131			133	221	60		100	614
33	Ben Franklin	No	No	No		97		100	255			115	74	60		100	144
34	Ben Franklin	No	Yes	No	93	122	108	100	127	0		130	272	40		100	385



### 4.3 PILOT AND TUG MASTER EVALUTATIONS

#### 4.3.1 PILOT EVALUATIONS

After each run, the pilots filled out an individual run questionnaire. A summary of the evaluation is presented in Table 4-3 while the full comments are shown in Table 4-4. One column ranks tug configuration and reserve capacity on a scale of 1 to 10 with 10 being equivalent to most adequate. The overall difficulty was also assessed on a scale of 1 to 10 with 10 being the most difficult. The last column of the table shows the overall safety ranking. This value is also on a 1 to 10 scale with 10 being the safest scenario possible. Both the river and docking pilots completed the surveys.

The average tug configuration and reserve capacity was 5.7 (10 = most adequate). The average overall difficulty was 7.0 (10 = most difficult), and the average safety ranking was 5.4 (10 = most safe).

						Tak	ole 4-3: Pilo	t rating	S						
Run	Tug Reserve Capacity	Overall Run Difficulty	Overall Run Safety	Run	Tug Reserve Capacity	Overall Run Difficulty	Overall Run Safety	Run	Tug Reserve Capacity	Overall Run Difficulty	Overall Run Safety	Run	Tug Reserve Capacity	Overall Run Difficulty	Overall Run Safety
1	8	5	5	11		8	10	21	5	8	3	31	5	7	6
2	9	7.5	7	12	6	7.5	5.5	22	8	8	7	32	4.5	4.5	5.5
3	5	5		13	10	10	10	23	7	7	7	33	5.5	6	5
4	4.5	9	3.5	14	7	5	5.5	24	5		5	34	5.5	5.5	5
5	4	8	5	15	7	7	5	25	5	7	4				
6				16	3	7	6	26	-		-				
7	5	5	5	17	5	7	5	27	5	8	4				
8	10		10	18	4	8	5	28	-		-				
9	5	5	5	19	4	8	3	29	4	8	4				
10				20	3	9	5	30	7	6	6				



## Table 4-4: Pilot evaluation comments

Run	Captain	1.Successfully made transit	2. Average drift angle and minimum speed to offset environments	3. Successfully complete berthing/unberthing evolutions? If not, what were limiting factors?	4. Ship model react as expected with environment		6. Would you modify transit plan?	7. Tug configuration and reserve capacity	8. Qualifiers to rating	9. Difficulty rating		11. Safety qualifier
1	L John Trout	Yes	NA	Yes	Yes	Yes		8	3	5	5 5	Experienced pilots only; minimum of 3 tugs (min 60 t)
	Mike 2 Flanagan	Yes	3-4 deg	Yes	Yes	I was on extreme edge of channel w/ safe distance off the vessel at berth 4	No	9	For 20 kts condition, 3	7.5		Channel width off of berth 3
	3 John Trout	V		Yes	Yes	Yes	Yes, after turning in the basin, push the stern further to NW to position vessel more to windward in the channel			,		
	Mike Flanagan			Yes	Yes	Yes, but close to vessel at #4 and Dundalk 5 & 6 Berth	windward in the channel		For 25 kts 3 (60 t) boots we working at max most of the tume			3 (60 t) boats & widened channels necessary
5	John Trout	Yes		Yes	Yes	Yes	somewhat - additional tug/power Steer higher up on the	4	1		5	experienced pilots
6	i	Yes	3 kts	Yes	Yes	Yes	green buoys off #4 berth due o the winds					
7	Mike Flanagan	Yes	3 deg	Yes	Yes	Yes with wideners in place	No	5	5	5	5 5	
8	Bruce Morse- Ellington	Yes	More than 1.5 and I was having trouble when backing by Berth 4	Yes	Yes	Yes	No	10			10	
9	Mike Flanagan	Yes	NA	Yes	Yes	Used all widener on red side of channel	Hold vessel more centerline of channel (west access)	<u> </u>	5	<u> </u>	5 5	
10	Bruce Morse- Ellington	Sim failure										



		1.Successfully made	2. Average drift angle and minimum speed to offset	3. Successfully complete berthing/unberthing evolutions? If not, what were	4. Ship model react as expected with	5. Maintain acceptable distance from shoals	6. Would you modify	7. Tug configuration and reserve		9. Difficulty	10. Overall	
Run	Captain	transit	environments	limiting factors?	environment	and terminal	transit plan?	capacity	8. Qualifiers to rating	rating	safety	11. Safety qualifier
	Bruce											
	Morse-	V	W	V	V	V	N-			8		
1	1 Ellington Mike	Yes	Yes	Yes	Yes	Yes was maximum	No execute turn sooner into				3 10	
1		Yes	NA	Yes	Yes	distance off Seagirt	Fort McHenry	' ا		7.5	5.5	
	Bruce	res	INA	res	res	distance on Seagint	rort wicherity			7.3	5.5	
	Morse-											
1	3 Ellington	Yes	Yes	Yes	Yes	Yes	No	10		10	10	
1	4 Mike Flanag	Yes	3-4 deg	Yes	Yes	Yes	No	7		5	5.5	
	Kevin	Yes and no just pushed too far to										
1	5 Hanna	the channel	3 kts	Yes	Yes	Mostly	Yes slightly more speed	7		7	7 5	
				Yes wind above 25 kts is a		Close to DMT 5			if wind increased above 25 kts more bollard pull			Increased turning basin not withstanding, it's a tight
1	6 Tad Whitin	Yes	NA	limiting factor	Yes	vessels	No	3	would be needed	7	7 6	place to turn a heavy ship
	Kavin								with 25 kts maybe 4			
1	7 Hanna	Yes	3 kts	Yes	Yes	Yes	Slightly more speed	5	boats	7	5	
1	8 Tad Whitin	Yes		Yes (grounding off 4 berth but I don't think it was a factor (simulator familiarity)	Yes	No	Remain closer to sea berth 4	4	the 3 tugs are limited for vessel and wind		3 5	daylight
1	Kevin 9 Hanna	On the edge	3.5 minimum	Yes	Yes	Yes/no (close to berthed ships)	would have turned colgate creek sooner	4	with 25 kts, 3 60 t boats was on edge	8		given wind conditions and tug power no margin for error
2	0 Tad Whitin	No after a couple tug miscues vessel grounded port side	Not calculated		Yes	No	See voyage/ Run 21 essentially maintain more distance to shoaling on port side	3	4 tugs is preferable	9	9 5	



			Average drift angle and minimum speed to offset	3. Successfully complete berthing/unberthing evolutions? If not, what were	4. Ship model react as expected with	5. Maintain acceptable distance from shoals	6. Would you modify	7. Tug configuration and reserve		9. Difficulty	10. Overall	
n	Captain	transit	environments	limiting factors?	environment	and terminal	transit plan?	capacity	8. Qualifiers to rating	rating	safety	11. Safety qualifier
												tight space for the
2	21 Tad Whitin	Yes	Not calculated	Yes	Yes	Yes	No		5	8	3	maneuver
	Kevin		Minimium 2.5 kt max 3.5 - 4									
2	22 Hanna	Yes	kts	Yes	Yes	Yes	No	8	3	8	7	
2	23 Tad Whitin	Yes	Not calculated	Yes	No	Yes	No	,	7	7	7	
2	Carroll 24 Cudworth	Yes	1.5 kts	Yes	Yes	Yes	No		5		5	Using tug forward center lead not real so far for myself
		Yes, but at several	1.5 - 3 kts	Yes, wind certainly a factor	I thought draft due to wind effect was less	Not by my standards	Yes, limit speed if allowed (by wind, etc.) and distances to shoal areas		For this class of vessels, I feel this in the minimum total horsepower/bollard pull 5 that is acceptable	7		Wind restrictions, traffic restrictions, visibility restrictions, minimum bollard pull, vessel proximity, PPU or ECDIS required
2	Carroll 26 Cudworth	Winds set us to vessels at DMT 5/6	3 kts outbound DMT West	No, again the bow tug forward not used correctly	Yes		Yes would use tug alongside		·			
2	27 Jim Hickey	Yes	1.5 - 4 kts	Yes, wind a definite factor	Very very similar	Acceptable but not to my standards	l did	5	I believe 3, 60 t tugs should be the minimum	8	4	in this exercise, the wind was the decisive factor
2	28 Carroll Cudy	Same as Run 24 and 25										
,	29 Jim Hickey	Yes but not planned with drift	1.5 - 2.3 kts	Yes, wind a certain factor, as was ship characteristics	not sure, but it was difficult increasing speeds on this	Yes	Yes, maneuevring speeds were not as applicable to this run so would adjust if again		this class of vessel requires a significant amount of horsepower	8	4	this class of vessel should have a wind restriction and a minimum horsepower restriction
	Mike	u.,g/c	2.5 2.5 1.5	as mas simp characteristics	JGlatton	Used all available	aujust ii ugalii		aoant or norsepower			resultation
3	30 Flanagan	Yes	NA	Yes	Yes	space	No	,	7	6	6	
	Mike					Used all available		·	Could have used another			
3	31 Flanagan	Yes	3 - 4 deg	Yes	Yes	space	No		tug	7	6	4 tugs with conditions
	Mike	Yes	NA	Yes	Yes	Yes, new channel	No	4.5	_	4.5		
	Mike											
3	33 Flanagan	Yes	Yes	Yes	Yes	Yes with widener	No	5.5	5	6	5	
	Mike											
3	34 Flanagan	Yes	Yes	Yes	Yes	Yes with widener	No	5.5	5	5.5	5	



#### 4.3.2 TUG MASTER EVALUATIONS

After each run, each tug master filled out an individual run questionnaire. A summary of the evaluations are presented in Table 4-5 while the full comments are shown in Table 4-6. Note, there are 2 evaluations for each run as there were 2 Tug Masters working their tugs for each run. One column ranks tug configuration and reserve capacity on a scale of 1 to 10 with 10 being equivalent to most adequate. The overall difficulty was also assessed on a scale of 1 to 10 with 10 being the most difficult. The last column of the table shows the overall safety ranking. This value is also on a 1 to 10 scale with 10 being the safest scenario possible. Both the river and docking pilots completed the surveys.

The average tug configuration and reserve capacity was 8 (10 = most adequate). The average overall difficulty was 4 (10 = most difficult), and the average safety ranking was 8.3 (10 = most safe).



						Table 4	4-5: Tug ma	ster rat	ings						
Run	Tug Reserve	Overall Run Difficulty	Overall Run Safety	Run	Tug Reserve	Overall Run Difficulty	Overall Run Safety	Run	Tug Reserve	Overall Run Difficulty	Overall Run Safety	Run	Tug Reserve	Overall Run Difficulty	Overall Run Safety
-	Capacity	,	,	11	Capacity 7	,	Safety 7	<b>21</b>	Capacity	,	•	<b>31</b>	Capacity	,	,
1	5	1	10	11		5		21	10	8	10	31	2	9	2
1	8	1	9		9	2	9		5	5	5		5	8	5
2	8	5	8	12	6	7	7	22	2	9	2	32	1	10	1
2	5	1	10	12	9	2	9	22	10	8	10	32	7	8	7
3	8	1	10	13	8	6	7	23	5	8	5	33	2	9	2
3	9	5	6	13	9	2	9	23	4	9	4	33	2	9	2
4	9	5	8	14	5	8	7	24	5	8	5	34	8	7	8
4	7	1	10	14	8	5	8	24	2	9	2	34	1	10	1
5		7	8	15	10	7	7	25	2	9	2				
5	8	1	10	15	9	2.5	9	25	5	7	5				
6	10	2	10	16	9	7	7	26	2	9	2				
6	3	5	6	16	9	2	9	26	5	4	5				
7	10	2	10	17	7	8	6	27	2	9	2				
7	8	7	7	17	9	2	9	27	5	8	5				
8	9	2	9	18	8	7	7	28	6	7	6				
8	8	7	8	18	10	1	10	28	2	9	2				
9	8	2	8	19	8	8	8	29	2	9	2				
9	9	2	9	19	4	5	7	29	1	9	1				
10				20				30	2	9	2				
10				20				30	10	8	10				



Table 4-6: Tug master evaluation comments

		1. Able to make fast at location requested by	successfully respond to	more than 5	maintain a safe CPA	5. Did tug model respond as	modify transit		•	9. Difficulty		
Run	Captain	pilot?	pilot orders?	minutes?	from shoals?	expected in real-world?	plan?	capacity	to rating	rating	safety	11. Safety qualifier
						Little slugish, power was low,			indequate;			
	Steve	Yes, centerline	Yes, no	Yes, not a		49-53 tons bollard pull on full			power is			Very safe no
	1 Thalheimer	frwd, 159' of line	problems	problem	Yes	power	No		only 49 ton	1	. 10	problems
							more issues					
			Yes once			the real world to remain	setting use to					
	1 Bob Dempsey	Yes, took time	started	No	Yes	centered w/ ship turning	winch control		3	1	. 9	All good
						At 2.8 kts when swinging out						
						to port or starboard at low						
						speed tonnage reached						
						higher than real-world						
	2 Bob Dempsey	Yes	Yes	No	Yes	maneuver	No		3	5	8	3
									Little low			
		Yes hip should							on power,			
		make fast close to							bollard pull			
		Key Bridge;							was 49-53			
	Steve	centerline frwd,	Yes, no						tug on full			Very safe no
	2 Thalheimer	160' of line	issues	No	Yes	Yes, a little low in power	No		5 power	1	. 10	problems
			Yes, 53 tons									
	Steve	Yes centerline	at 100%	Yes, no								
	3 Thalheimer	frwd, 159' of line	power	problems	Yes	Yes	No		3	1	. 10	Very safe no issues
							No					
	3 Bob Dempsey	Yes	Yes	No	Yes	Yes	modification	!	9	5	6	i
	4 Bob Dempsey	Yes	Yes	No	Yes	Yes	No	9	9	5	8	fine
	Steve	Yes, centerline										
	4 Thalheimer	frwd, 178' of line	Yes	No	Yes	Yes	No		7	1	. 10	Very safe, no issues
			Could not			Yes actually while trying to						
			push on port			push would have been too						Wind retarded
			quarter; tug			far aft would have been						turnout into Fort
	5 Bob Dempsey	Yes	slid	No	Yes	metal to metal	No			7		McHenry Stream
	Steve	Yes centerline										Very safe, no issues
	5 Thalheimer	frwd, 184' of line	Yes	Yes	Yes	Yes	No		3	1	. 10	or problems



		1. Able to make fast at location	successfully	•	maintain a		6. Would you	_				
Run	Captain	requested by pilot?	respond to pilot orders?	more than 5	safe CPA from shoals?	•	modify transit plan?	and reserve capacity	8. Qualifiers to rating	9. Difficulty rating	10. Overal safety	l 11. Safety qualifier
Kuii	John	piloti	phot orders:	minutes:	iioiii siioais:	expected in real-world:	piaii:	capacity	torating	rating	salety	Smooth approach
		Yes	Yes	No	Yes	Yes	No	10		2		10 with no close calls
	6 Bob Dempsey		Yes, full only produced 48- 50 tons		Yes	Yes	No	9	Bollard pull	5		6
	John		55 (5115						issue			smooth approach w/
	7 Shellenberge	Yes	Yes	No	Yes	Yes	No	10		2		10 no close calls
	7 Bob Dempsey		Yes	No	Yes	Yes, shorten line rubber coefficient held to bow	No	8		7	7	7 All good
	John 8 Shellenberge	Yes	Yes	No	Yes	No- bollard pull was lower than expected in powered indirect	No	9		2	2	9
	8 Bob Dempsey	Yes	Yes	No	Yes	Yes	No	8	1	7	7	8
	9 Bob Dempsey	Yes	Yes	Yes	Yes	Yes	No	8	1	2	2	8
	John 9 Shellenberge	Yes	Was not able to flank out to stbd on a 90 deg in final turn into Fort McHenry	No	Yes	No, at idle stbd engine would randomly drop from 10 to 5 rpm causing tug to skew and part		c				9
	0	103	moriemy		103	part				-	-	
	0											
		Yes	Yes	No	Yes	Yes	Yes	7	,	5	5	7
1	John 1 Shellenberge	Yes	Yes	No	Yes	Yes	No	9		2	2	9



		1. Able to make fast at location requested by	successfully	3. Used full power for more than 5	maintain a	5. Did tug model respond as	6. Would you modify transit	•	8 Qualifiers	9. Difficulty	10 Overall	
ın	Captain	pilot?	pilot orders?				plan?	capacity	to rating	rating	safety	11. Safety qualifier
									Needed			,,,
									more			
12	2 Bob Dempsey	Yes	Yes	No	Yes	Yes	No	•	bollard pull	7		7
12	John 2 Shellenberge	Yes	Yes	No	Yes	I only put out 100' of line this time; felt that in the real world. I would be getting blown out by the prop wash in power indirect mode	No			2		9
		Yes	Yes	No	Yes	Yes	No		3	6		7
15	John	res	res	INO	res	res	NO		5			/
13		Yes	Yes	No	Yes	Yes	No		9	2		9
									Needed reserve			
1/	1 Bob Dempsey	Vos	Yes	Yes, wind on	Yes	Yes	No		power to work off pier	8		7
			No, I had too much line out around SMT #1 and ran into		No too much line out and ship was too close to berth							
14	4 Jon Steinberg	Yes	docked ship		SMT #1	Yes	Yes, less line	8	3	5		3
15	5 Ed Lucas	Yes	Yes	Yes, I did but no I was not concerned	Yes	Yes	No	10		7		7
10	John	103	163	concerned	103	103	110	10	,	,		'
15		Yes	Yes	No	Yes	Yes	No		•	2.5		9



		1. Able to make fast at location	2. Able to successfully	3. Used full power for	4. Able to maintain a		6. Would you	7. Tug configuration				
		requested by	respond to	more than 5	safe CPA	5. Did tug model respond as	modify transit	and reserve	8. Qualifiers	9. Difficulty	10. Overall	
un	Captain	pilot?	pilot orders?	minutes?	from shoals?	expected in real-world?	plan?	capacity	to rating	rating	safety	11. Safety qualifier
				Yes, not								
	16 Ed Lucas	Yes	Yes	concerned	Yes	Yes	No	9	)	7	7	7
	John											
	16 Shellenberge	Yes	Yes	No	Yes	Yes	No	9		2		
	17 Ed Lucas	Yes	Yes	No	Yes	Yes	No	7	7	8	6	i
	John 17 Shellenberge	Yes	Yes	No	Yes, at one point it looked like I would run over a buoy on ECDIS but didn't see it in the simulator	No, it takes a long time for the azipods to turn; almost 30 seconds - very long for full rotation	No	9		2	s	
	18 Ed Lucas	Yes	Yes	Yes, no	Yes	Yes	No	8	3	7	7	,
	18 Kevin Hanna	Yes	Yes	No	Yes	Yes	None	10	)	1	. 10	
	19 Ed Lucas	Yes	Yes	Yes, no	Yes	Yes	No	8	3	8	8	
	19 Bob Dempsey	Yes	Yes	No		Ship port turn at 5 kts and flank tug to starboard left hand is on 90 to hold vessel up and shake violently	No	2	When limit tug to 90%, 60 t marginal	5	; <del>,</del>	,
	Steve								_			
	20 Thalheimer	Ended early										
	20 Bob Dempsey	Ended early										
	Steve											
	21 Thalheimer	Yes	Yes	Yes, no	Yes	Yes	No	8	3	10	8	
	21 Bob Dempsey	Yes	Yes	No	Yes	Yes	No	6	i	5	5	i



Run Captain	1. Able to make fast at location requested by pilot?	2. Able to successfully respond to pilot orders?	more than 5	maintain a safe CPA	5. Did tug model respond as expected in real-world?	6. Would you modify transit plan?	-	8. Qualifiers	9. Difficulty	10. Overall safety	11. Safety qualifier
John											
22 Shellenberge	Yes	Yes	No	Yes	Yes	No	9	9	2	9	9
22 Ed Lucas	Yes	Yes	Yes, no	Yes, no	Yes	No	8	3	10	8	3
23 Bob Dempsey	Yes	Yes	No	Yes	Yes	No			5	8	3
23 Kevin Hanna	Yes	Yes	No, NA	Yes	Yes	No	9	9	4	9	
24 Bob Dempsey	Yes	Yes	No	Yes	Yes	No			5	8	No limits on run; tug kept full @ 90% to mimic 60 t BP
John 24 Shellenberge	Yes	Yes	No	Yes	Yes	No	<u>c</u>	•	2	9	9
John 25 Shellenberge	Yes	Yes	No	Yes	Yes	No	9	)	2	9	)
25 Bob Dempsey	Yes	Yes	Yes	Yes	Yes	No	8	3	5	7	c.c. first run inbound
John 26 Shellenberge	Yes	Yes	No	Yes	Yes	No	9	)	2	9	)
26 Bob Dempsey		Last turn out @ 10 idle speed tug head to starboard side ship too fast to keep up	Needed full power to		Yes	Different final turnout		5	5		
John											
27 Shellenberge	Yes	Yes	No	Yes	Yes	No	9	9	2	9	
27 Bob Dempsey	Yes	Yes	No	Yes	Yes - 58 m on a 90	No nice turn in basin	5	5	5	8	3



		1. Able to make fast at location requested by	successfully	3. Used full power for more than 5	maintain a	5. Did tug model respond as	6. Would you modify transit	7. Tug configuration	8 Qualifiers	9. Difficulty	10 Overall	
ın	Captain	pilot?	pilot orders?			expected in real-world?	plan?	capacity	to rating	rating	safety	11. Safety qualifier
	· ·	Ī	Pulling off				Yes, no wind					, ,
			dock winch				till we are at					
		Yes, parted line	slow,		Closer to		correct					
		trying to wind in	defaulted to		edge due to		workable					
2	8 Bob Dempsey	for shortened pull	296' tried	No	line length	Yes	length	(	5	6	7	,
					No ship was							
					all the way							
					over to the							
	John				far side of							
2	8 Shellenberge	Yes	Yes	No	the channel	Yes	No	9	9	2	9	
	John											
	9 Shellenberge	Yes	Yes	No	Yes	Yes	No	9	9	2	_	
3	0 Matt Barranco	Yes	Yes	No	Yes	Yes	No	9	9	1	. 9	No problems
	John											
3	0 Shellenberge	Yes	Yes	No	Yes	Yes	No	9	9	2	9	
				Yes and no								
3	1 Matt Barranco		Yes	issues	Yes	Yes	No		9	2		
3	1 Bob Dempsey	Yes	Yes	No	Yes	Yes	No	8	3	5	8	smooth run
		Yes centerline										
		forward 125' of							Very			very safe - no issue
	2 Matt Barranco	line	Yes	No	Yes	Yes	No		realistic	1		or problems
3.	2 Bob Dempsey	Yes	Yes	No	Yes	Yes	No	(	5	7	8	Good run
	John											
	3 Shellenberge	Yes	Yes	No	Yes	Yes	No	9		2		
3	3 Matt Barranco	Yes	Yes	No	Yes	Yes	No	10	)	2	. 9	
												Used thrust to push
												disabled tug out of
												harms way to
	4 Bob Dempsey	Yes	Yes	No	Yes	Yes	No		7	8		complete this job
34	4 Matt Barranco	Yes	Yes	No	Yes	Yes	No	9	9	1	. 10	



#### 5. CONCLUSION SUMMARY

Throughout the study, 34 runs were completed with the *Kalina* and *Ben Franklin* container vessels transiting to/from Berth 3 via the East and West Loop. The additional space provided from Wideners A and B were used in a majority of the runs. Figure 5-1 shows all of the runs and the overall area the swept paths occupied. Halfway through the runs GBA modified Widener 1 on the East side and added a new Widener on the West side. Both modifications are shown in Figure 5-2.

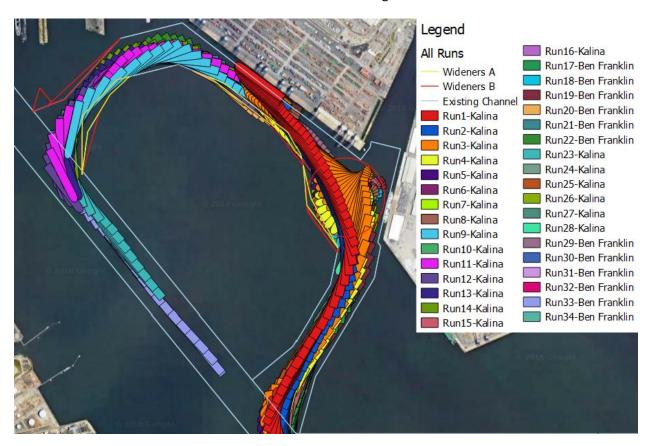



Figure 5-1: Summary of all runs

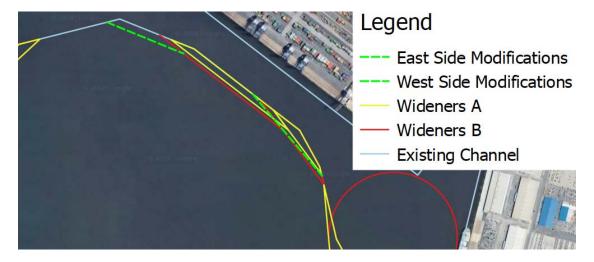


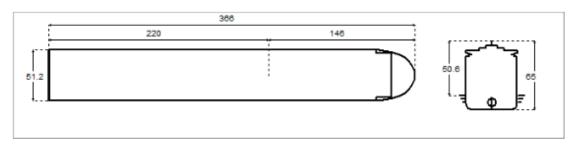

Figure 5-2: Channel modifications (dotted green lines) in addition to the Widener A and B designs

Port of Baltimore – Seagirt Channel Modifications

Page 90 of 129



For safe transits to/from Berth 3, the Maryland Pilot Association and Tug Masters made the following recommendations determined from this study:


- Transit speed:
  - o 3 kts or less
- Environmental conditions:
  - For winds greater than 25 kts, consideration of the results of this study, wind direction and magnitude, available tug support, and Maryland Pilots professional judgement should be used in determining safe transit conditions
- *Kalina* tug requirements:
  - o Wind less than 20 kts: 3 ASD tugs each with a minimum bollard pull of 60 t
  - o Wind 20 kts or greater: 4 ASD tugs each with a minimum bollard pull of 60 t
- Ben Franklin tug requirements:
  - o 4 ASD tugs each with a minimum bollard pull of 60 t
- Additional tug requirements:
  - Tugs must operate on shorter lines in the limited space and have no room for error in this position
  - o Upgrade to more stable tugs: current tugs are not stable enough and get caught in wash
- Conduct additional Pilot and Tug Master training with the Kalina and Ben Franklin



# 6. APPENDIX A - PILOT CARDS

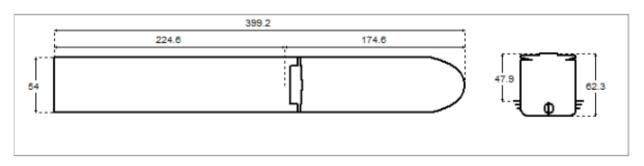
PILOT CARD							
Ship name	Container Kalina Seagirt Date 24.04.201						
IMO Number	N/A	Call Sign		N/A	Year built	1995	
Load Condition	Loaded	Loaded					
Displacement	192245 to	ons		Draft forward	14.33 m / 47	ft 1 in	
Deadweight	135460 tons		Draft forward extreme	14.33 m / 47	ft lin		
Capacity				Draft after	14.33 m / 47	ft lin	
Air draft	50.67 m	166 ft 8 in		Draft after extreme	14.33 m / 47	ft lin	

Ship's Particulars					
Length overall 366 m Type of bow Bulbous					
Breadth	51.2 m	Type of stern	Transom		
Anchor(s) (No /types)	2 ( PortBo	2 ( PortBow / StbdBow )			
No. of shackles	14 / 14		(1 shackle =27.5 m / 15 fathoms)		
Max rate of heaving, m/min	15 / 15				



Steering characteristics					
Steering device(s) (type/No.) Semisuspended / 1 Number of bow thrusters 2					
Maximum angle	35	Power	1700 kW / 1700 kW		
Rudder angle for neutral effect	0.21 degrees	Number of stern thrusters	N/A		
Hard over to over(2 pumps)	22 seconds	Power	N/A		
Flanking Rudder(s)	0	Auxiliary Steering Device(s)	N/A		

Stopping			Turning circle		
Description	Full Time	Head reach	Ordered Engine: 100%, Ordered rud	der: 35 degrees	
FAH to FAS	446.6 s	9.5 cbls	Advance	5.57 cbls	
HAH to HAS	512.6 s	8.68 cbls	Transfer	2.06 cbls	
SAH to SAS	640.6 s	8.71 cbls	Tactical diameter	5.05 cbls	


Main Engine(s)					
Type of Main Engine	Low speed diesel	Number of propellers	1		
Number of Main Engine(s)	1	Propeller rotation	Right		
Maximum power per shaft	1 x 73340 kW	Propeller type	FPP		
Astern power	85 % ahead	Min. RPM	14		
Time limit astern	N/A	Emergency FAH to FAS	26.2 seconds		

	Engine Telegraph Table							
Engine Order	Speed, knots	Engine power, kW	RPM	Pitch ratio				
*10*	24.1	71140	100	1.03				
*8*	16.9	24479	70	1.03				
"6"	13.3	11912	55	1.03				
"4"	10.8	6557	45	1.03				
"2"	6.8	1610	28	1.03				
"-2"	-3	1925	-28	1.03				
"-4"	-4.8	7861	-45	1.03				
"-6"	-5.8	14297	-55	1.03				
"-8"	-6.9	23550	-65	1.03				
"-10"	-9.5	62339	-90	1.03				



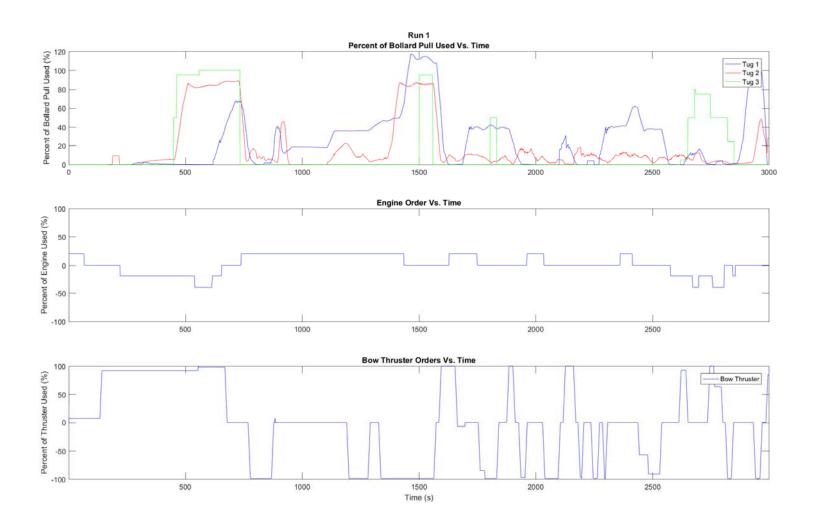
PILOT CARD							
Ship name	Container Ber	n Franklin_Seagirt		Date	24.04.2018		
IMO Number	9454436	CallSign	2FYD5	Year built	2012		
Load Condition	Loaded						
Disp lacement	213040 tons		Draft forward	14.33 m / 47	7ft lin		
Deadweight	185199 tons		Draft forward extreme	14.33 m / 47	ft lin		
Capacity			Draft after	14.33 m / 47	7ft lin		
Air draft	47.97 m / 15	7ft9in	Draft after extreme	14.33 m / 47	7ft lin		

Ship's Particulars					
Length overall 399.2 m Type of bow Bulbous					
Breadth	54 m	Type of stern	Trans om		
Anchor(s) (No./types)	2 (PortBow /	StbdBow )			
No. of shackles	17/17		(1 shackle =25 m / 13.7 fathoms)		
Max. rate of heaving, m/min	13.2 / 13.2				

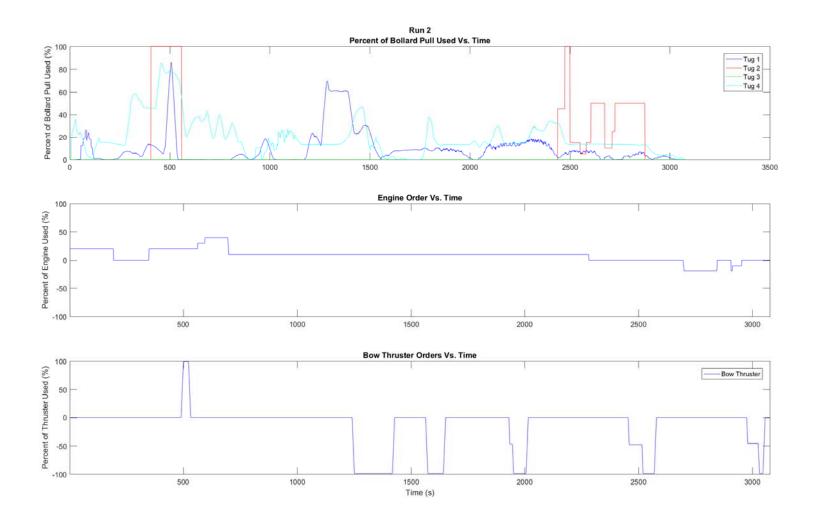


Steering characteristics						
Steering device(s) (type/No.) Normal balance nudder / 1 Number of bow thrusters 2						
Maximum angle	35	Power	2043 kW / 2043 kW			
Rudder angle for neutral effect	0.16 degrees	Number of stern thrusters	N/A			
Hard over to over(2 pumps)	13 seconds	Power	N/A			
Flanking Rudder(s)	0	Auxiliary Steering Device(s)	N/A			

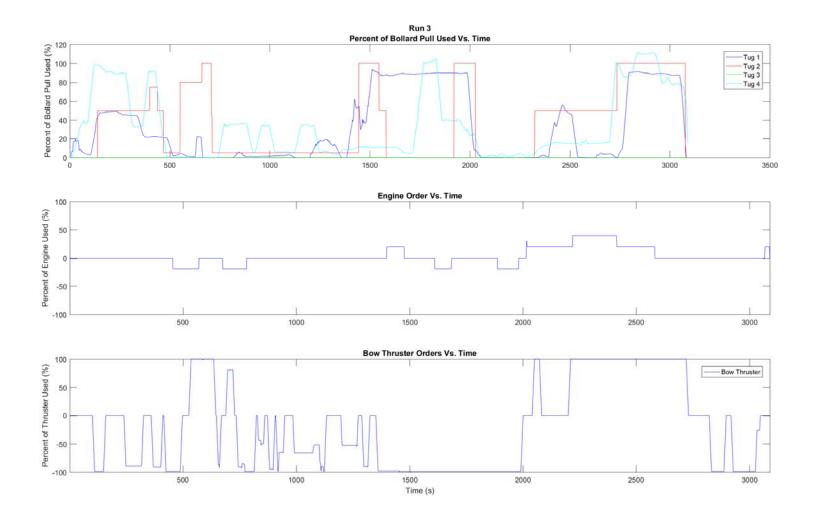
	Stopping		Turning circle		
Description Full Time Head reach		Ordered Engine: 100%, Ordered rudder: 35 degrees			
FAH to FAS	753.6 s	24.87 cbls	Advance	5.66 cbls	
HAH to HAS	630.6 s	16.99 cbls	Transfer	2.53 cbls	
SAH to SAS	626.6 s	6.62 cbls	Tactical diameter	5.98 cbls	


Main Engine(s)						
Type of Main Engine	Low speed diesel	Number of propellers	1			
Number of Main Engine(s)	1	Propeller rotation	Right			
Maximum power per shaft	1x63910 kW	Propeller type	FPP			
Astem power	85 % ahead	Min.RPM	14			
Time limit astern	N/A	Emergency FAH to FAS	325.6 seconds			

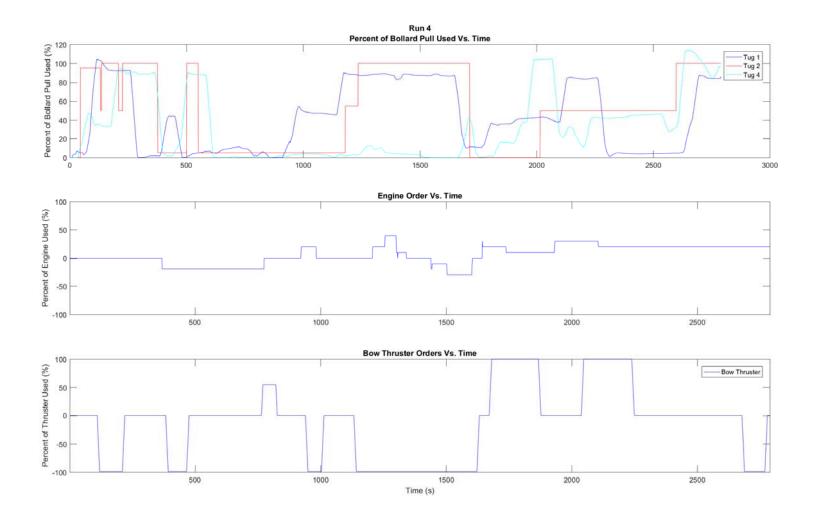
Engine Telegraph Table				
Engine Order	Speed, kmots	Engine power, kW	RPM	Pitch ratio
"FSAH"	26.4	59111	85	0.92
"FAH"	21	33321	67.6	0.92
"HAH"	17.7	20053	56.9	0.92
"SAH"	9.7	5275	31.1	0.92
"DSAH"	6.2	1936	20.1	0.92
"D\$A\$"	-4.1	2461	-20.3	0.92
"SAS"	-6.3	7275	-31.8	0.92
"HAS"	-10.4	31312	-56.8	0.92
"FAS"	-12.5	50141	-68	0.92


-12.5 50141 -08

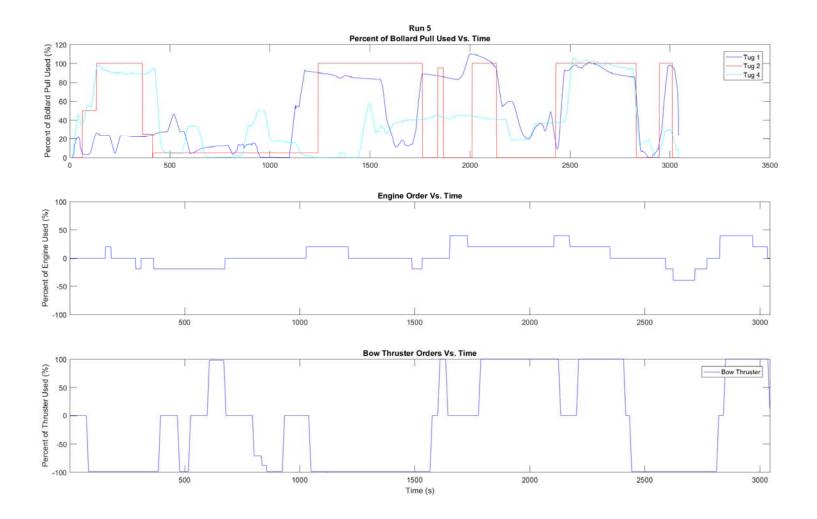



## 7. APPENDIX B - RESERVE POWER ANALYSIS PLOTS

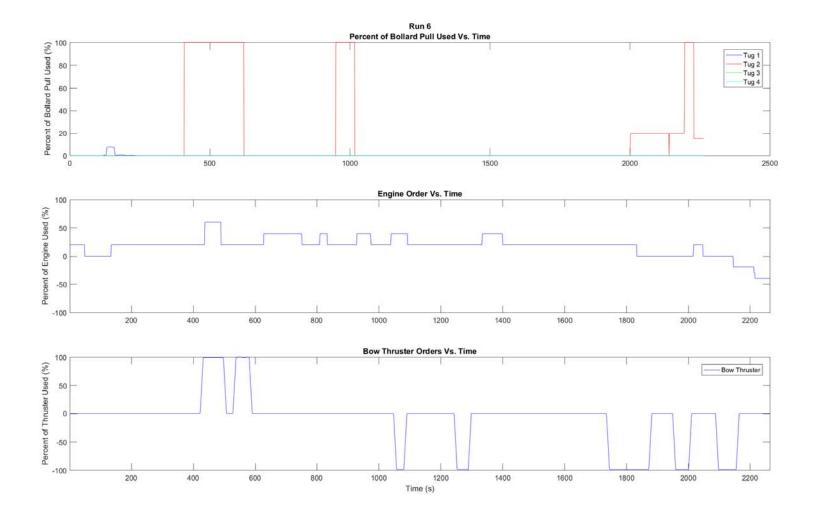




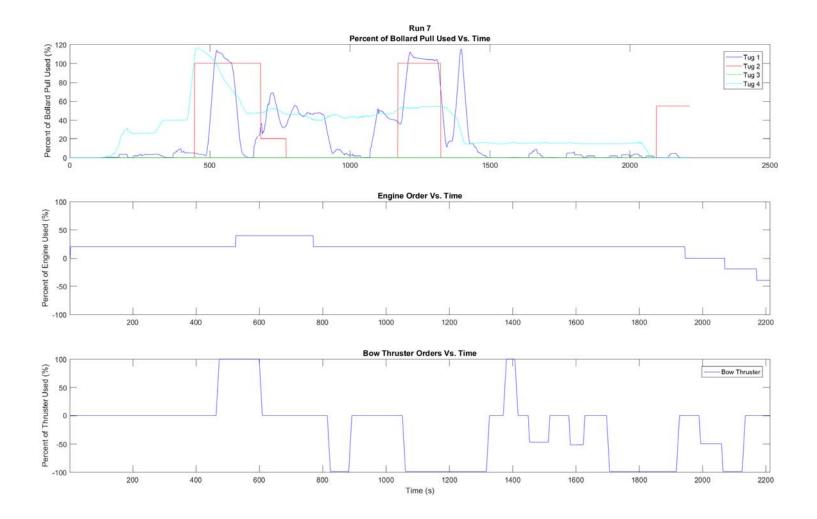


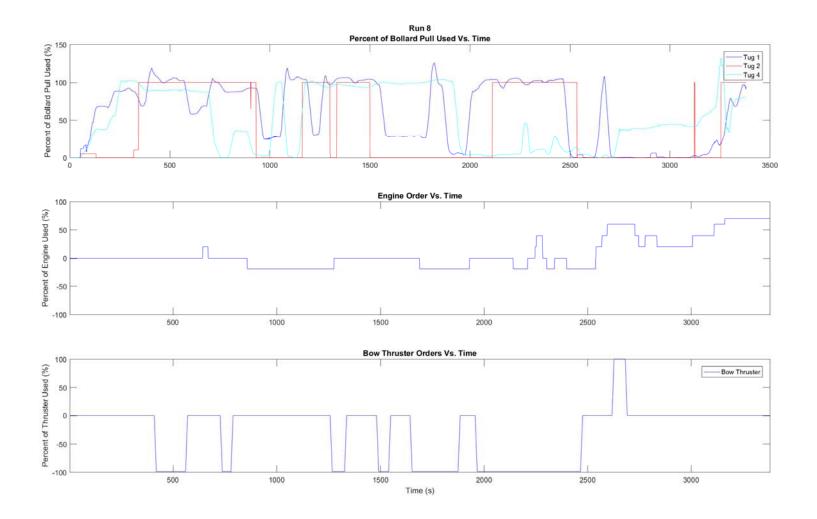


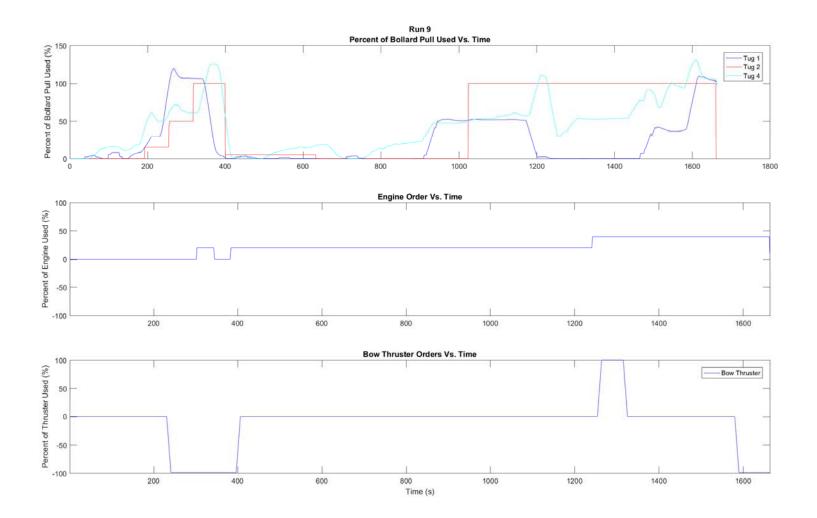


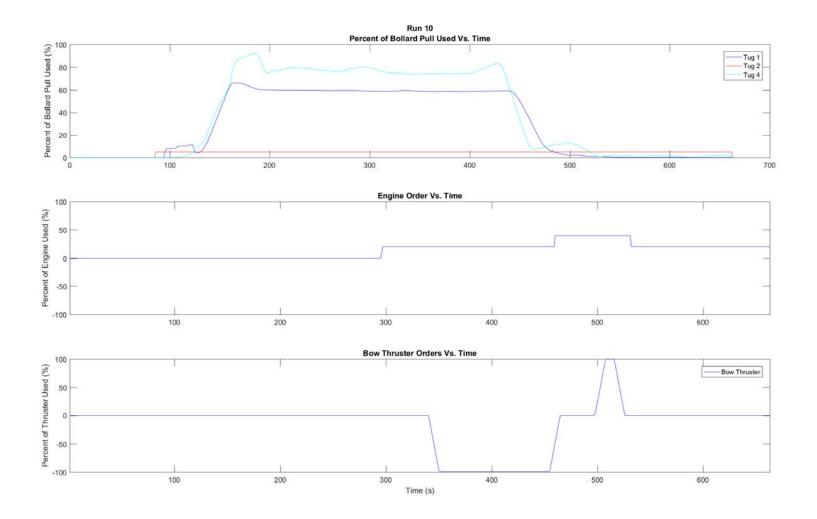


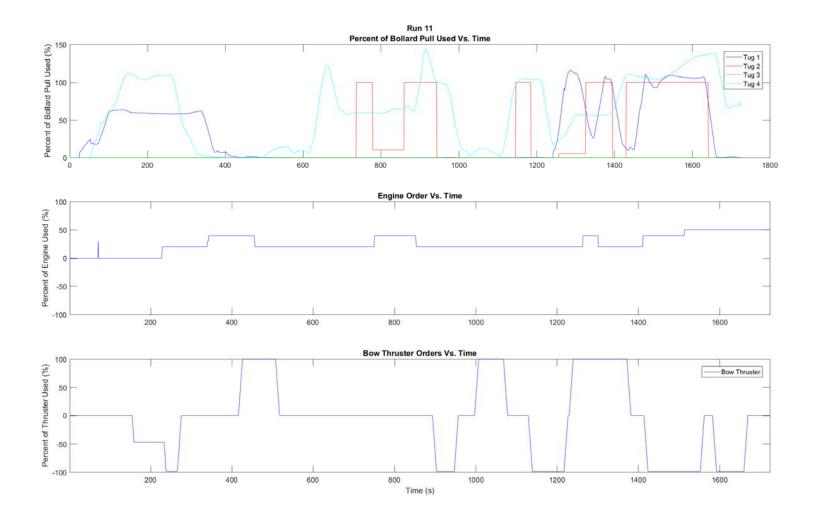


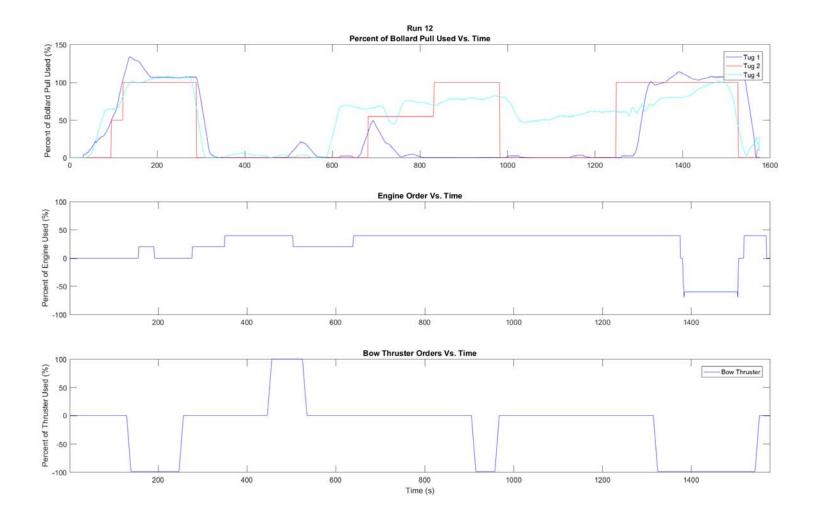


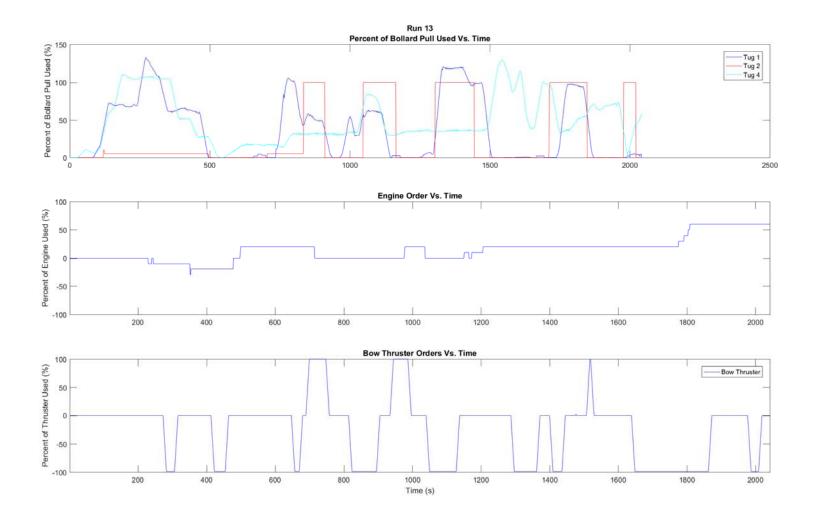


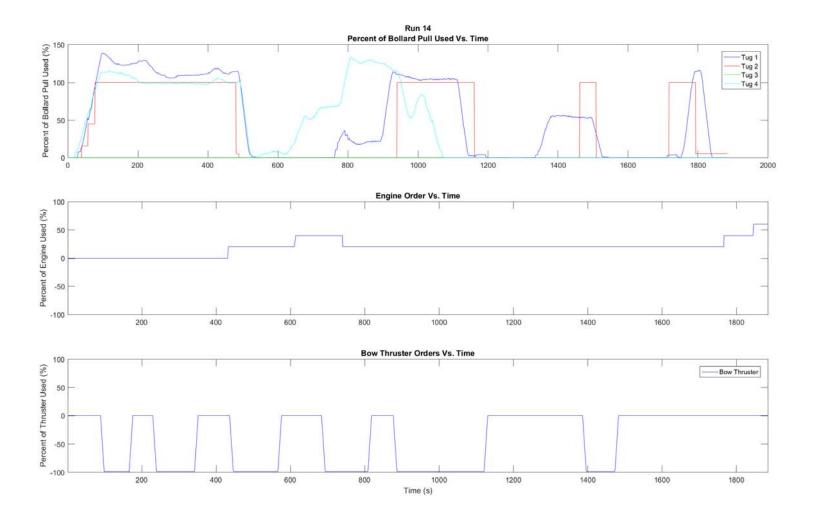


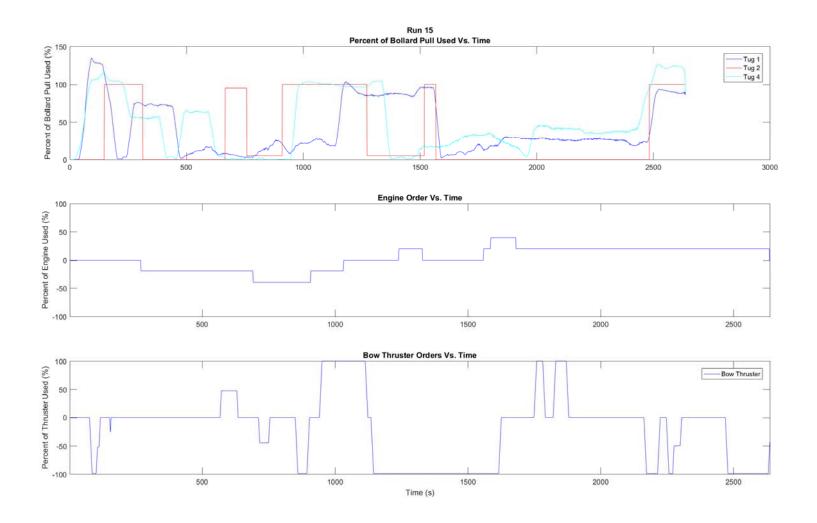


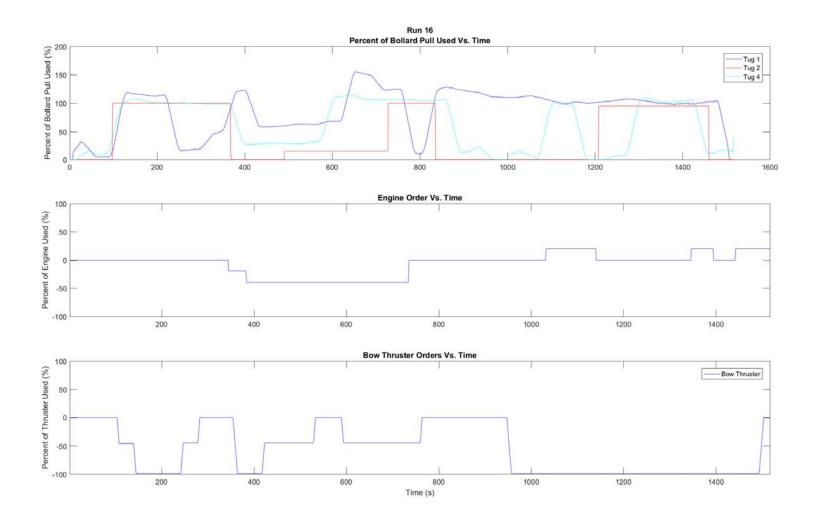


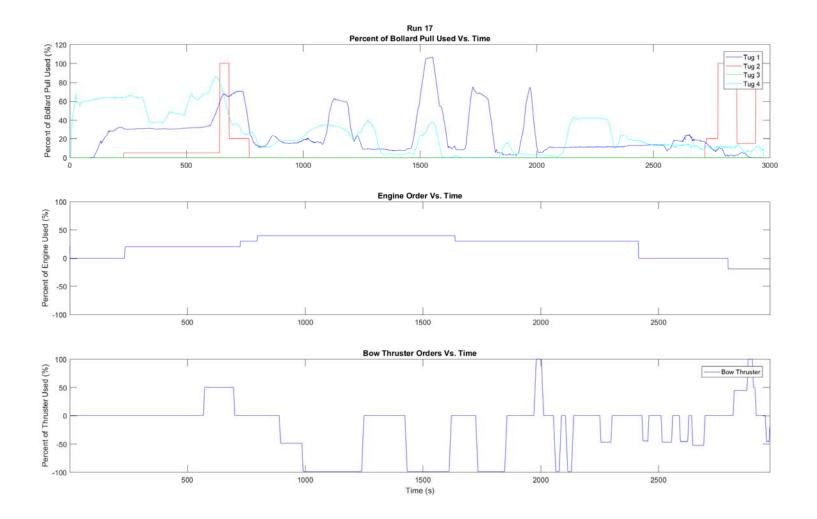


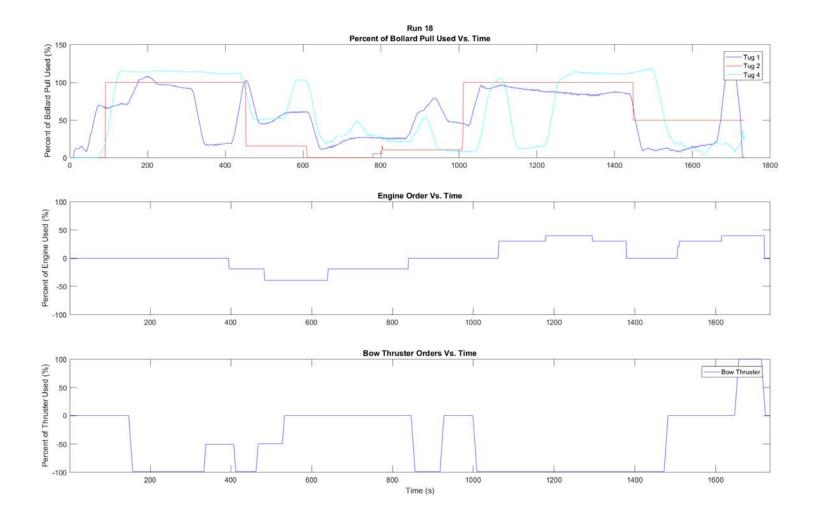


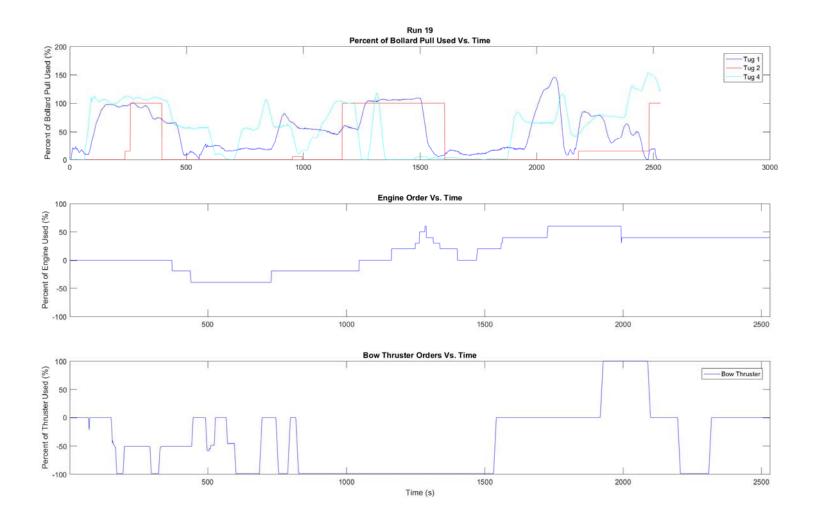


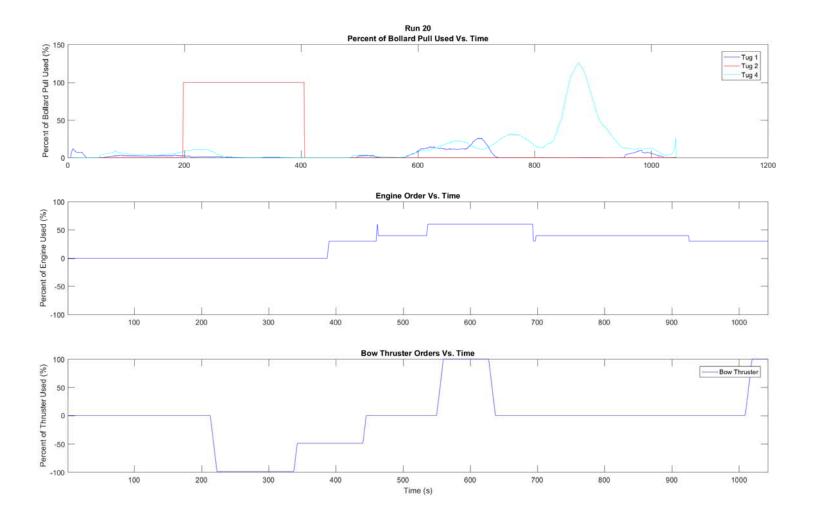


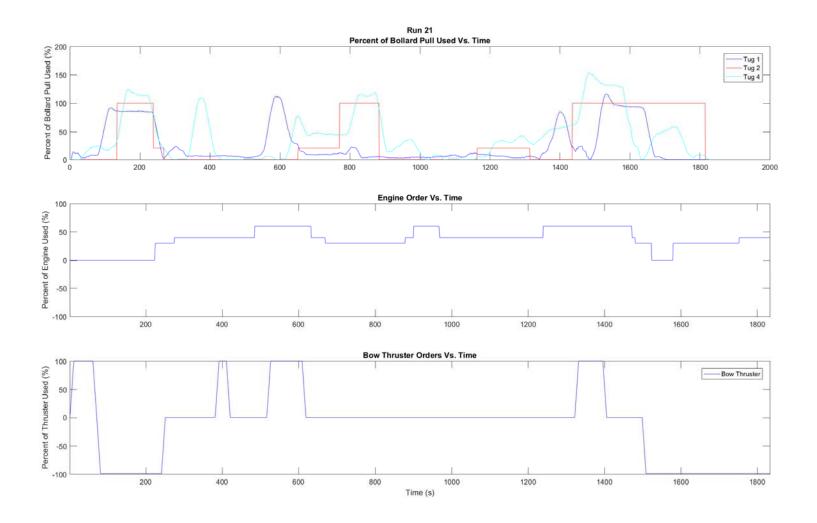


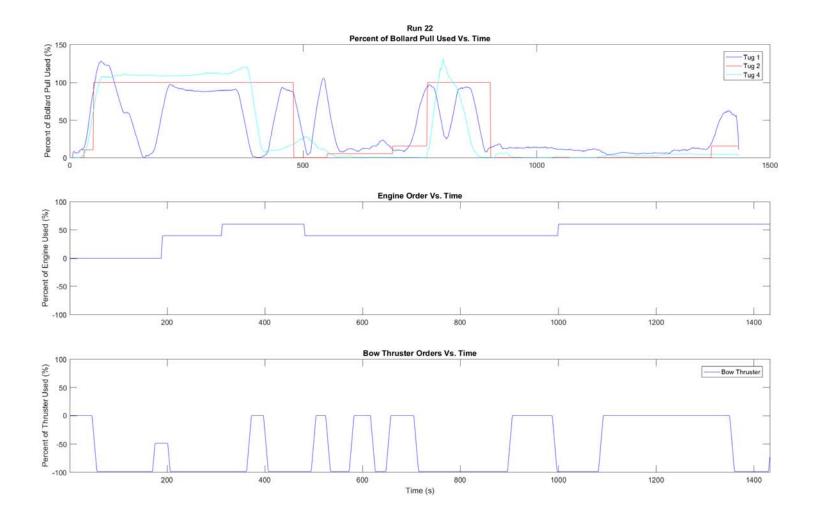


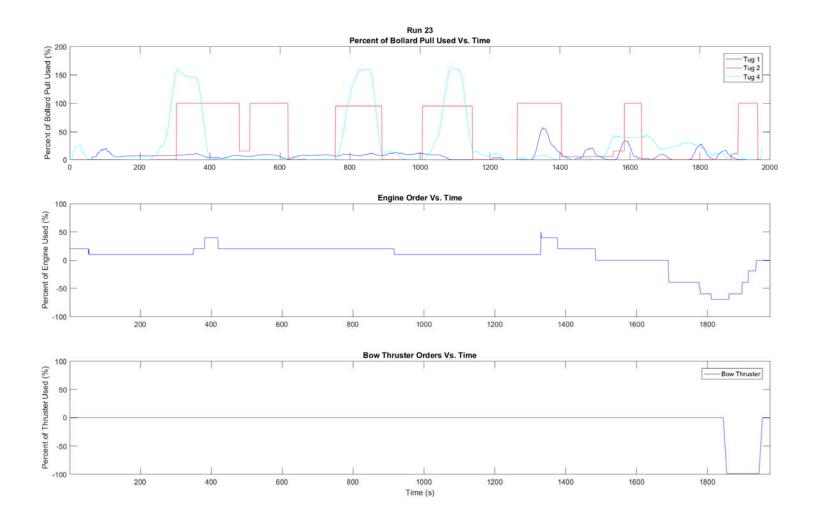


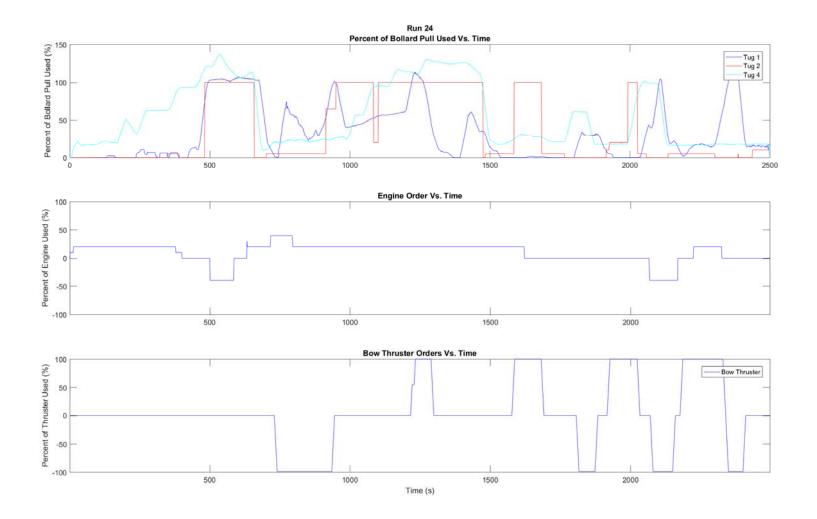


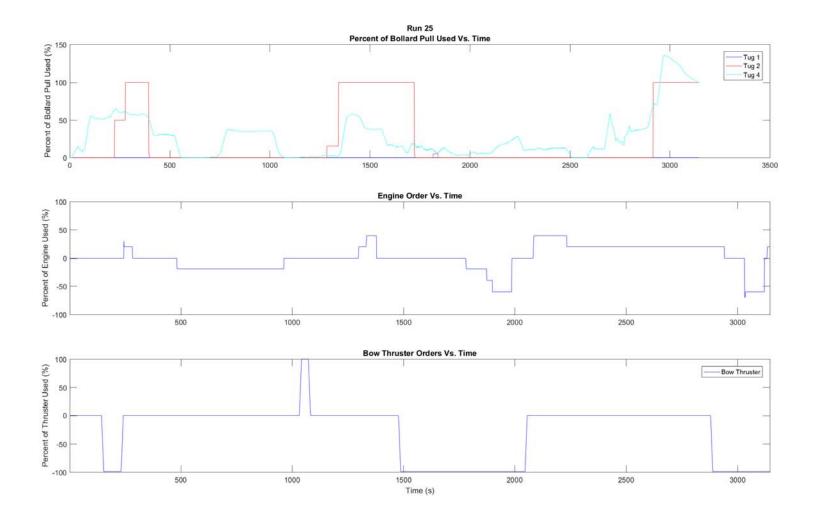


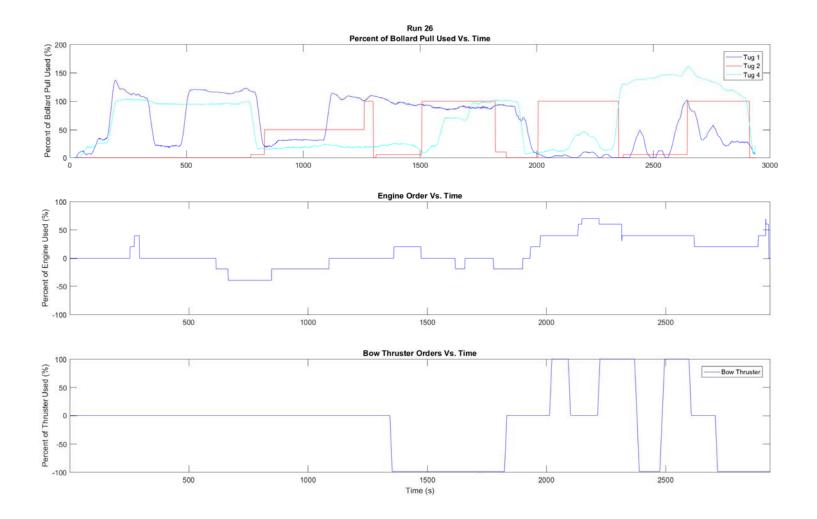


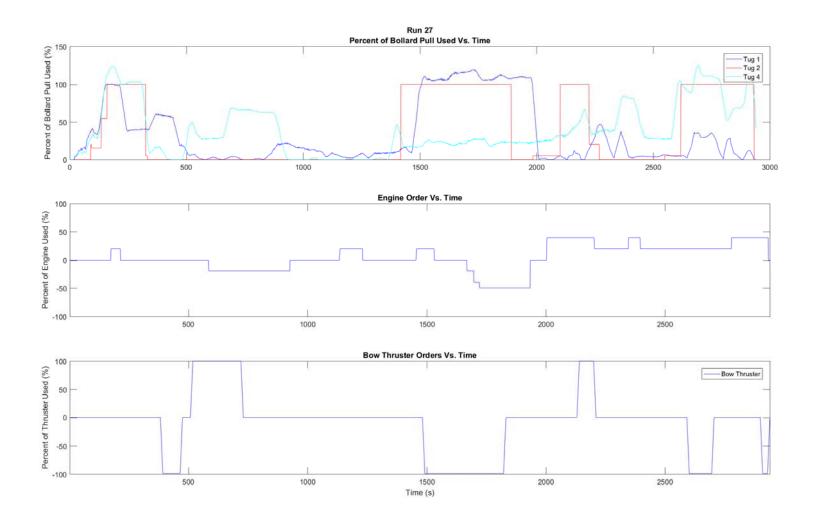




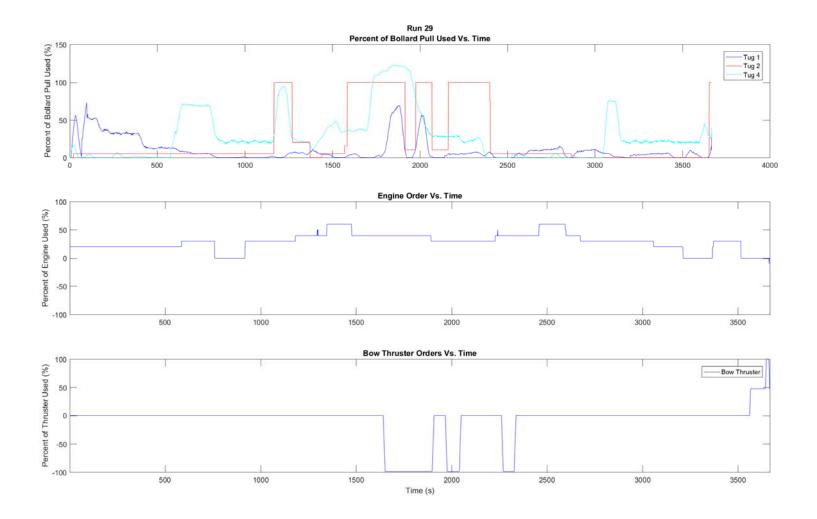


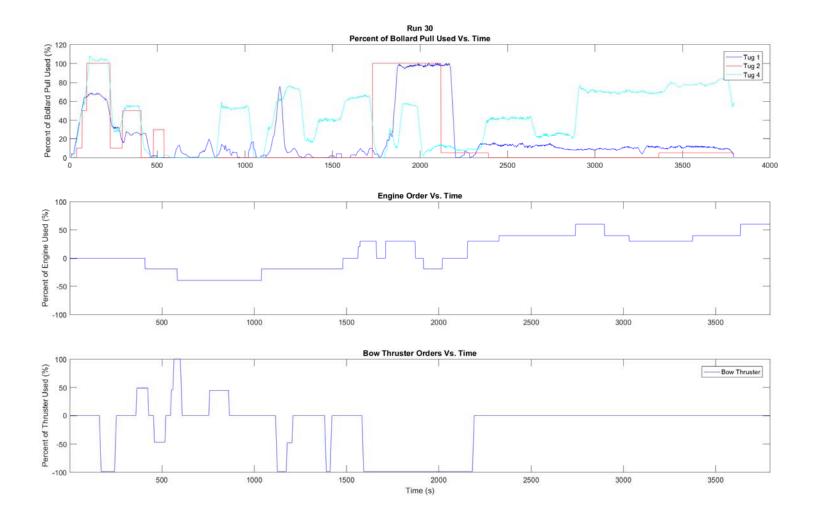




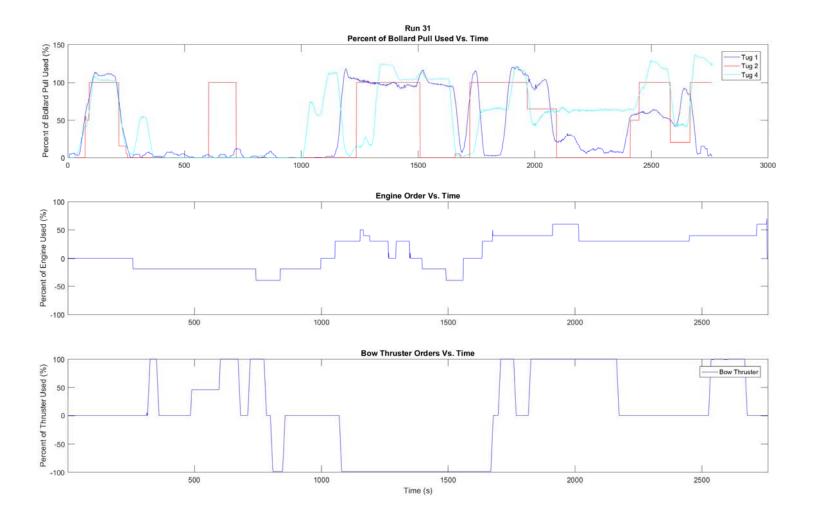


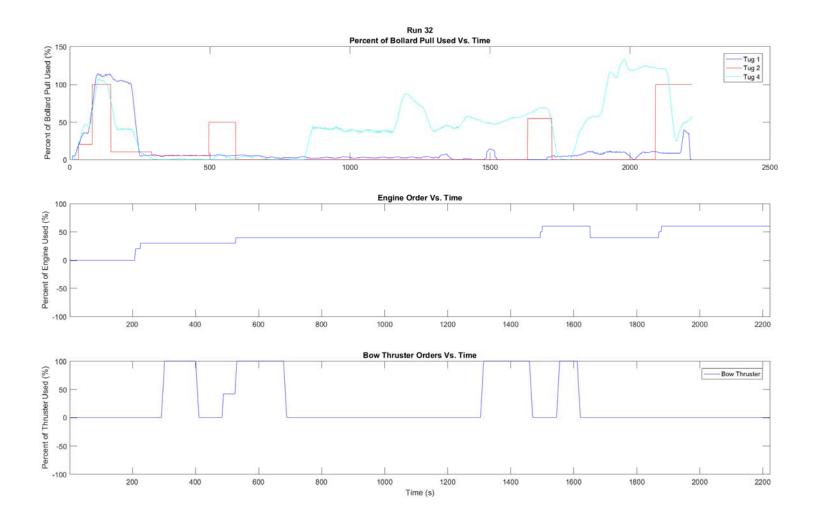


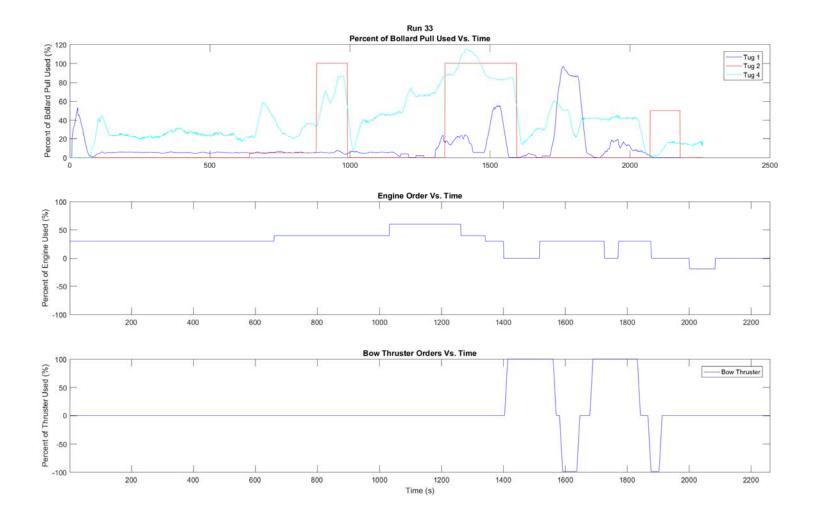


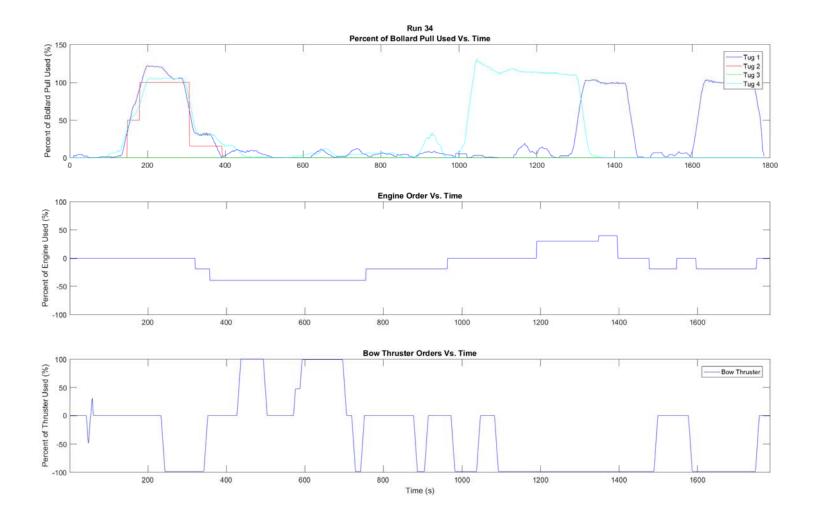



















#### 8. APPENDIX C - MITAGS/PMI INFORMATION

The Maritime Institute of Technology and Graduate Studies (MITAGS) and the Pacific Maritime Institutes (PMI) are non-profit, continuing education centers for professional mariners. The Institutes provide training for both civilian and military mariners at every level of their career.

#### MITAGS LOCATION AND GENERAL FACILITY DESCRIPTION

MITAGS is located less than five (5) miles from the Baltimore-Washington International Thurgood Marshall Airport (BWI). Complimentary shuttle links the campus with the airport, BWI Amtrak Rail, Baltimore Light Rail, and regional bus services. It is also near major tourist destinations; including Baltimore, Annapolis, and Washington, DC.



The MITAGS campus encompasses over forty (40) acres. The 300,000 square-feet facilities include:

- On campus hotel with 232 hotel rooms (3-STAR equivalent). Hotel and conference facilities approved by the International Association of Conference Centers (IACC).
- ◆ 500-seat dining facility, 250-seat auditorium, pub, and store.
- ◆ Indoor swimming pool, Jogging / walking trails, Nautilis® Fitness Room.
- Maritime Museum.
- ECDIS, Stability, LNG Cargo and Engine Room Training Software.
- Emergency Medical Lab.
- ◆ 16-station networked computer Lab.
- Two, 360° Transas Full-Mission Shiphandling Simulator integrated with a 120° Bridge Tug and a 300° Bridge Tug Simulators.



- 8-Ship Radar, Automatic Radar Plotting Aids (ARPA), and Electronic Chart Display and Information Systems (ECDIS) Simulators.
- Global Maritime Distress and Safety Systems (GMDSS) Communications Lab.
- Vessel Traffic System (VTS) Watchstander Training Lab.

#### PMI LOCATION AND GENERAL FACILITY DESCRIPTION

The Pacific Maritime Institute (PMI) is a subsidiary of MITAGS in Seattle, Washington. PMI is located approximately twenty (20) minutes from Seattle Tacoma (SEA-TAC) International Airport. Their waterfront facility is positioned directly within the Maritime Technology and Career Center. PMI offers the following onsite technology and training support facilities:



- ◆ 240° DNV Class A Full-Mission Bridge Simulator.
- Two 300° Full-Mission Tugboat Simulator.
- 6-Radar/Automatic Radar Plotting Aids (ARPA) Simulators.
- ◆ Two Electronic Chart Display and Information Systems (ECDIS)/Electronic Navigation Labs.
- Global Maritime Distress and Safety Systems (GMDSS) Communications Lab.
- 2-Simulation Debriefing Rooms and 12 conference / classrooms.









Figure 8-1: Aerial photograph of MITAGS campus and location

# BALTIMORE HARBOR ANCHORAGES AND CHANNELS (BHAC)

# MODIFICATION OF SEAGIRT LOOP CHANNEL

# **FEASIBILITY STUDY**

# FINAL INTEGRATED FEASIBILITY REPORT & ENVIRONMENTAL ASSESSMENT

# APPENDIX B4: Seagirt Loop Channel Navigation Impact Assessment

Baltimore Harbor Anchorages and Channels (BHAC)
Modification of Seagirt Loop Channel Feasibility Study





# **Seagirt Loop Channel Navigation Impact Assessment**

**Ship Simulation Report** 

Shannon N. Stever, Kiara I. Pazan, and Mary C. Allison

November 2022



Approved for public release; distribution is unlimited.

The US Army Engineer Research and Development Center (ERDC) solves the nation's toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation's public good. Find out more at <a href="https://www.erdc.usace.army.mil">www.erdc.usace.army.mil</a>.

To search for other technical reports published by ERDC, visit the ERDC online library at <a href="http://acwc.sdp.sirsi.net/client/default">http://acwc.sdp.sirsi.net/client/default</a>.

# Seagirt Loop Channel Navigation Impact Assessment

**Ship Simulation Report** 

Shannon N. Stever, Kiara I. Pazan, and Mary C. Allison

Coastal and Hydraulics Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited.

## **Abstract**

The U.S. Army Engineer Research and Development Center (ERDC) Coastal and Hydraulics Laboratory (CHL) assisted the U.S. Army Corps of Engineers (USACE), Baltimore District (CENAB) and the Maryland Department of Transportation (MDOT) Maryland Port Administration (MPA) in evaluating navigation channel deepening and widening designs in the West Seagirt Branch Channel (WSBC) within the Seagirt Loop Channel in the Baltimore Harbor. The primary objective of the study was to determine if the design vessel, the CMA CGM Marco Polo container ship, can safely navigate in the Seagirt Loop Channel. The two proposed authorized channel depth designs evaluated in the WSBC were -47 ft feet (ft) Mean Lower Low Water (MLLW) and -50 ft MLLW. Along with the channel depths, a proposed widening design in the WSBC was evaluated. Upon completing several ship simulation exercises, the participating pilots identified additional widening in the three areas of the WSBC. The modified widening design and both proposed channel depth designs were tested during the second week of testing.

A real-time ship simulation study was conducted using ERDC's Ship/Tow Simulator facility to assess the maneuverability of the design vessel and identify potential navigation issues in the proposed channel designs. Ship simulation testing was conducted over the course of ten days on 18-22 April 2022 and 25-29 April 2022 with four licensed pilots from the Association of Maryland Pilots (AMP). Based on the data collected from this study, including pilot elicitation, vessel track plots, and final pilot surveys, final recommendations on the channel design were provided to support the Baltimore Harbor Anchorages and Channels (BHAC) Modification of Seagirt Loop Channel, Maryland Feasibility Study.

**DISCLAIMER:** The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

# **Contents**

Abstractii					
Fig	ures	and Tables	iv		
Pre	eface		v		
1	Intro	oduction	1		
	1.1	Background			
	1.2	Objective			
	1.3	Approach			
	1.4	Ship Simulator Description			
2	Prop	osed Channel Designs	7		
3	Data	abase Development	9		
	3.1	Design Vessel	9		
	3.2	Visual Database	10		
	3.3	Environmental Database	10		
	3.4	Database Validation	11		
4	Resu	ults	12		
	4.1	Proposed Widening Design and -47 ft MLLW Depth	14		
	4.2	Proposed Widening Design and -50 ft MLLW Depth	17		
	4.3	Modified Widening Design and -47 ft MLLW Depth	19		
	4.4	Further Discussion	22		
5	Sum	mary and Recommendations	24		
Re	feren	ces	25		
Ap	pendi	x A: Pilot Cards	26		
Ap	pendi	x B: Test Matrix	27		
		x C: Vessel Track Plots and Data Sheets			
Ap	pendi	x D: Final Pilot Surveys	29		
Re	Report Documentation Page				

# **Figures and Tables**

Fi	gι	ır	es

Figure 1. Study area for the Baltimore Harbor Anchorages and Channels project	
Figure 2. Captain Shimon Horowitz piloting the ERDC STS during testing	6
Figure 3. Proposed navigation channel widening designs in the West Seagirt Branch Channel within the Seagirt Loop Channel	8
Figure 4. NOAA wind rose for Baltimore Harbor	11
Figure 5. Composite plate of all transits completed in the WSBC (Path C)	23
Tables	
Table 1. List of ship simulation testing attendees	4
Table 2. CMA CGM Marco Polo design vessel dimensions and characteristics	9
Table 3. Path descriptions.	
Table 4. Proposed widening design and -47 ft MLLW depth simulation testing scenarios	14
Table 5. Proposed widening design and -50 ft MLLW depth simulation testing scenarios	18
Table 6. Modified widening design and -47 ft MLLW depth simulation testing scenarios	
Table 7. Modified widening design and -50 ft MLLW depth simulation testing	

## **Preface**

This study was conducted for the U.S. Army Corps of Engineers (USACE), Baltimore District (CENAB). The technical lead at CENAB was Mr. Luis Santiago.

The ship simulation study was completed by the U.S. Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Navigation Branch of the Navigation Division. At the time of this study, Mr. Ryan Hoben was Acting Chief of the Navigation Branch, and Ms. Ashley Frey was Chief of the Navigation Division.

At the time of publication of this report, the Deputy Director of CHL was Mr. Keith Flowers, and the Director of CHL was Dr. Ty V. Wamsley.

The Commander of ERDC was COL Theresa A. Schlosser, and the Director of ERDC was Dr. David W. Pittman.

## 1 Introduction

### 1.1 Background

The Port of Baltimore is located along the Patapsco River approximately 12 miles northwest of the Chesapeake Bay in Baltimore, Maryland. The Port is operated and maintained by the Maryland Port Administration (MPA), a division of the Maryland Department of Transportation (MDOT). The Port of Baltimore is one of the largest ports in the United States (U.S.) and it can accommodate some of the largest container ships in the world. The Port has five public terminals and twelve private terminals that support a variety of cargo and passenger cruises.

The Port has three federal dredging projects: the Baltimore Harbor Anchorages and Channels Project (BHAC project), the 42-Ft Project, and the 50-Ft Project. The BHAC feasibility study was completed in 1998 and construction for the project was completed in 2003, following federal authorization in the Water Resources Development Act of 1999. The BHAC project resulted in federal authorization of Anchorages 3 and 4 as well as deepening and assumption of maintenance in the access channels serving the Seagirt, Dundalk, and South Locus Point Marine Terminals. The BHAC project study area is shown in Figure 1. The navigation channel improvements authorized in the BHAC project study were designed to accommodate the types of vessels calling on the Port of Baltimore at the time. The design vessel used in the study was a Panamax container vessel that measured 965 ft long with a 106 ft beam, with design considerations for vessels with a larger beam of 135 ft to 145 ft.

Since the completion of the study in 1998, the Port of Baltimore has experienced an increase in calls from longer, wider, and deeper draft vessels that can carry over twice the cargo capacity than the vessels used to design the existing channels. To meet current and projected needs for container vessel traffic at the Port of Baltimore, the MDOT MPA and CENAB are conducting the BHAC Modification of Seagirt Loop Channel, Maryland Feasibility Study to evaluate the advisability of modifications to the BHAC project, particularly the Seagirt Loop Channel. The objectives of the study are to identify solutions that will improve navigation, increase safety, and decrease transportation delays for vessels calling to the Seagirt Marine Terminal (SMT) and Dundalk Marine Terminal (DMT).

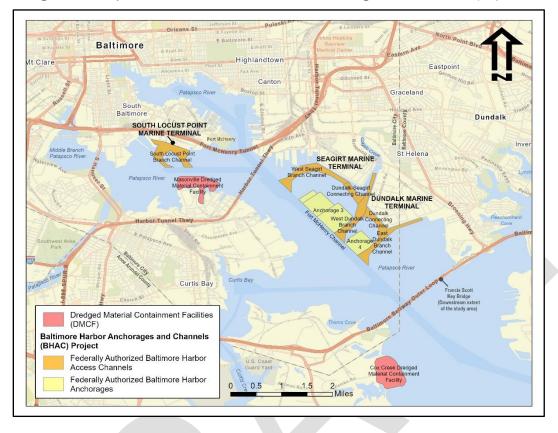



Figure 1. Study area for the Baltimore Harbor Anchorages and Channels project.

The DMT is the largest general cargo facility at the Port of Baltimore. The terminal handles containers, automobiles, breakbulk, wood pulp, steel, project cargo, and Roll-on/Roll-off cargo (such as farm and construction equipment). Adjacent to the DMT across Colgate Creek is the SMT. The SMT is the destination for a majority of container traffic in the Port of Baltimore. The facility consists of four ship berths (Berths 1-4) with seven post-Panamax cranes and eight super post-Panamax cranes. Berths 1 and 2 at the SMT are -45 ft MLLW deep, and Berths 3 and 4 are -50 ft MLLW deep.

The Seagirt Loop Channel consists of the West Seagirt Branch Channel (WSBC), the Dundalk-Seagirt Connecting Channel, and the West Dundalk Branch Channel (Figure 1). The Dundalk-Seagirt Connecting Channel and the West Dundalk Branch Channel together are referred to as the Dundalk-Seagirt Access Channels. Currently, these navigation channels are maintained at various dredging depths. The WSBC is maintained to a depth of -45 ft MLLW, and the Dundalk-Seagirt Access Channels are maintained to a depth of -50 ft MLLW.

The existing channel configuration of the WSBC is inadequate to accommodate the growing fleet of Post-Panamax vessels. Vessels with a static draft of 42 ft or greater do not use the WSBC due to insufficient underkeel clearance (UKC). Vessels with a draft greater than 42 ft departing from SMT Berths 3 and 4 are required to back out of the loop with the assistance of several tug boats, turn around in the turning basin at the mouth of the Colgate Creek adjacent to the DMT, and transit outbound toward the Fort McHenry Channel (FMC). Backing out of the Seagirt Loop Channel and maneuvering in the turning basin requires additional transit time and significant use of the tug boats and presents safety concerns with the proximity to docked vessels and surrounding terminal infrastructure. Larger vessels have a greater risk of grounding, collision, allision, and tug casualties during this maneuver. Exiting through the Dundalk-Seagirt Access Channels instead of the WSBC also results in transportation delays for other vessels waiting to access the SMT or DMT berths, ultimately causing maneuverability concerns, transportation inefficiencies, and limiting operations within the Baltimore Harbor.

The MDOT MPA and CENAB proposed two channel designs in the 2022 Draft Integrated Feasibility Report and Environmental Assessment for the BHAC Modification of Seagirt Loop Channel Feasibility Study. The proposed channel designs consist of deepening and widening the WSBC to accommodate Post-Panamax vessels and provide an alternate path to exit the terminal instead of backing out through the Dundalk-Seagirt Connecting Channels. The design vessel used to test both plans was the CMA CGM Marco Polo container ship, a vessel that is anticipated to call to the Port of Baltimore in the future.

## 1.2 Objective

The objective of this study was to evaluate the proposed navigation channel deepening and widening designs in the WSBC and assess vessel maneuverability and tug requirements in the Seagirt Loop Channel. A real-time ship simulation study was performed to identify potential navigation problems in the Seagirt Loop Channel and optimize the channel design for safe vessel transit. The recommendations provided in this report will support the BHAC Modification of Seagirt Loop Channel, Maryland Feasibility Study.

## 1.3 Approach

The MDOT MPA and CENAB requested ERDC CHL to conduct a ship simulation study to evaluate the safety and efficiency of the proposed navigation improvements in the Seagirt Loop Channel using the Ship/Tow Simulator (STS) facility. Ship simulation testing was performed over the course of ten days on 18-22 April 2022 (Week 1) and 25-29 April 2022 (Week 2). Testing was livestreamed via WebEx to allow attendees to observe testing remotely. Table 1 lists all non-ERDC attendees who were present in-person at the ERDC STS facility during testing.

Name	Affiliation	Role	Pilot Letter	Date(s) Present
Captain John Kinlein	AMP	Pilot	Α	18-22 April
Captain Shimon Horowitz	AMP	Pilot	В	18-22 April
Captain Michael (Mike) Flanagan	AMP	Pilot	С	25-29 April
Captain James (Jim) Luke	AMP	Pilot	D	25-29 April
Eric Smith	Moffatt & Nichol	Observer	N/A	18-22 April
David (Dave) Bibo	MDOT MPA	Observer	N/A	26 April

Table 1. List of ship simulation testing attendees.

Four licensed pilots from the Association of Maryland Pilots (AMP) participated in the study. Two pilots were present for each week of testing. Each pilot was assigned a letter (A-D) to identify the navigator for each exercise in the data. Each pilot performed a series of ship simulation exercises within the existing and proposed navigation channels to determine whether the channel configurations are sufficient for safe vessel navigation in a range of weather, wind, traffic, and tug casualty scenarios. Prior to beginning ship simulation testing, pilots A-D were provided the Pilot Cards (Appendix A) to learn about the nature of the vessel and plan navigation accordingly.

The testing scenarios were determined in coordination with the AMP pilots, the MDOT MPA, and the CENAB. The data presented in results section of this report includes description of test scenarios, pilot feedback, vessel track plots, and final pilot surveys.

### 1.4 Ship Simulator Description

The ERDC Ship/Tow Simulator (STS), located at the ERDC Coastal and Hydraulics Laboratory in Vicksburg, Mississippi, has served as a vital model and engineering design tool for navigation channel projects for the USACE since the 1980s.

The ERDC STS facility has three full mission bridges that replicate real vessel bridges. Each bridge contains hardware that pilots use to control the vessel including rudders, thruster, engine power, and tug commands. The simulator bridges can operate independently or can be linked together in the same virtual environment to perform meeting scenarios where two ships pass each other in a channel. The ERDC STS can simulate multiple types of crafts such as container ships, cruise ships, tow boats and barges, military crafts, and more in various types of maritime environments. Vessel maneuvers in the simulator occur in real time, which means transits take the same amount of time in the simulator as they would in real life. Figure 2 shows a captain piloting a container ship in the Seagirt Loop Channel in the Baltimore Harbor.



Figure 2. Captain Shimon Horowitz piloting the ERDC STS during testing

# **2 Proposed Channel Designs**

The MDOT MPA and CENAB presented one navigation channel widening design and two channel depth designs for the WSBC, -47 ft MLLW and -50 ft MLLW. The -47 ft MLLW design proposes an authorized depth of -47 ft MLLW in the WSBC, and the -50 ft MLLW design proposes an authorized depth of -50 ft MLLW in the WSBC to match the current depth of the Dundalk-Seagirt Access Channels. The WSBC is currently maintained to a depth of -45 ft MLLW, and the channel depth changes abruptly from -45 ft MLLW to -50 ft MLLW at SMT Berths 2/3 (Figure 3). The -50 ft MLLW design ensures consistent channel depth throughout the Seagirt Loop Channel.

The proposed channel deepening and widening designs were optimized for Post-Panamax Generation III Max vessels with consideration of *CMA CGM Marco Polo* as the largest vessel that can call to the Port of Baltimore in the future. The UKC the vertical distance between the lowest point of the vessel and the channel bottom, was assumed to be 2.5 ft at static draft for both channel designs. The proposed widening design of the WSBC was initially simulated during a 2018 ship simulation completed at the Maritime Institute of Technology and Graduate Studies (MITAGS) in Linthicum Heights, Maryland.

During the first week of ship simulation testing, the pilots from AMP identified additional areas to widen to improve navigation conditions in the WSBC. The proposed widening design and AMP's modified widening design are shown in Figure 3. The pilots' recommended widening designs are designated by Wideners A, B, and C.

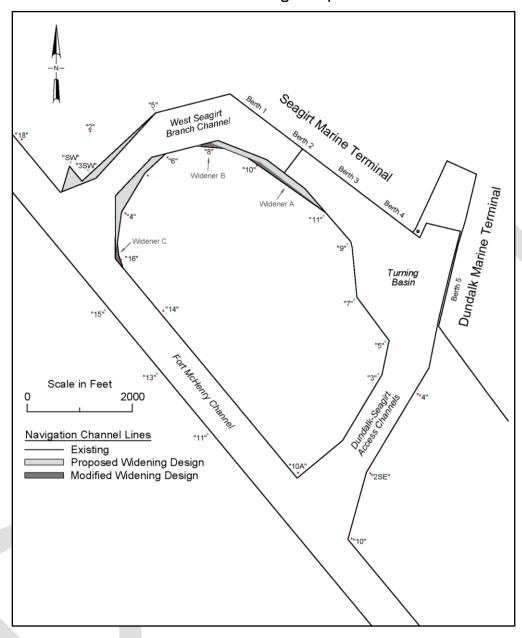



Figure 3. Proposed navigation channel widening designs in the West Seagirt Branch Channel within the Seagirt Loop Channel

# 3 Database Development

Virtual databases of the existing and proposed project conditions were developed to input into the ERDC STS. A virtual database includes inputs such as vessel hydrodynamics, environmental forces, and visual scenes. The existing condition databases were first validated by the experienced pilots and then modified to reflect the proposed future conditions.

### 3.1 Design Vessel

The MDOT MPA and CENAB selected the design vessel for the BHAC Modification of Seagirt Loop Channel, Maryland Feasibility Study based upon economic studies of vessels forecasted to call to the Port of Baltimore. The design vessel for the study is the *CMA CGM Marco Polo* container ship, a Post-Panamax Generation III Max (PPX III Max) class ship. The design vessel characteristics are listed in Table 2. Additional details about the CNTNR51 and CNTNR52 vessel models can be found in the Pilot Cards in Appendix A.

Vessel Name	CMA CGM Marco Polo	CMA CGM Marco Polo	
Vessel Model	CNTNR51	CNTNR52	
Class	PPX III Max	PPX III Max	
Maximum Capacity	16,022 TEU*	16,022 TEU*	
Length Overall (LOA)	1,299 ft	1,299 ft	
Beam	175.9 ft	175.9 ft	
Static Draft	47.5 ft	44.5 ft	
Trim	Even Keel	Even Keel	
Displacement	206,000 tons	189,890 tons	
Engine Power	102,346 hp	102,346 hp	
Propeller	Fixed pitch	Fixed pitch	
Bow Thrusters	2 (9,789 hp)	2 (9,789 hp)	

Table 2. CMA CGM Marco Polo design vessel dimensions and characteristics.

Two model versions of the *CMA CGM Marco Polo* container ship were used in this study. The 44.5 ft draft vessel model (CNTNR52) was used to evaluate both the -47 ft MLLW and the -50 ft MLLW designs. The 47.5 ft

^{*}TEU = Twenty-ft equivalent units

draft vessel model (CNTNR51) was used to evaluate only the -50 ft MLLW design. Vessel model CNTNR51 cannot transit in the WSBC under the -47 ft MLLW design because the vessel draft exceeds the channel depth.

All simulations included four tug boats of 65-ton push/pull to assist the transiting vessel. Pilots provided tug commands including tonnage and direction to the ERDC simulator operators during the exercises.

#### 3.2 Visual Database

A visual database was developed using Google Earth imagery and photographs taken of the area during a reconnaissance trip for a separate study conducted in 2018. The visual scene included the Seagirt Loop Channel, significant features of the Seagirt Marine Terminal and the Dundalk Marine Terminal, and other essential surrounding structures and environment visible to the pilots during a real-world transit. The visual scene also contained U.S. Coast Guard maintained Aids to Navigation (ATONS) and other existing navigational markers.

The radar and Electronic Chart Display and Information System (ECDIS) were created for the area from electronic navigation charts (ENCs) developed by the National Oceanic and Atmospheric Administration (NOAA).

#### 3.3 Environmental Database

An environmental database was created for the Seagirt Loop Channel that included wind, bathymetry, and visibility. Wind speeds ranging from 25 knots to 35 knots from several directions including NW (315°), WNW (300°), SSE (170°), SE (135°), and NE (45°) were tested in the study. A NOAA wind rose for Baltimore Harbor was used to identify the most probable adverse wind conditions (Figure 4). The majority of the runs simulated wind from either the WNW or SSE direction. During the database validation, pilots confirmed these wind conditions were representative of real-world conditions.

Visibility conditions, such as lighting and weather, were also evaluated during testing. Since the pilots mostly operate at night, the darkness level in the simulator was increased to replicate nighttime conditions. In addition to nighttime lighting, three simulations were performed with snow to provide a visual indicator of the wind direction. Only one scenario

simulated day light, which occurred during the first day of testing on Week 1 and Week 2.

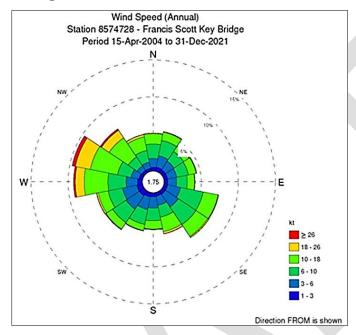



Figure 4. NOAA wind rose for Baltimore Harbor

A bathymetric database was developed for the existing channels and the proposed channel layouts. The side slopes of the channels were set at 5 ft horizontal and 1 ft vertical.

A hydrodynamic model was not developed for this study. The AMP confirmed currents in the Seagirt Loop Channel are negligible. The ERDC CHL deemed it was acceptable to assess vessel navigation in the proposed channel designs with zero water velocity.

#### 3.4 Database Validation

An initial validation effort of the existing condition database was performed with the AMP to ensure ship handling within the study area was realistic and to identify any necessary modifications. The pilots checked the handling of the design vessels and environmental forces acting on the vessel. The pilots indicated the *Marco Polo* responded better to rudder commands than what they expected, i.e. better steerage. In addition, the bow thruster had a higher horsepower than what is typically available. Although the design vessel generally handled well, the pilots indicated this model was adequate for this channel design study.

#### 4 Results

This section discusses the results of the ship simulation testing of the proposed navigation channel designs in the Seagirt Loop Channel. A total of 124 ship simulation exercises were performed over the two testing weeks. Appendix B includes the test matrix of all the unique scenarios that were performed in the study. The variables in the scenarios performed include channel design, transit path, vessel draft, wind direction and magnitude, visibility, and tug availability. Each scenario tested in the proposed widening design and modified widening design with the two proposed channel depths (-47 ft MLLW and -50 ft MLLW) are listed in Tables 4-7, respectively.

Vessel track plots were generated for each simulation to depict the vessel's position over the course of the transit. Vessel track plots completed by the pilots with the same test scenario were combined into a single "plate" in Appendix C. The vessel track plot completed by each pilot are color coded to distinguish which pilot performed the exercise. The pilots are color coded as follows: orange (Pilot A), cyan (Pilot B), green (Pilot C), and purple (Pilot D). Each plate includes the set of test conditions that were simulated, red and green buoys along the Seagirt Loop Channel, the transiting vessel track plots for each pilot, and the appropriate docked vessels at SMT and DMT berths. Although the modified widening areas and corresponding buoys are shown in all plates, this channel widening design was only tested during the second week of testing (Plates 28 – 43).

For each simulation exercise performed, the pilots provided written comments and rated the difficulty and safety of the transit. The difficulty and safety were rated from 1 to 5. For difficulty, 1 is easy and 5 is difficult. For safety, 1 is safe and 5 is dangerous. The median rating (3) represents a neutral response. The pilots' comments and ratings for each scenario are listed in the data sheets in Appendix C. The data sheets also contain the test conditions, the date the simulation exercise was performed, the location of the tug boat when a casualty occurred, and the total elapsed time for each simulation exercise. The vessel track plots and corresponding data sheets are in Appendix C.

In addition, each pilot completed a Final Pilot Survey following the simulation testing weeks. The questions and pilots' responses are provided in Appendix D. Note the pilots referred to the WSBC as the "Elevator

Channel" in the Individual Pilot Feedback (Appendix C) and pilot survey (Appendix D).

Four transit paths in the Seagirt Loop Channel were analyzed. Letters A, B, C, and D were assigned to each path to simplify referencing the heading, start position, and end position in the channels (Table 3).

Path Letter	Route in the Seagirt Loop Channel	No. of Runs Completed
Α	FMC $ ightarrow$ Dundalk-Seagirt Access Channels $ ightarrow$ SMT Berth 1	20
В	SMT Berth 3 $\rightarrow$ Turning Basin $\rightarrow$ FMC	22
С	SMT Berth 4 $\rightarrow$ WSBC $\rightarrow$ FMC	76
D	$FMC \to WSBC \to SMT \; Berth \; 1$	6

Table 3. Path descriptions.

Paths A and B are in the existing Dundalk-Seagirt Access Channels. Although this area of the channel is currently deepened to -50 ft MLLW, no widening was proposed or tested in Path B. The purpose of testing these paths was to assess how both design vessels will maneuver through the existing channel layout. Path A is an inbound transit, starting in the Fort McHenry Channel (FMC), through the Dundalk-Seagirt Access Channels, and ending at Berth 1. In addition to the existing channels, this path also allows the widening south of the SMT berths to be evaluated. Path B is an outbound transit, reversing from Berth 3 and turning around in the turning basin to head seaward through the Dundalk-Seagirt Access Channels to FMC. Tug casualties were not included for this transit.

Paths C and D are in the WSBC which includes the proposed widening. Path C is an outbound transit, starting at Berth 4, through the WSBC, and ending in the FMC. The majority of runs consisted of testing Path C. Path D is a rare inbound transit in which the vessel enters Seagirt Loop Channel from the "opposite" direction through the WSBC to use equipment on the port side of the ship in case there is damage on the starboard side.

In addition to testing maneuverability of the design vessels in the Seagirt Loop Channel, tug requirements were also assessed. Four 65-ton tug boats were available for each pilot to use in all runs. The pilots used four 65-ton tug boats for every simulation run. The pilots ordered tug commands (position, force, and direction) to the ERDC CHL simulator operators

during the transit. In some simulations, a tug causality occurred, meaning one tug would suddenly become unavailable during a transit due to unforeseen circumstances. This scenario was recommended to test by the pilots as it is a common occurrence in Baltimore Harbor.

#### 4.1 Proposed Widening Design and -47 ft MLLW Depth

The test conditions and associated plate numbers for ship simulation exercises completed with the proposed widening design and -47 ft MLLW depth are listed in Table 4. All runs used the lighter loaded *Marco Polo* vessel model, CNTNR51, except for Path B transits where CNTNR52 could also be tested.

Table 4. Proposed widening design and -47 ft MLLW depth simulation testing scenarios.

Plate No.	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Boat Casualty?	Pilots
1	Α	CNTNR52	WNW	35 knots	Night	No	A, B, C, D
2	Α	CNTNR52	WNW	35 knots	Night	Yes	A, B
3	Α	CNTNR52	SSE	35 knots	Night	No	A, B, C, D
4	Α	CNTNR52	SE	35 knots	Night	No	A, B, C, D
5	В	CNTNR51	WNW	35 knots	Night	No	A, B, C, D
6	В	CNTNR51	SSE	35 knots	Night	No	A, B, C, D
7	В	CNTNR51	NE	30 knots	Night	No	A, B, C, D
8	В	CNTNR52	WNW	35 knots	Night	No	A, B, C, D
9	В	CNTNR52	SE	35 knots	Night	No	A, B, C, D
10	В	CNTNR52	NE	30 knots	Night	No	A, B
11	С	CNTNR52	NW	35 knots	Day	No	A, B, C, D
12	С	CNTNR52	WNW	35 knots	Night	No	A, B, C, D
13	С	CNTNR52	WNW	35 knots	Night	Yes	A, B, C, D
14	14 C CNTNR52		SSE	35 knots	Night	No	A, B, C, D
15	С	CNTNR52	SE	35 knots	Night	No	A, B, C, D

Plates 1 – 4 contain 14 track plots of transits completed in Path A in the proposed widening design and -47 ft MLLW depth. All simulations were completed with the CNTNR52 (44.5 ft draft) and ended at Berth 1, except for the transits in Plate 2 which ended at Berth 4. Docked vessels were

placed at the SMT and DMT berths to represent a realistic adverse scenario. Plate 1 shows the vessel transits completed with WNW wind and nighttime conditions. In one run, the stern of the vessel reached the channel extent after the turn from the FMC. These remaining runs were successful and showed the use of the widener when passing SMT Berth 3. Plate 2 also show the transits completed with WNW wind and nighttime conditions; however, a tug causality occurs, and the transit ends earlier at SMT Berth 4. No issues were encountered during this scenario.

Plates 3 and 4 show transits with SSE and SE wind. These runs were generally rated more difficult and unsafe due to the southerly wind setting the transiting vessel towards the vessels docked at SMT. In Plate 3, one track is shown almost exceed the channel when passing the stern of the vessel docked at Berth 2-3, while another track showed the stern of the transiting vessel almost colliding with the bow of the docked vessel. Pilots need to have sufficient speed to maintain steerage of the vessel while also not transiting too fast that is unsafe for the docked vessels. One track also showed a vessel nearly exceeding the channel at the sharp east corner entering the Dundalk-Seagirt Access Channels. In Plate 4, one track shows the vessel taking too wide of a turn entering the Dundalk-Seagirt Access Channels and exceeding the west channel limit. Another track shows a vessel nearly exceeding the channel just south of Berth 4. All four pilots commented on a strong need for tugs to keep the vessel from setting towards the docked vessels at SMT.

Plates 5 – 10 contain 22 track plots of nighttime transits completed on Path B in the proposed widening design and -47 ft MLLW depth. Docked vessels were placed at SMT Berths 1 and 4 and DMT Berth 5. Plates 5 – 7 show transits completed with the heavier loaded vessel CNTNR51 (47.5 ft draft). Plate 5 contains vessel tracks with WNW wind. One track showed the vessel nearly exceeding the upper corner of the turning basin when passing SMT Berth 4. The remaining runs showed the vessel had adequate space to maneuver in the turning basin. The pilots commented that all four tugs are required to complete this maneuver successfully. Plate 6 contains vessels tracks with SSE wind. Only one vessel track showed the stern not clearing when turning towards the FMC. Pilots commented that this scenario is manageable with all four tugs, but that it would be safer to depart through the WSBC. Plate 7 contains vessel tracks with NE wind. One vessel is shown to nearly exceed the southeastern boundary of the turning basin. This scenario was particularly difficult due to the set from

the NE wind when first entering the turning basin and trying to work stern into the wind. Two pilots stated they would have not been able to recover the vessel in the event of a tug casualty.

Plates 8 – 10 show transits completed with CNTNR52, the lighter loaded vessel. Plate 8 contains vessel tracks during WNW wind and showed most turning manuevers were manageable. One trackplot showed the stern nearly exceeded the upper corner of the turning basin when backing up. Another track showed a vessel not clearing the west corner when entering the FMC. Plate 9 contains vessel tracks during SE wind. In two of the tracks, the bow reaches the turning basin limits. To keep the vessel clear of the docked vessels, the pilot needed to work the vessel towards the wind while also staying within the basin limits. The pilots expressed this was a difficult maneuver and that all four tugs are required. Plate 10 contains two vessel track plots completed with NE wind. The maneuver was feasible and required assistance from all four tugs.

The turning basin maneuver in Path B requires significant use of the tug boats. Several scenarios required all four tug boats to exert maximum force for an extended period of time, presenting concerns for overworking the tug boats and potential mechanical failure. Any potential tug casualties could cause a serious, damaging accident, such as striking surrounding terminal infrastructure, an allison with a docked vessel at DMT Berth 6, or exceeding the channel limits and running aground. The pilots expressed that the vessel is highly exposed in the turning basin and there is less safety margins navigating the *Marco Polo* in the turning basin, compared to exiting via the WSBC.

Furthermore, Plates 11 – 15 contain 20 track plots of transits completed on Path C in the -47 ft MLLW design. All simulations were completed with CNTNR52 (44.5 ft draft). Two docked vessels were placed at SMT Berths 1-3. Plate 11 contains four track plots of transits completed with NW wind and the only daylight scenario in the study. One vessel is shown getting set to the south when departing SMT Berth 4. It was able to recover where the channel begins to widen. Another vessel is shown taking a wide turn into WSBC with its stern approximately 50 ft to the docked vessel at SMT Berth 1, not using the widened channel to the south. This was the pilot's initial run who noted using 1 knot more than usual and it was also later determined only three tugs were working instead of four due to a simulator error. One pilot maximized the use of the widenings however

noted that the inner corners of the bends were sharp. Track plot shows the vessel had approximately 60 ft of clearance. The remaining runs were successful. Widening to the north and south of WSBC were needed in all runs.

Plates 12 and 13 both contain vessel tracks during WNW wind. Transits in Plate 12 did not undergo a tug casualty. Similar to the track discussed in the previous plate, two vessels were shown to nearly reach the sharp point near buoy "8," with approximately 50-60 ft of clearance, and one vessel with 50 ft of clearance to buoy "16." In one track, a vessel failed to make the turn into FMC. The pilot noted he had too much speed on the vessel and was unable to slow vessel down enough to make the turn. The widening south of the SMT berths provided sufficient clearance to pass the docked vessels. All four tugs were necessary for this maneuver. Track plots in Plate 13 incurred a tug casualty (port quarter tug). This scenario showed vessels generally using more of the widener than the previous plate's track plots without a tug casualty. In one track, a vessel had only 40 ft of clearance near sharp point at buoy "10" and 5 ft at buoy "16." Pilots noted that although the transit was possible without the fourth tug, there was no room for error. The widening on the green buoy side of WSBC was not needed on these runs.

Plate 14 contains vessel tracks completed with SSE wind. All transits were successful, except for one in which the vessel's stern left the channel when turning into WSBC. The vessel was able to recover in the simulator and later slightly exceeded the sharp corner near buoy "16" as well. The SSE wind was a concern when transiting past SMT berth 1 and keeping starboard quarter side off the stern docked vessel when turning. Plate 15 contains vessel tracks completed with SE wind. Two transits were successful, while two transits showed the vessel close the sharp channel points near buoy "16," within 10 ft to 30 ft and buoy "10," within 50 ft. The widening on the green buoy side of WSBC was not used.

# 4.2 Proposed Widening Design and -50 ft MLLW Depth

The test conditions and associated plate numbers for ship simulation exercises completed with the proposed widening design and -50 ft MLLW depth are listed in Table 5. Both *Marco Polo* vessel models CNTNR51 and CNTNR52 were tested.

24

25

26

27

С

С

D

D

A, B, C, D

A, B

A, B

C, D

Plate No.	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Boat Casualty?	Pilots
16	С	CNTNR51	WNW	35 knots	Night	No	A, B, C, D
17	С	CNTNR51	WNW	35 knots	Night	Yes	A, B, C, D
18	С	CNTNR51	SSE	25 knots	Night	No	A, B, C, D
19	С	CNTNR51	SSE	25 knots	Night	Yes	A, B
20	С	CNTNR51	SSE	35 knots	Night	No	A, B, C, D
21	С	CNTNR51	NE	30 knots	Night & Snow	No	A, B
22	С	CNTNR52	WNW	35 knots	Night	No	A, B, C, D
23	С	CNTNR52	WNW	35 knots	Night	Yes	A, B

25 knots

30 knots

25 knots

30 knots

Night

Night &

Snow

Night

Night &

Snow

No

No

No

No

CNTNR52

CNTNR52

CNTNR51

CNTNR51

SSE

NE

WNW

WNW

Table 5. Proposed widening design and -50 ft MLLW depth simulation testing scenarios.

Plates 16 – 21 consists of simulations completed with CNTNR52 (44.5 ft draft). Plates 16 and 17 contain track plots of transits completed with WNW wind and CNTNR51. Plate 16 contained transits with four tugs available and all were successful. Transits in Plate 17 incurred a tug casualty (port quarter). The runs were successful, however for two of them, there was a clearance of only 40 - 50 ft from sharp points closest to buoy "4" and buoy "16" when turning into FMC.

Four simulations were completed with SSE and CNTNR51 for Plate 18, however only two track plots are shown in the plate. In the track plots shown, the transit was feasible but there was very little clearance available at the sharp points identified in many earlier transits, with less than 10 ft from point near buoy "16" and 40 ft from point near buoy "10." The two track plots not shown are from pilots A and B due to file corruption. Based on solely their comments, they had good safety margins with four tugs and that if one was lost, the maneuver could still be completed. After this run, pilots A and B repeated the same scenario but with a tug casualty shown in

Plate 19. Runs were successful but also reemphasized the need for additional widening at point near buoy "10" (20 ft clearance) and near buoy "8" (40 ft clearance).

A stronger SSE wind of 35 kts was tested for the transits shown on Plate 19. All four tugs were required to assist during this scenario. Due to the direction of the wind, maximum tug power was needed to help maintain a safe clearance from docked vessels at SMT. One pilot was unsuccessful in doing so, observed by the stern coming in contact with the two docked vessels at SMT. Plate 21 contained two track plots with NE wind and snow. The maneuver is successful with all four tug boats. The end of one track showed the vessel running aground when entering FMC. This was due to a simulator operator error that caused the vessel to lose a tug.

Plates 22 – 25 consists of simulations completed with CNTNR52 (44.5 ft draft). Track plots of transits completed with WNW are shown in Plate 22. All runs were successful and are similar to the transits completed with CNTNR51 and WNW wind (Plate 16). The same scenario was completed with a tug casualty shown in Plate 23 and incurred no issues during transit. Plate 24 contains track plots of the transits completed with SSE wind. All runs were successful. The additional widening is also needed in this scenario to maintain a safe distance from the sharp points previously identified. One pilot noted that the additional UKC with this vessel allows for an emergency anchor to be used in the event of a casualty that could not be used on the deeper draft vessel. Plate 25 contains two track plots completed in NE wind and snow conditions. The runs were successful and showed the need for additional widening near buoy "10."

Plates 26 and 27 both consist of the Path D transits, the rare inbound scenario through WSBC, with 25 knot wind or 30 knot wind and snow. Pilots were comfortable making this maneuver with 3 or 4 tug boats with adequate channel space. Pilot A stated that this maneuver is the only acceptable way to bring in a ship to dock port side as attempting to use the standard route and use the turning basin to back in would be difficult and risky.

#### 4.3 Modified Widening Design and -47 ft MLLW Depth

Upon completing several simulation exercises with the proposed widening design along with the -47 ft MLLW and -50 ft MLLW channel depths during Week 1 of testing, pilots A and B identified the need for additional

widening along the WSBC to improve safety in navigating the *Marco Polo* vessel. As discussed in the previous section, several track plots showed the vessel exceeded or nearly exceeded the channel limits in three main areas. The pilots recommended additional widening for the three areas: in front of SMT Berths 1-3 by buoy "10" and buoy "11" (Widener A), the bend easing near buoy "8" past SMT Berth 1 (Widener B), and the bend easing near buoy "16" where the WSBC meets the FMC (Widener C). The pilots' widening design is shown in red in Figure 3 (Section 2).

The proposed widening design and -47 ft MLLW and -50 ft MLLW design depth databases were modified to include the additional widening recommended by the AMP. Pilots C and D tested the modified channel widening design during Week 2 of testing. All test scenarios completed with the modified widening design are listed by plate in Tables 6 and 7, respectively.

Table 6. Modified widening design and -47 ft MLLW depth simulation testing scenarios.

Plate No.	Path	Vessel Model	Wind Wind Speed		Visibility	Tug Boat Casualty?	Pilots
28	Α	CNTNR52	WNW	35 knots	Night	No	C, D
29	Α	CNTNR52	SSE	35 knots	Night	No	C, D
30	A	CNTNR52	SE	35 knots	Night	No	C, D
31	С	CNTNR52	WNW	35 knots	Night	No	C, D
32	O	CNTNR52	WNW	35 knots	Night	Yes	C, D
33	C	CNTNR52	SSE	35 knots	Night	No	C, D
34	С	CNTNR52	SE	35 knots	Night	No	C, D

Plates 28 – 30 show pilots C and D transiting the CNTNR52 vessel in Path A with 35 knot winds from the WNW, SSE, and SE directions, respectively. In these plates, the pilots used the proposed widening in front of SMT Berths 2/3. In Plate 28, pilot C nearly exceeded the channel near buoy "3" in the Dundalk-Seagirt Access Channels. In the SSE wind condition (Plate 29), the pilots commented that significant tug work was required to maneuver with the wind contacting the ship's starboard quarter. In Plate 30, both pilots make a tight turn when approaching the SMT from the turning basin and nearly exceeded the channel at buoy "9." In the described plates, the pilots successfully approached SMT Berth 1 to prepare for docking.

Plates 31-34 show transits in Path C. Plates 31 and 32 involved testing the WNW wind. In both scenarios, the pilots completed the transit using the widening in front of the SMT and on the red side of the WSBC. There were no issues with the tug casualty in Plate 32, and the pilots commented the channel design provides the most safety margins. The SSE and SE wind conditions were tested in Plates 33 and 34. In both scenarios, the port side of the vessel transited close to proposed widened channel limits in front of the SMT and the stern was close to the existing channel lines on the green buoy side of the WSBC. This highlights the need for the additional space provided by Widener A and the widening on the green side of the WSBC. In addition, the vessel was close to the red buoy side of the WSBC throughout the transit in Plate 33 and the vessel was particularly close to Widener C in both Plates 33 and 34.

Table 7. Modified widening design and -50 ft MLLW depth simulation testing scenarios.

Plate No.	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Boat Casualty?	Pilots
35	С	CNTNR51	WNW	35 knots	Night	No	C, D
36	С	CNTNR51	WNW	35 knots	Night	Yes	C, D
37	С	CNTNR51	SSE	25 knots	Night	No	C, D
38	С	CNTNR51	SSE	35 knots	Night	No	C, D
39	С	CNTNR52	WNW	35 knots	Night	No	C, D
40	С	CNTNR52	WNW	35 knots	Night	Yes	C, D
41	С	CNTNR52	SSE	25 knots	Night	No	C, D
42	С	CNTNR52	SSE	35 knots	Night	No	C, D
43	D	CNTNR51	WNW	30 knots	Night	No	C, D

Plates 35 – 43 analyze the modified widening design with CNTNR51 and CNTNR52. The track plots in Plates 35 – 37 are spaced farther apart likely due to operator error when preparing the simulation exercise file, however, the general path of the vessel can be assessed. The pilots tested different navigation techniques in the modified widening design. Pilot C navigated in the channel at higher speeds up to 6 knots in Plate 39, and pilot D attempted to navigate the *Marco Polo* CNTNR52 within the bounds of the existing WSBC configuration without using the thruster. Pilot D observed that the proposed channel widening is necessary for safe and efficient transit. All of these runs show the pilots using the proposed

widening and Wideners A, B, and C while achieving adequate clearance for safe navigation. The pilots noted that the channel configuration accommodates the *Marco Polo* vessel well and the maneuvers can be completed safely with overall less tug assistance, including in the event of tug casualties in Plates 36 and 40.

Lastly, Path D was evaluated with CNTNR51 and 30 knot WNW wind in Plate 43. The vessel successfully navigated in the FMC and WSBC and approached SMT Berth 1.

#### 4.4 Further Discussion

The track plots from all transits completed in Path C for each combination of channel widening and depth designs were combined into a single plate (Figure 5). This shows the density of the tracked vessel history to provide a broad understanding of the overall channel widening needs.

The CNTNR52 vessel model (44.5 ft draft) was used to evaluate the proposed -47 ft MLLW channel depth in the WSBC, and both the CNTNR52 and CNTNR51 (47.5 ft draft) vessel models were used to evaluate the -50 ft MLLW channel depth and the Dundalk-Seagirt Access Channels. Both proposed channel depth designs provide adequate underkeel clearance for the appropriate drafting *CMA CGM Marco Polo* design vessels to safely navigate in the WSBC. In the event of an emergency, the CNTNR52 vessel in the -50 ft MLLW deep channels has enough UKC to safely drop the anchor.

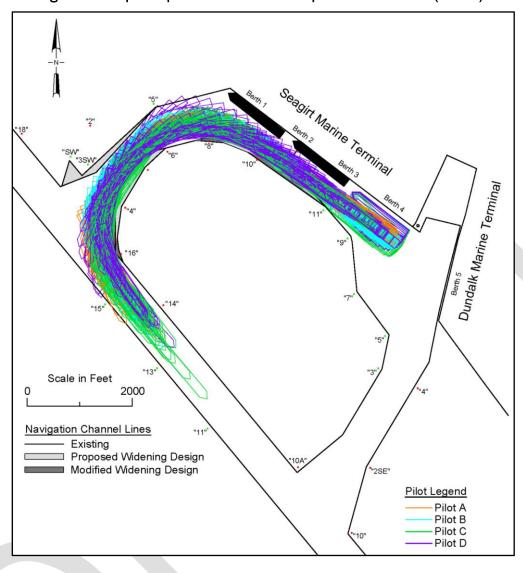



Figure 5. Composite plate of all transits completed in the WSBC (Path C).

# **5 Summary and Recommendations**

The recommendations of this study were formulated based on the analysis of vessel track plots, pilot feedback, and final pilot survey responses collected from the participating AMP pilots. In this ship simulation study, 43 unique test conditions and a total of 124 ship simulation exercises were evaluated.

Based on the various ship simulation exercises performed and analyzed, it was determined that the proposed widening design and the supplemental Wideners A, B, and C designed by the AMP pilots are essential to safely maneuver the *CMA CGM Marco Polo* design vessel in the WSBC.

In addition, this study determined that the existing configuration of the Dundalk-Seagirt Access Channels (where no improvements were proposed) provide sufficient channel width and depth to accommodate the *Marco Polo*, including maneuvers in the turning basin. The modified widening design (shown in Figure 3) provides additional channel area to safely maneuver in the Seagirt Loop Channel and transit adjacent to berthed ships at the SMT and DMT.

The -50 ft MLLW depth design in the WSBC provides adequate UKC for safe navigation of the 44.5 ft static draft and 47.5 ft static draft *Marco Polo* vessels. The -47 ft MLLW depth design provides adequate UKC for the 44.5 ft static draft *Marco Polo* vessel. The 44.5 ft draft *Marco Polo* vessel cannot transit in the -47 ft MLLW depth design in the WSBC because the vessel draft exceeds the channel depth.

The -50 ft MLLW depth design accommodates a larger range of deep draft ships and provides additional UKC for improved steerage. Additionally, this channel depth increases navigational safety margins to utilize anchors to stop a ship in the event of an emergency or casualty. The selected channel width design and authorized channel depth in the WSBC will determine the threshold for the size of ships that can call to the Port of Baltimore.

Due to the size of the *CMA CGM Marco Polo* container ship and the imposing wind forces in the area, assistance from four 65-ton tug boats is required for adequate and safe vessel handling.

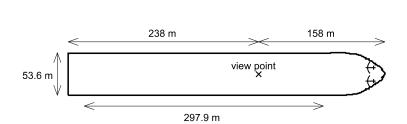
# References

U.S. Army Corps of Engineers, Baltimore District. February 2022. Baltimore Harbor Anchorages and Channels (BHAC) Modification of Seagirt Loop Channel: Feasibility Study Draft Integrated Feasibility Report and Environmental Assessment.

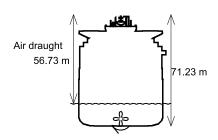


# **Appendix A: Pilot Cards**




# **PILOT CARD**

#### CNTNR51 Version 2


Ship's name		Marco Polo					
Call Sign	C6EK8	Deadweight	187625	tonnes	Year built	2012	
Draught aft	14.5 m / 47 ft 7 ii	Forward	14.5 m / 47	ft 7 in	Displacement	206000	tonnes

#### SHIP'S PARTICULARS

Length overall	396	_ m	Anchor chain:	Port	12.0	shackles	Starboard	12.0	shackles
Breadth	53.6	_ m							
Bulbous bow	Yes						(1 sha	ackle = 27.432 m = 15 fathor	ms)



Full Astern



#### **PROPULSION PARTICULARS**

Type of engine		Diesel		Maximum power 75275	kW ( 102346 hp)
Manoeuvring engine		RPM	Pitch	Speed (k	nots)
order				Loaded	Ballast
Full sea speed	1	104.0	N/A	25.1	N/A
Full Ahead	0.8	65.0	N/A	16.1	N/A
Half Ahead	0.5	50.0	N/A	12.3	N/A
Slow Ahead	0.25	35.0	N/A	8.5	N/A
Dead Slow Ahead	0.125	25.0	N/A	6.0	N/A
Dead Slow Astern	-0.125	-25.0	N/A		
Slow Astern	-0.25	-35.0	N/A		
Half Astern	-0.5	-50.0	N/A		

N/A

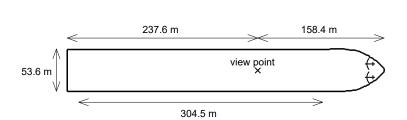
-65.0

#### STEERING PARTICULARS

				SIEE	RING P	ARTICUL	ARS				
Type of r	udder	N	lormal			Maximum	angle		35		· •
Hard-ove	er to hard-over		12.3		s						
Rudder a	angle for neutral e	effect	0		•						
Thruster:	: Bow	7200	_ kW (	9789	hp)	Stern	N/A	kW (	N/A	hp)	
			c	CHECKED	IF ARC	ARD ANI	READY				
			`	JIILONED	, ii Abc		I KLADI				
Anchors						Ir	idicators:				
					l					Γ	
Whistle							Rudd	er		L	
Radar		3 cm			10 cm		Rpm/	pitch			
										ſ	_
ARPA							Rate	of turn		L	
Speed log	g	Doppler	:	Yes / No		C	ompass sys	tem			
			_		1					_	
V	Nater speed					C	onstant gyro	error ±			·
d	Ground speed					V	HF			[	
	·				! !						
	Dual-axis					E	lec. pos. fix.	system		Į	
Engine te	elegraphs						Туре				
	3- ap		_		l I		.,,00				
Steering	gear										

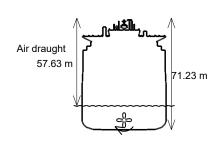
OTHER INFORMATION:

Number of power units operating


# **PILOT CARD**

#### CNTNR52 Version 2

Ship's name _					Marco Polo						
Call Sign	С	6EK8			Deadweight _	187	'625	tonnes	Year built	2012	
Draught aft	13.6	m /	44 ft	7 in	Forward	13 6	m / 44	ft 7 in	Displacement	189890	tonnes


#### SHIP'S PARTICULARS

Length overall	396	m	Anchor chain:	Port _	12.0	shackles	Starboard	12.0	shackles
Breadth	53.6	m							
Bulbous bow	Yes						(1 sha	ckle = 27.432 m = 15 fatho	oms)



**Half Astern** 

Full Astern



#### **PROPULSION PARTICULARS**

Type of engine		Diesel		Maximum power 75275 kW ( 102346				
Manoeuvring en	ngine	RPM Pitch		Speed (knots)				
order				Loaded		Ballast		
Full sea speed	1	104.0	N/A	25.1		N/A	ı	
Full Ahead 0.8		65.0	N/A	16.1		N/A		
Half Ahead	0.5	50.0	N/A	12.3		N/A		
Slow Ahead	0.25	35.0	N/A	8.5		N/A		
Dead Slow Ahead	0.125	25.0	N/A	6.0		N/A		
Dead Slow Astern	-0.125	-25.0	N/A					
Slow Astern	-0.25	-35.0	N/A					
			1	1				

N/A

-50.0 -65.0

				STEE	RING P	ARTICUL	ARS				
	idder		Normal			Maximum	angle		35		
	to hard-over		12.3		s						
Rudder ar	ngle for neutral ef	fect	0		•						
Thruster:	Bow	7200	_ kW (	9789	hp)	Stern	N/A	kW (	N/A	hp)	
			C	CHECKED	) IF ABC	OARD ANI	O READY				
Anchors						lr	ndicators:				
Whistle							Rudd	er			
Radar		3 cm			10 cm		Rpm/	pitch			
ARPA							Rate	of turn			
Speed log		Doppler	:	Yes / No		С	ompass sys	tem			
w	ater speed					С	onstant gyro	error ±			
G	round speed					v	HF				
D	ual-axis					E	lec. pos. fix.	system			
Engine tel	egraphs						Туре				
Steering g	jear										

OTHER INFORMATION:

Number of power units operating

# **Appendix B: Test Matrix**



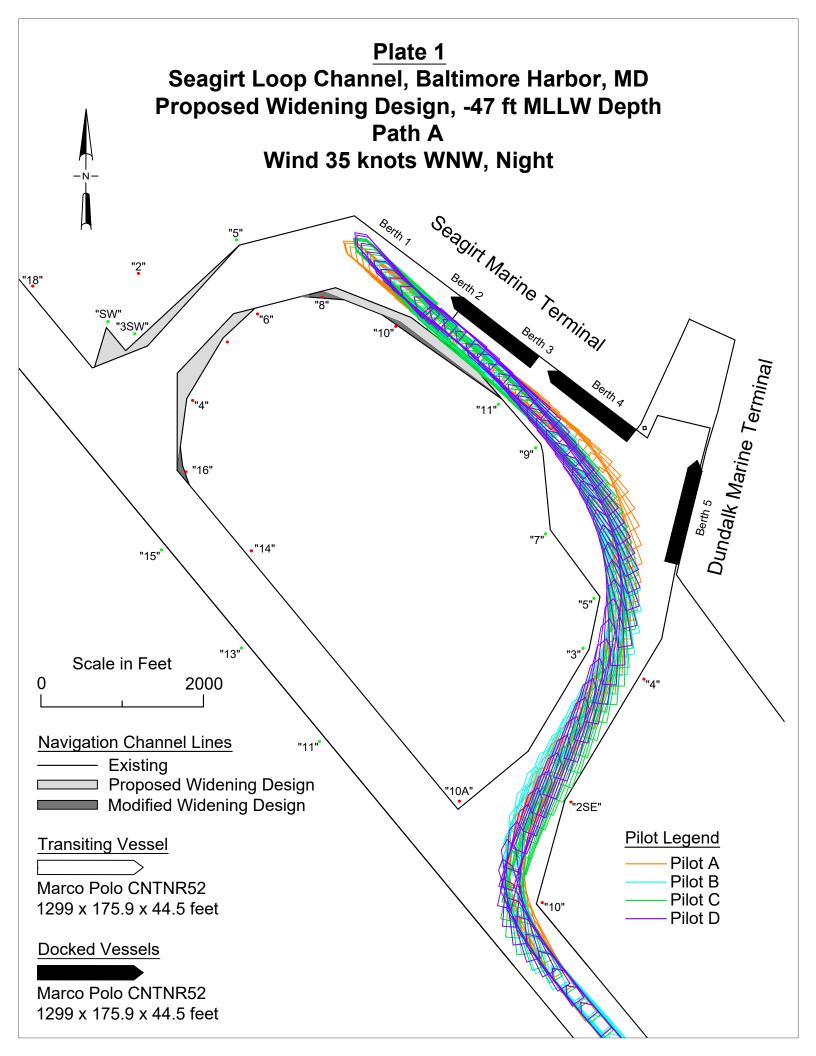

#### Seagirt Loop Channel Navigation Impact Assessment Ship Simulation Study Test Matrix

Plate No.	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Boat Casualty?	Pilots
1	Α	CNTNR52	WNW	35 knots	Night	No	A, B, C, D
2	Α	CNTNR52	WNW	35 knots	Night	Yes	A, B
3	Α	CNTNR52	SSE	35 knots	Night	No	A, B, C, D
4	Α	CNTNR52	SE	35 knots	Night	No	A, B, C, D
5	В	CNTNR51	WNW	35 knots	Night	No	A, B, C, D
6	В	CNTNR51	SSE	35 knots	Night	No	A, B, C, D
7	В	CNTNR51	NE	30 knots	Night	No	A, B, C, D
8	В	CNTNR52	WNW	35 knots	Night	No	A, B, C, D
9	В	CNTNR52	SE	35 knots	Night	No	A, B, C, D
10	В	CNTNR52	NE	30 knots	Night	No	A, B
11	С	CNTNR52	NW	35 knots	Day	No	A, B, C, D
12	С	CNTNR52	WNW	35 knots	Night	No	A, B, C, D
13	С	CNTNR52	WNW	35 knots	Night	Yes	A, B, C, D
14	С	CNTNR52	SSE	35 knots	Night	No	A, B, C, D
15	С	CNTNR52	SE	35 knots	Night	No	A, B, C, D
16	С	CNTNR51	WNW	35 knots	Night	No	A, B, C, D
17	С	CNTNR51	WNW	35 knots	Night	Yes	A, B, C, D
18	С	CNTNR51	SSE	25 knots	Night	No	A, B, C, D
19	С	CNTNR51	SSE	25 knots	Night	Yes	A, B
20	С	CNTNR51	SSE	35 knots	Night	No	A, B, C, D
21	С	CNTNR51	NE	30 knots	Night & Snow	No	A, B
22	С	CNTNR52	WNW	35 knots	Night	No	A, B, C, D
23	С	CNTNR52	WNW	35 knots	Night	Yes	A, B
24	С	CNTNR52	SSE	25 knots	Night	No	A, B, C, D
25	С	CNTNR52	NE	30 knots	Night & Snow	No	A, B
26	D	CNTNR51	WNW	25 knots	Night	No	A, B
27	D	CNTNR51	WNW	30 knots	Night & Snow	No	C, D

Plate No.	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Boat Casualty?	Pilots
28	Α	CNTNR52	WNW	35 knots	Night	No	C, D
29	Α	CNTNR52	SSE	35 knots	Night	No	C, D
30	Α	CNTNR52	SE	35 knots	Night	No	C, D
31	С	CNTNR52	WNW	35 knots	Night	No	C, D
32	С	CNTNR52	WNW	35 knots	Night	Yes	C, D
33	С	CNTNR52	SSE	35 knots	Night	No	C, D
34	С	CNTNR52	SE	35 knots	Night	No	C, D
35	С	CNTNR51	WNW	35 knots	Night	No	C, D
36	С	CNTNR51	WNW	35 knots	Night	Yes	C, D
37	С	CNTNR51	SSE	25 knots	Night	No	C, D
38	С	CNTNR51	SSE	35 knots	Night	No	C, D
39	С	CNTNR52	WNW	35 knots	Night	No	C, D
40	С	CNTNR52	WNW	35 knots	Night	Yes	C, D
41	С	CNTNR52	SSE	25 knots	Night	No	C, D
42	С	CNTNR52	SSE	35 knots	Night	No	C, D
43	D	CNTNR51	WNW	30 knots	Night	No	C, D

# Appendix C: Vessel Track Plots and Data Sheets

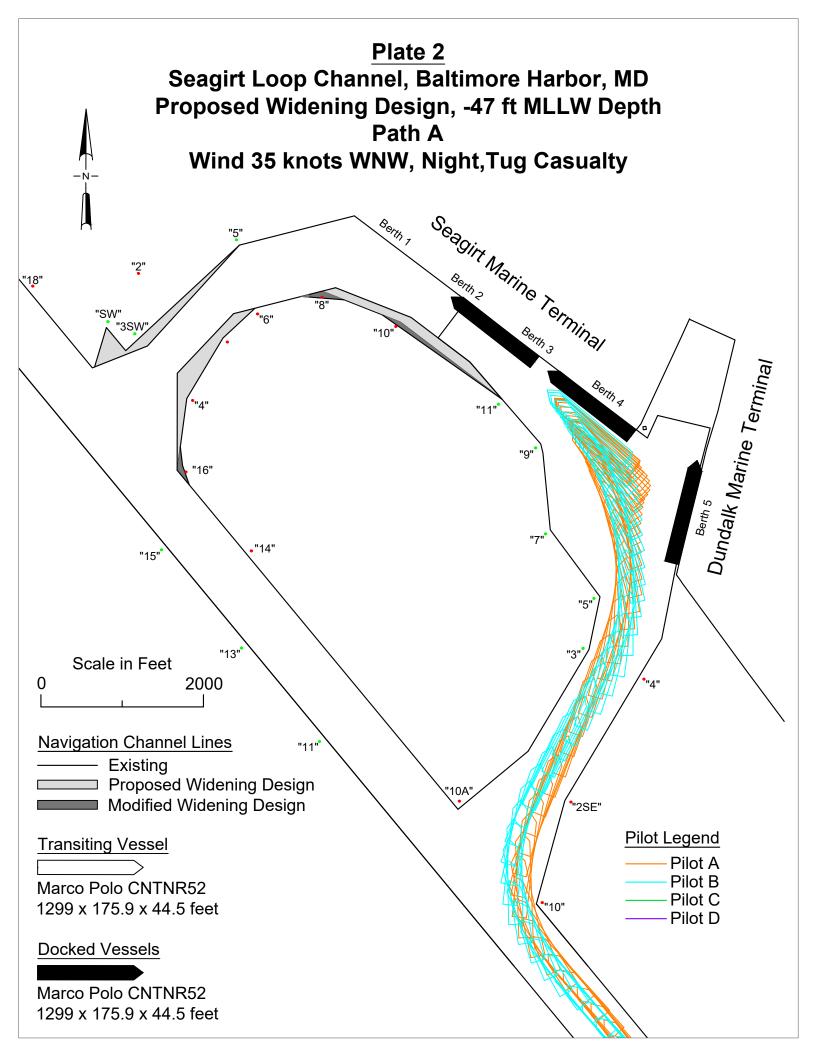




# **Data Sheet**

#### **Test Conditions**

Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-47 ft MLLW	Α	CNTNR52	WNW	35 knots	Night	No


#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	19 April 2022	N/A	39:09
В	19 April 2022	N/A	38:25
С	25 April 2022	N/A	39:34
С	25 April 2022	N/A	34:58

#### Individual Pilot Feedback

Pilot Letter	Comments	Run Ratings		
Pilot Letter	Comments	Difficulty*	Safety**	
А	<ul><li>Went well with WNW'ly wind.</li><li>4 tugs necessary.</li></ul>	3	3	
В	<ul><li>4 boats necessary.</li><li>Behaved realistically with wind condition.</li></ul>	3	3	
С	Went well.	3	3	
D	More common scenario. Went well.	4	3.5	

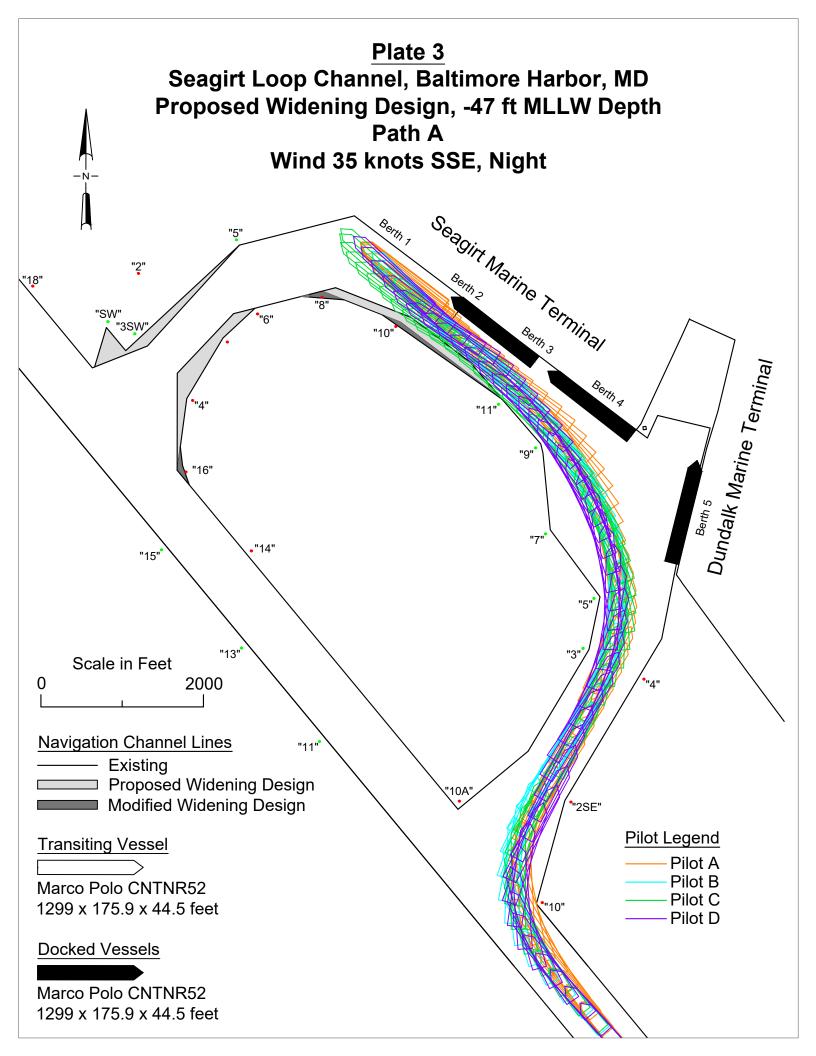
*Difficulty Rating:  $1 = Easy \mid 5 = Difficult$ **Safety Rating:  $1 = Safe \mid 5 = Dangerous$ 



# **Data Sheet**

#### **Test Conditions**

Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-47 ft MLLW	Α	CNTNR52	WNW	35 knots	Night	Yes


#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	21 April 2022	Starboard shoulder	35:20
В	21 April 2022	Port bow	14:09

#### **Individual Pilot Feedback**

Dilet Letter	Commente	Run Ratings		
Pilot Letter	Comments	Difficulty*	Safety**	
А	Safe maneuver. 4 tugs allowed for recovery of casualty.	3	2	
В	Able to continue maneuver safely with a tug casualty. No other issues noted.	N/A	N/A	

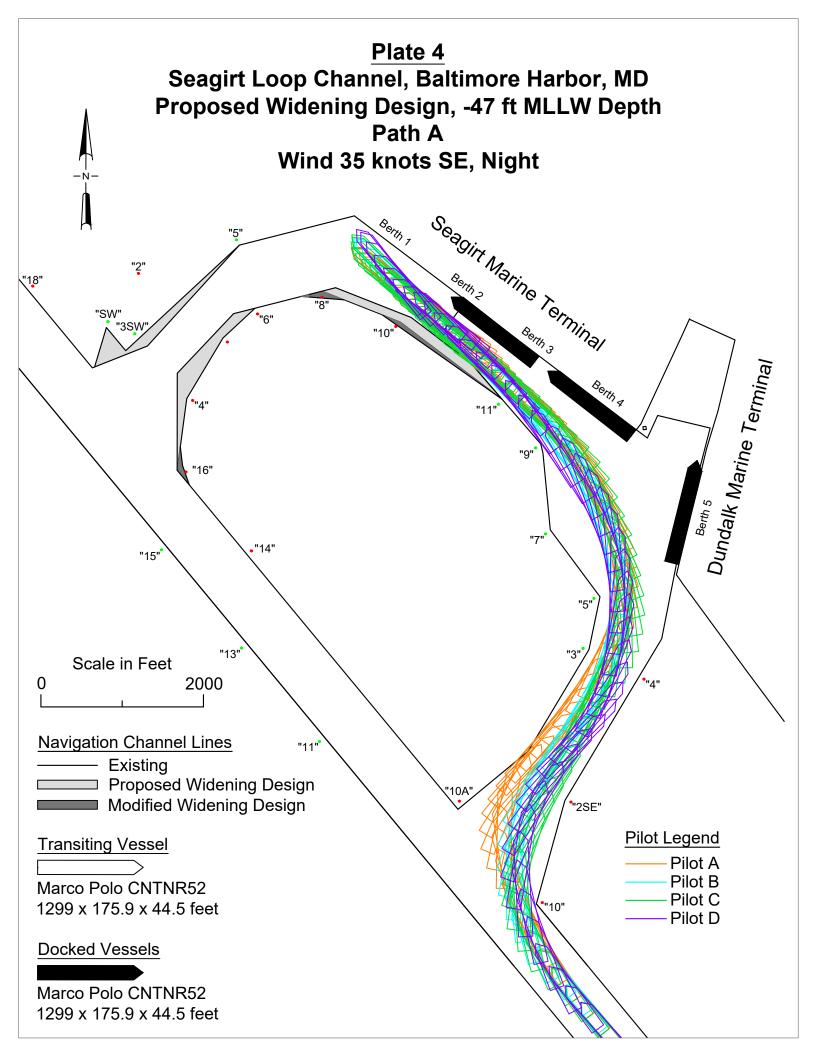
*Difficulty Rating: 1 = Easy | 5 = Difficult **Safety Rating: 1 = Safe | 5 = Dangerous



# **Data Sheet**

#### **Test Conditions**

Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-47 ft MLLW	Α	CNTNR52	SSE	35 knots	Night	No


#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	19 April 2022	N/A	35:03
В	19 April 2022	N/A	29:24
С	25 April 2022	N/A	32:01
D	25 April 2022	N/A	30:40

#### Individual Pilot Feedback

Pilot Letter	Comments	Run Ratings		
Pilot Letter	Comments	Difficulty*	Safety**	
А	When speed is bled off to stop while passing ship at 2-3 berth, stern falls. Can safely be done by overshooting berths (destination) and holding on toe, then backing down. Not feasible in reality; speed alongside unsafely high. Had to max aft tugs.	5	5	
В	This is not a safe maneuver - all tugs too near limits. The more south in the wind, the larger the issue.	4	5	
С	All good.	4	4	
D	Vessel needs a fair bit of speed to set by berthed ships.	4	4	

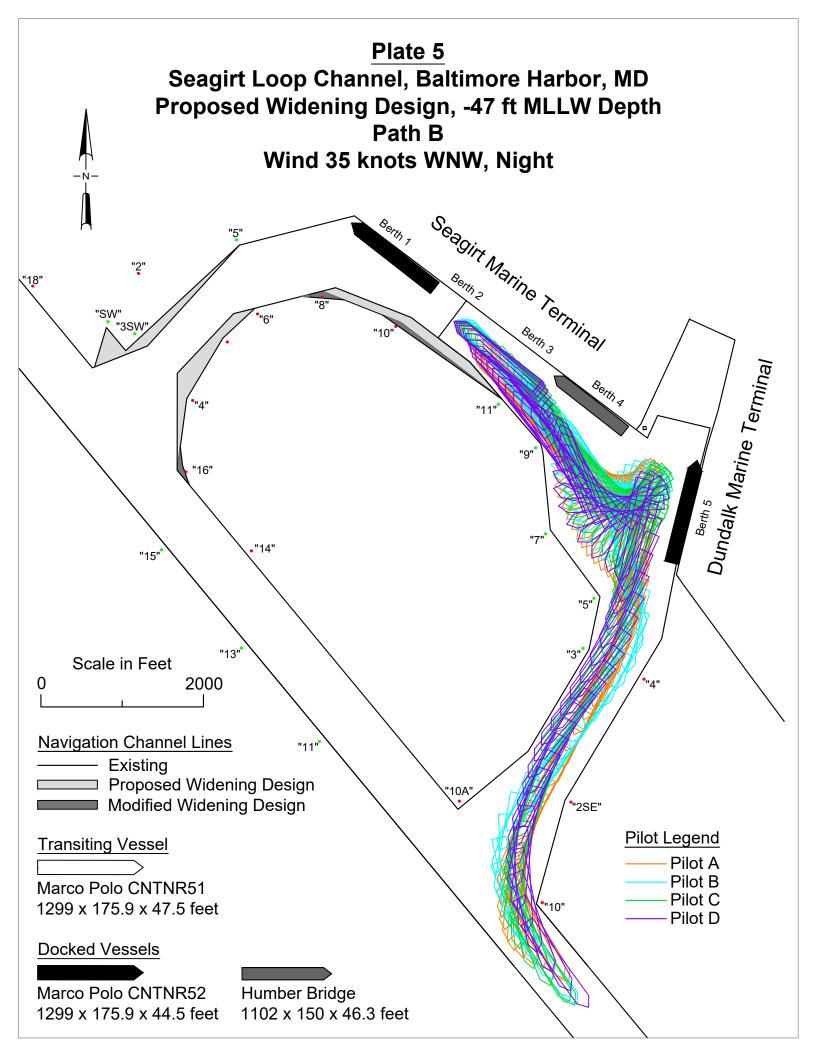
*Difficulty Rating:  $1 = Easy \mid 5 = Difficult$ **Safety Rating:  $1 = Safe \mid 5 = Dangerous$ 



# **Data Sheet**

#### **Test Conditions**

Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-47 ft MLLW	Α	CNTNR52	SE	35 knots	Night	No


#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	19 April 2022	N/A	17:21
В	19 April 2022	N/A	30:22
С	28 April 2022	N/A	39:52
D	28 April 2022	N/A	29:47

#### Individual Pilot Feedback

Pilot Letter	Comments	Run Ratings		
Filot Letter	Comments	Difficulty*	Safety**	
А	4 tugs used extensively. Necessary all aft tugs maxed to hold off berthed ships.	5	5	
В	Wind needs to be more on the port side – more south in the wind to simulate a set towards vessels docked at Seagirt Marine Terminal Berths 3/4. 4 boats necessary.		3	
С	Went well. Needed the HP of tugs in the West Channel.		3.5	
D	Needed 3/4 tugs working full to hold stern into the wind. Had to be very close on "10" to make ranges in DW channel. Vessel advanced deep in basin due to quarter wind.		5	

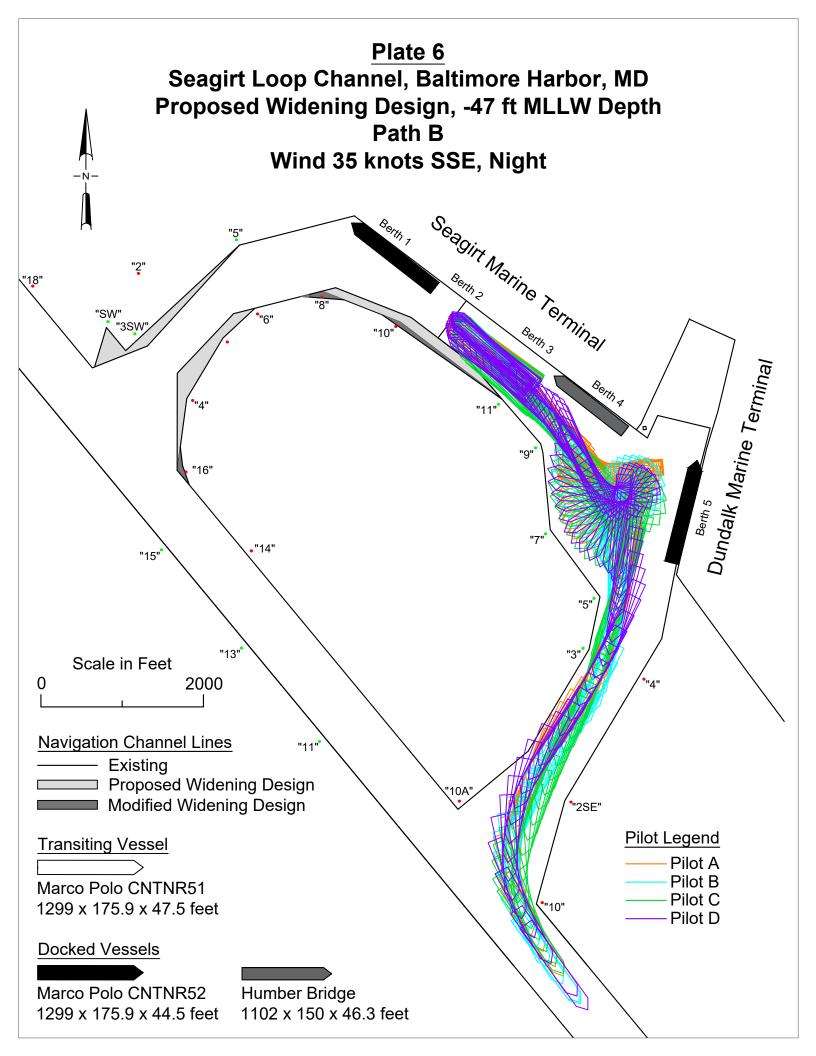
*Difficulty Rating:  $1 = Easy \mid 5 = Difficult$ **Safety Rating:  $1 = Safe \mid 5 = Dangerous$ 



# **Data Sheet**

#### **Test Conditions**

Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-47 ft MLLW	В	CNTNR51	WNW	35 knots	Night	No


#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	19 April 2022	N/A	55:03
В	19 April 2022	N/A	40:15
С	25 April 2022	N/A	40:11
D	25 April 2022	N/A	37:17

#### Individual Pilot Feedback

Pilot Letter	Comments	Run Ratings		
Filot Letter	Comments	Difficulty*	Safety**	
А	4 tugs made it safe. Turn at "10" buoy awkward but feasible.	4	3	
В	Much more difficult and high risk than utilizing the widened west channel of Seagirt. Again, 4 tugs, and additionally, more powerful tugs will likely be necessary.		5	
С	Needed all 4 boats. Would have gone Elevator Channel.		4	
D	Standard departure. Vessel is very heavy. Used all tugs.	3	3	

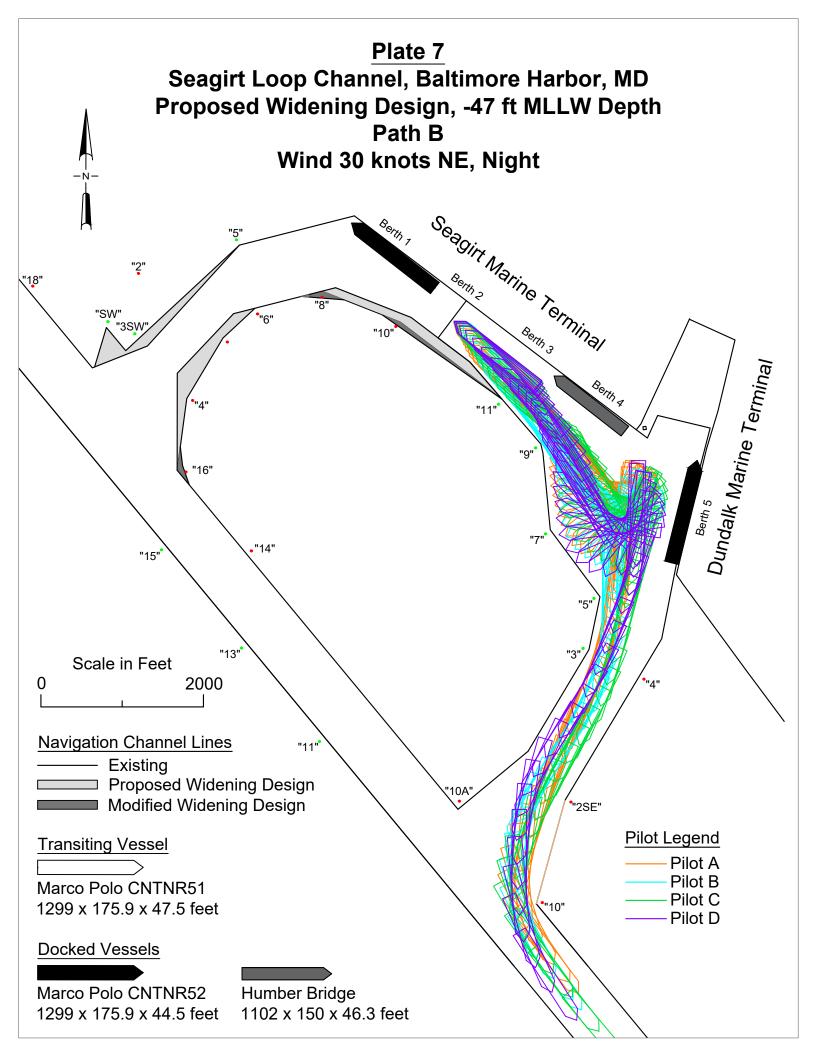
*Difficulty Rating: 1 = Easy | 5 = Difficult **Safety Rating: 1 = Safe | 5 = Dangerous



## **Data Sheet**

#### **Test Conditions**

Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-47 ft MLLW	В	CNTNR51	SSE	35 knots	Night	No


#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	20 April 2022	N/A	1:10:26
В	20 April 2022	N/A	1:00:06
С	26 April 2022	N/A	53:50
D	26 April 2022	N/A	51:34

#### Individual Pilot Feedback

Pilot Letter	Comments	Run Ratings		
Pilot Letter	Comments	Difficulty*	Safety**	
А	<ul> <li>Had to work all four tugs excessively hard.</li> <li>Higher exposed risk as opposed to Seagirt West Branch (Elevator) route. Job required all available control mechanisms to work. Any failure point would not be recoverable.</li> </ul>	4	4	
В	With the heavy ship and slower speeds, this scenario is manageable. 4 tugs are necessary.	4	3	
С	The wider Elevator Channel would have been a safer option for departure.	5	5	
D	None.	3	3	

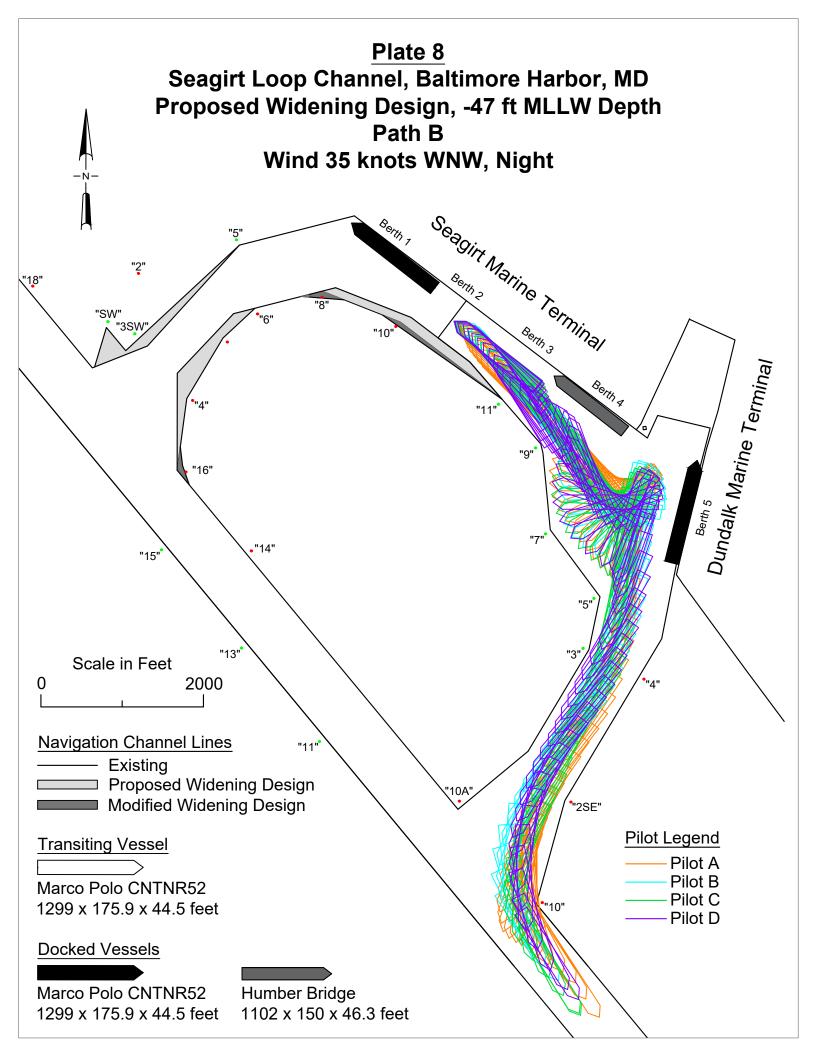
*Difficulty Rating: 1 = Easy | 5 = Difficult



## **Data Sheet**

#### **Test Conditions**

Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-47 ft MLLW	В	CNTNR51	NE	30 knots	Night	No


#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	22 April 2022	N/A	49:03
В	22 April 2022	N/A	43:49
С	27 April 2022	N/A	39:56
D	27 April 2022	N/A	35:22

#### Individual Pilot Feedback

Pilot Letter	Comments		atings
Pilot Letter	Confinence	Difficulty*	Safety**
А	Aft tugs had to work strong in order to stay at safe distance from berthed ships. Any casualty would likely result in allision. Very tug dependent maneuver. Time intensive.	4	4
В	This is much more dangerous than departing via the new widened channel. Tugs were worked near limits for excessive amounts of time. Could not have recovered from a tug casualty. Excessive speed required backing into basin in order to minimize time wind is on the beam.	4	5
С	Tough maneuver at 35 knots.	4.5	4.5
D	Dangerous due to minimal headway and stern way to beam wind.  Needed 3 boats to push the stern up wind and correct the ships position in the basin.	5	5

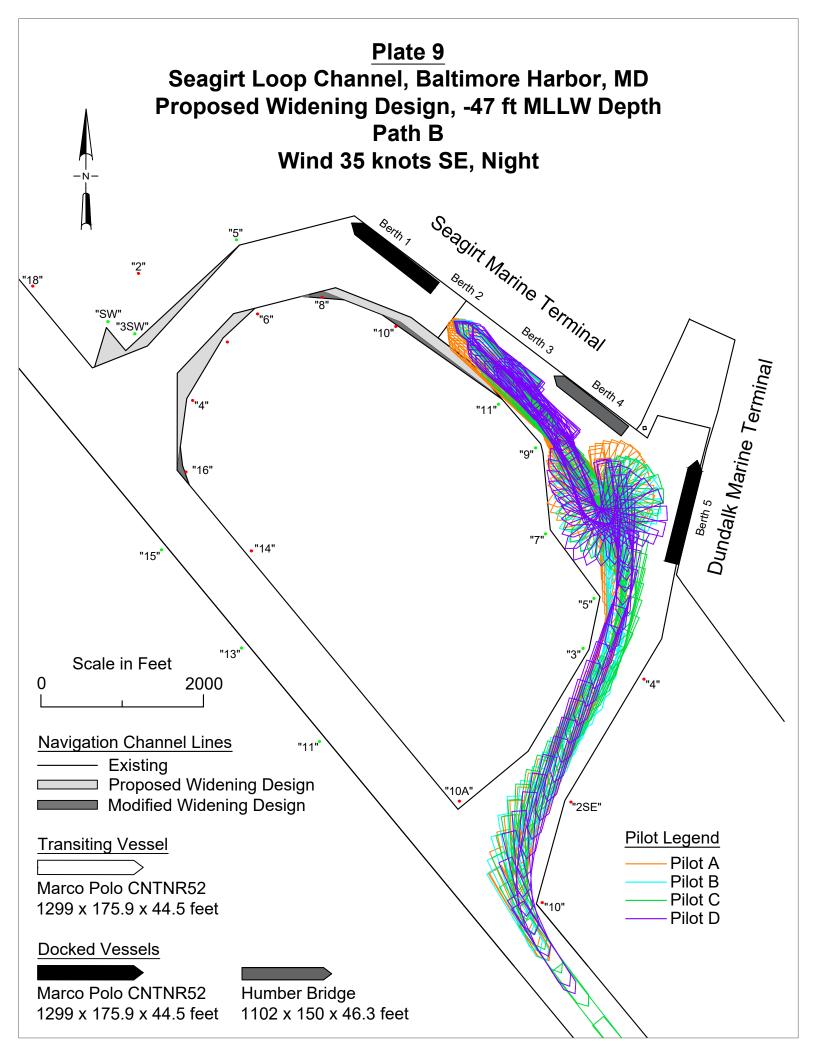
*Difficulty Rating: 1 = Easy | 5 = Difficult



## **Data Sheet**

#### **Test Conditions**

Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-47 ft MLLW	В	CNTNR52	WNW	35 knots	Night	No


#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	21 April 2022	N/A	54:41
В	21 April 2022	N/A	39:15
С	26 April 2022	N/A	42:25
D	26 April 2022	N/A	38:24

#### Individual Pilot Feedback

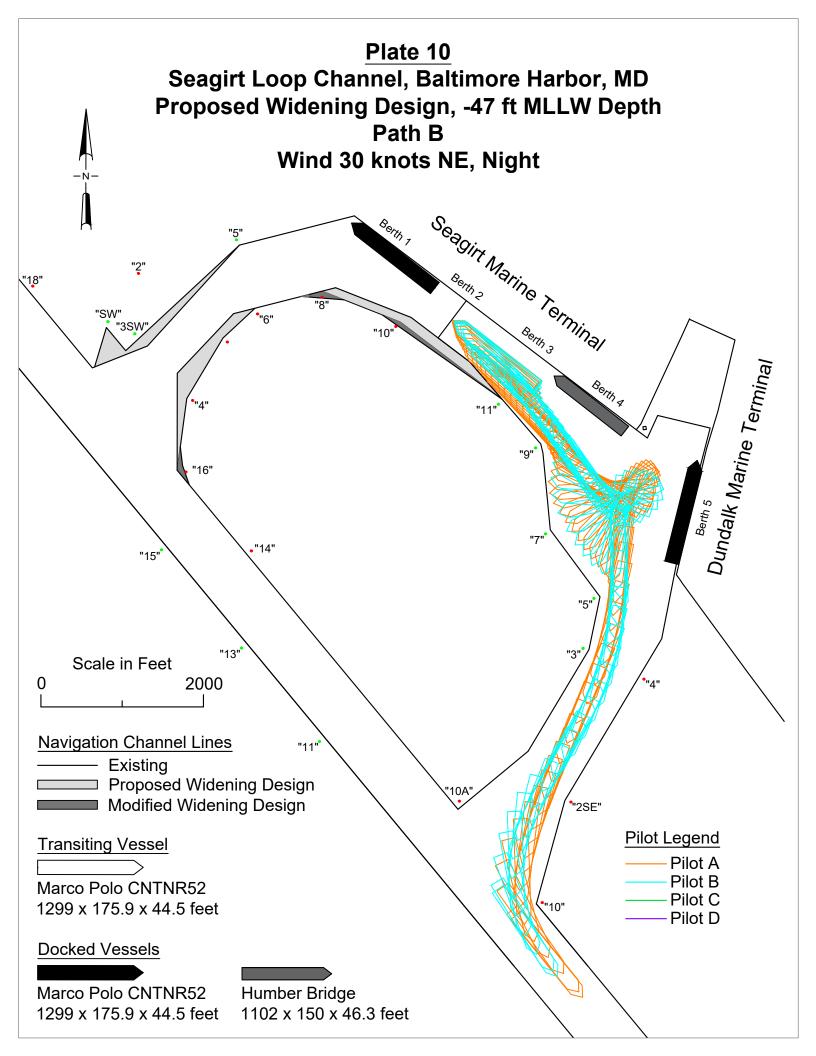
Pilot Letter	Comments		atings
Filot Letter	Comments	Difficulty*	Safety**
А	<ul> <li>Very hard to work stern upwind while staying held up off red side.</li> <li>Extremely exposed in turning basin in event of any casualty.</li> </ul>	4	5
В	Speeds required to deal with wind at this draft are unsafe as compared to exiting the Seagirt West Access widened. If ships engine did not start ahead, allision with vessel DMT Berth 5 could easily occur. 4 tugs required.	4	5
С	Normal operation.	4	4
D	None.	3	3

*Difficulty Rating: 1 = Easy | 5 = Difficult



## **Data Sheet**

#### **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-47 ft MLLW	В	CNTNR52	SE	35 knots	Night	No

#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
A	20 April 2022	N/A	1:03:26
В	20 April 2022	N/A	47:09
С	27 April 2022	N/A	46:31
D	27 April 2022	N/A	48:54

#### Individual Pilot Feedback

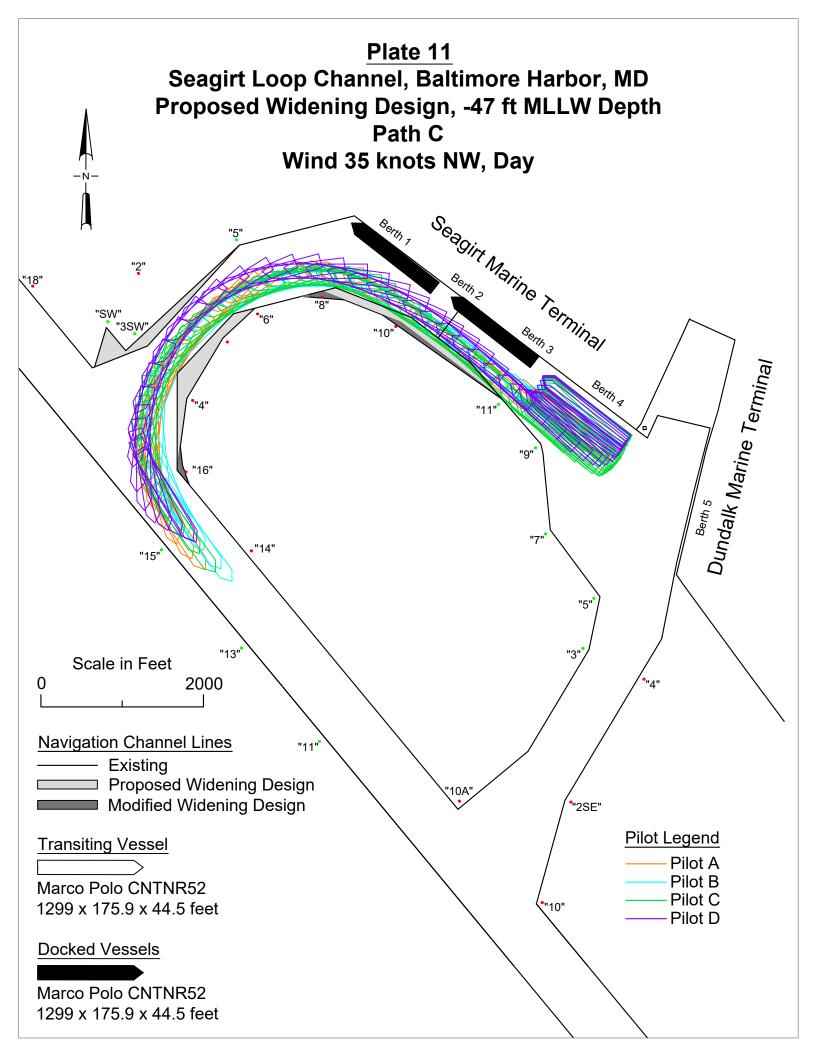
Pilot Letter	Comments	Run Ratings		
Filot Letter	Comments	Difficulty*	Safety**	
А	Ship is very exposed to berthed vessels. Ramifications of casualty (loss of tug, thruster, engine, etc.) are vastly higher than the West Branch ("Elevator") Channel.	3	4	
В	4 boats necessary. Due to drift angle, ship needs to ensure exact position in channel outbound - additional tug enables/ensures this.	4	3	
С	Tough maneuver at 35 knots with ships at DMT Berth 5 and SMT Berth 4.	4.5	4.5	
D	Transition to basin to west. 3.0 knots minimal tug usage ex basin. 4 boat job.	4	4	



# <u>Plate 10</u>

### **Data Sheet**

#### **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-47 ft MLLW	В	CNTNR52	NE	30 knots	Night	No

#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
Α	22 April 2022	N/A	45:32
В	22 April 2022	N/A	39:34

#### **Individual Pilot Feedback**

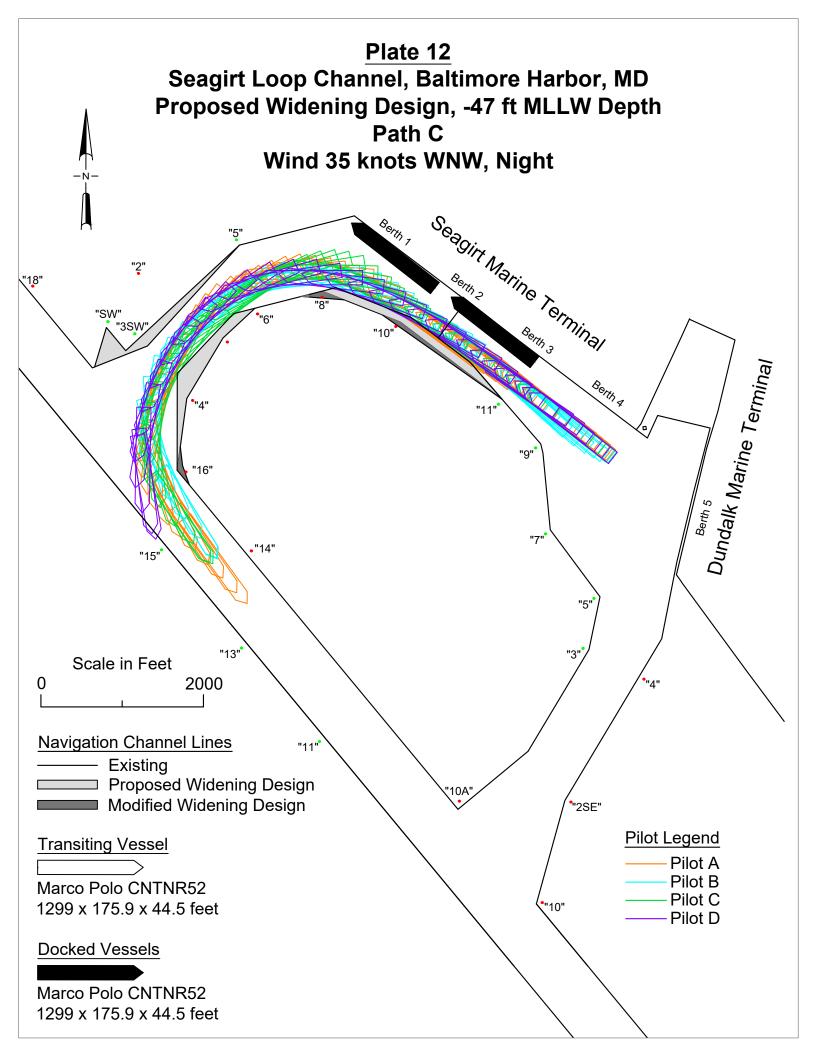
Pilot Letter	Comments	Run Ratings		
	Comments	Difficulty*	Safety**	
А	<ul> <li>Had to extensively utilize all tugs (strongly).</li> <li>Elevated exposure to risk of allision (with moored ships).</li> <li>Prolonged maneuver with prolonged elevated risk period. Time intensive.</li> </ul>	4	4	
В	Again, tugs used continually at max power to hold ship in this wind condition. 4 tugs required.	3	4	



# <u>Plate 11</u>

## **Data Sheet**

### **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-47 ft MLLW	С	CNTNR52	NW	35 knots	Day	No

#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	18 April 2022	N/A	35:54
В	18 April 2022	N/A	31:08
С	25 April 2022	N/A	38:41
D	25 April 2022	N/A	28:10

#### Individual Pilot Feedback

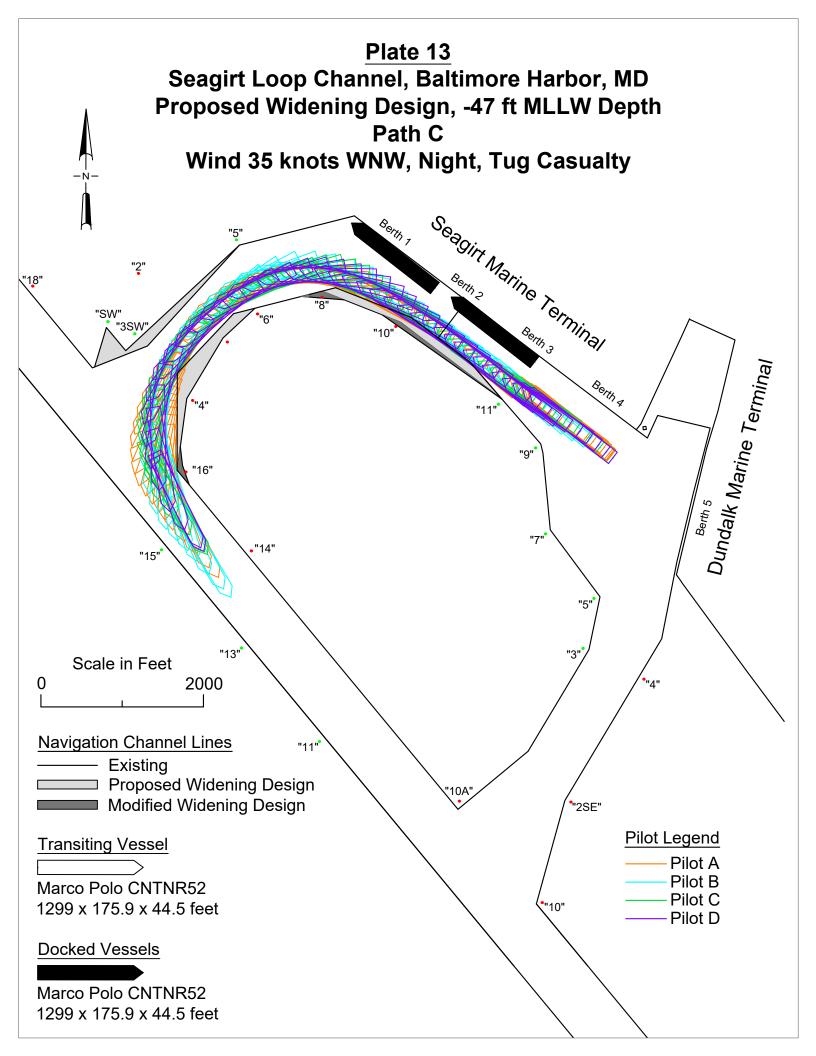
Pilot Letter	Comments	Run Ratings		
	Comments	Difficulty*	Safety**	
А	<ul> <li>4 tugs absolutely needed for evolution.</li> <li>Fixed range would be helpful on SW bank or Patapsco for West Seagirt Branch Channel.</li> </ul>	3	3	
В	Too much North in the wind. Corner at Buoy "16" may be too abrupt.	4	3	
С	The needed extra room was great!	3	3	
D	Initial run. Used 1 knot more than usual due to wind and size of ship. No forward tug in center lead. 3 boats. Ran up close on the green side of McHenry due to not having center forward tug.	5	3	



# <u>Plate 12</u>

### **Data Sheet**

#### **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-47 ft MLLW	С	CNTNR52	WNW	35 knots	Night	No

#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
A	18 April 2022	N/A	35:49
В	18 April 2022	N/A	26:03
С	25 April 2022	N/A	26:05
D	25 April 2022	N/A	20:24

#### Individual Pilot Feedback

Dilat Latter	Commente	Run R	atings
Pilot Letter	Comments	Difficulty*	Safety**
А	<ul> <li>4 tugs necessary.</li> <li>Fixed range needed on SW bank.</li> <li>Wideners are working to pass ships in berths.</li> </ul>	3	3
В	<ul> <li>Channel corner at red buoy "16" still needs to be eased potentially.</li> <li>Ship feels as if it handles too well at times.</li> <li>4 tugs - all 65 tons - are necessary.</li> <li>Ship does not seem to set as much as it should with the wind on the beam.</li> <li>Due to the obstructed view, a range outbound marking channel centerline should be considered in the event of electronics failure.</li> </ul>	3	3
С	N/A	3	3
D	Vessel built up too much speed at the end of maneuver with tug working 80% astern in center lead. Went from 4 knots to 4.8 knots.	4	3

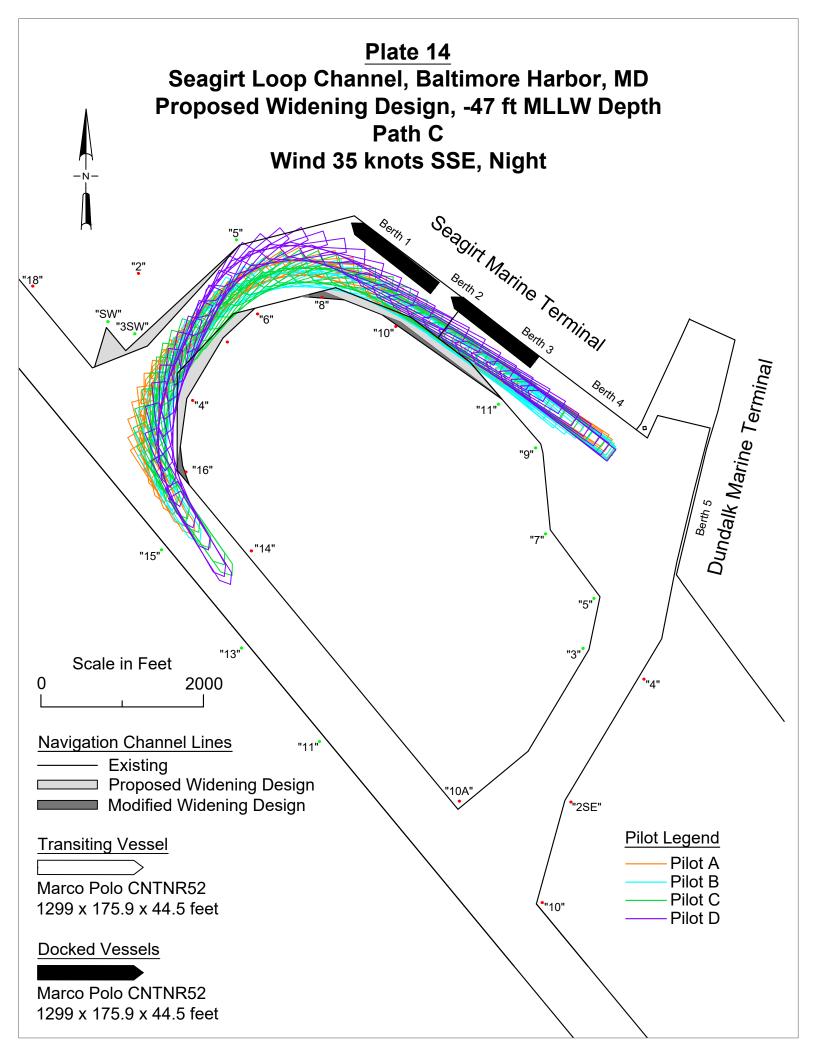


# <u>Plate 13</u>

## **Data Sheet**

#### **Test Conditions**

Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-47 ft MLLW	С	CNTNR52	WNW	35 knots	Night	Yes


#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	19 April 2022	Port quarter	37:50
В	19 April 2022	Port quarter	27:01
С	26 April 2022	Port quarter	28:08
D	26 April 2022	Port quarter	26:10

#### Individual Pilot Feedback

Pilot Letter	Comments	Run Ratings		
Filot Letter	Comments	Difficulty*	Safety**	
А	Safety factor of having 4 tugs allowed for maneuver to work. Upon losing quarter tug, center lead aft tug had to be worked strong, but possible.	4	3	
В	<ul> <li>Losing tug with this wind condition made it almost impossible to make turn.</li> <li>Being forced to back ship when attempting a large turn to port makes situation much worse.</li> </ul>	4	5	
С	Width of Elevator Channel is good for this class of vessel.	3	3	
D	3.6-4 knots at maneuver. Still worried about advancing to the green side.	4	4	

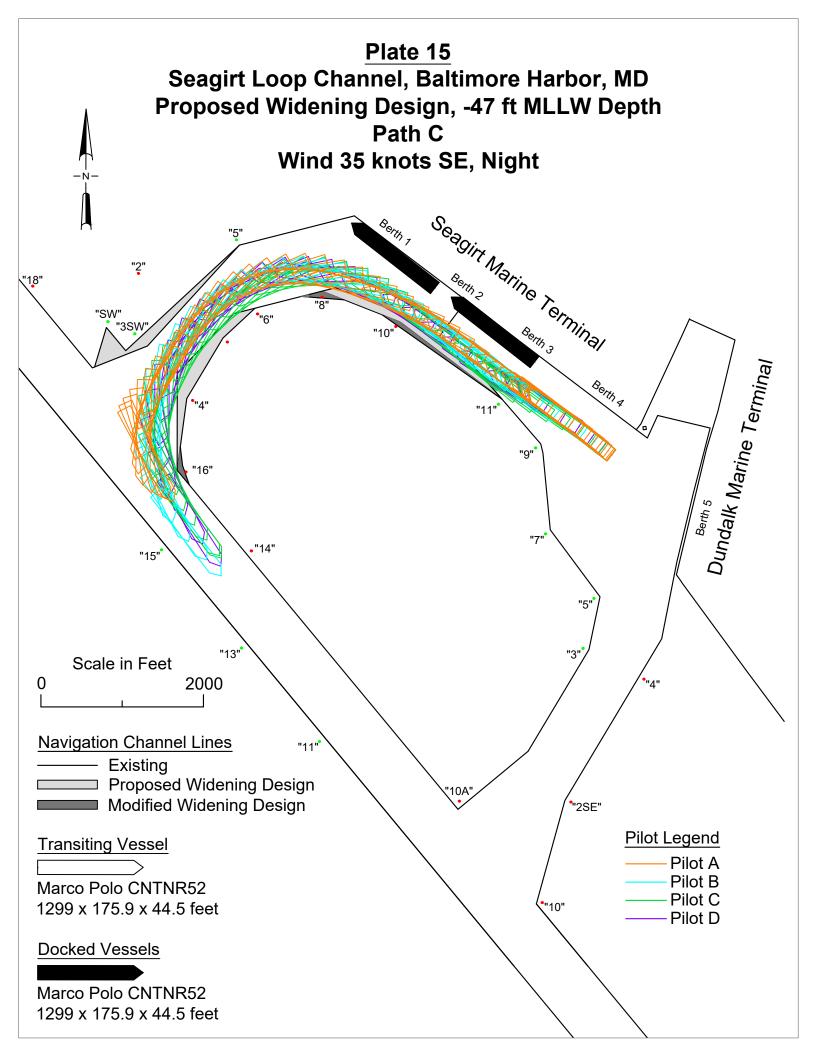
*Difficulty Rating: 1 = Easy | 5 = Difficult



# <u>Plate 14</u>

## **Data Sheet**

#### **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-47 ft MLLW	С	CNTNR52	SSE	35 knots	Night	No

#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	21 April 2022	N/A	31:46
В	21 April 2022	N/A	27:21
С	25 April 2022	N/A	58:10
D	25 April 2022	N/A	55:59

#### Individual Pilot Feedback

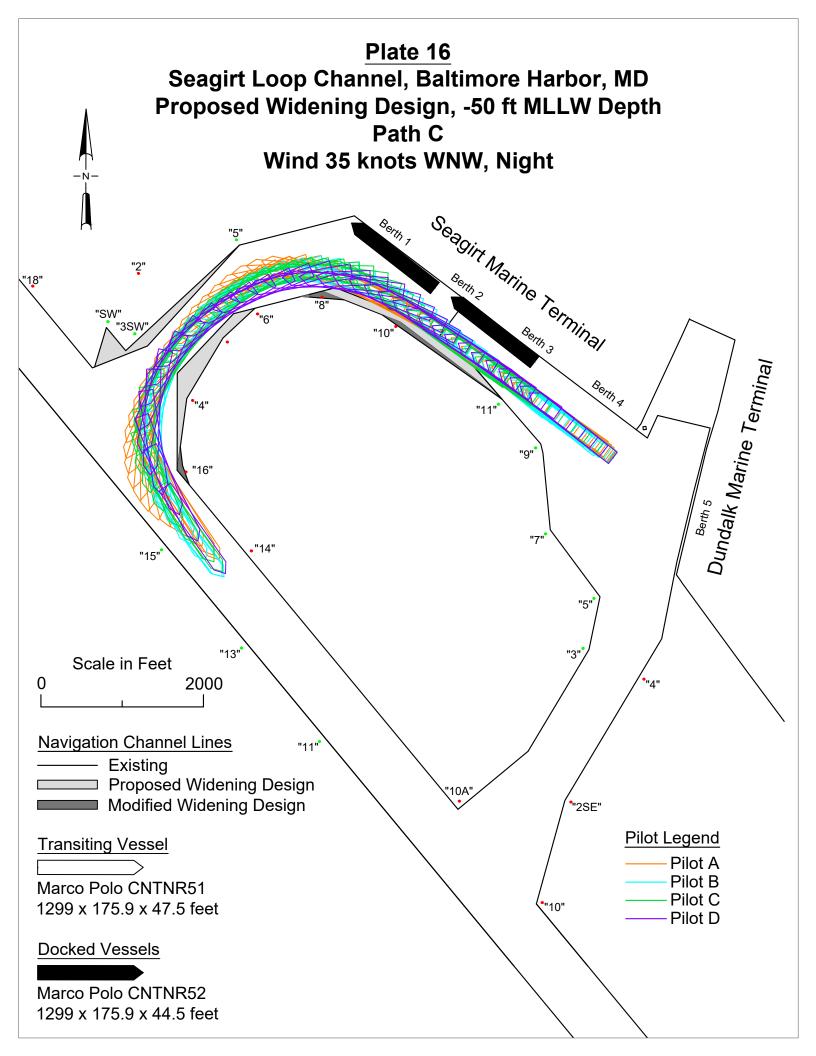
Pilot Letter	Comments	Run Ratings		
	Comments	Difficulty*	Safety**	
А	With SSE'ly wind at this velocity, ship's quarter becomes excessively close to the ship at Seagirt Marine Terminal Berth 1 ( $\sim$ 130 ft).	4	4	
В	30 ft from shoal water on port side in vicinity of buoy "8" is required to maintain 150 ft from stern to vessel at Seagirt Marine Terminal Berth 1/2. This is unreasonable, and project corner should be widened here. Also, corner at buoy "16" needs to be eased. Otherwise, with wind conditions, 4 tugs required.	N/A	N/A	
С	Starboard quarter gets close to Berth 1 with this wind.	3	3	
D	Very difficult maneuver.	4	5	



# <u>Plate 15</u>

## **Data Sheet**

#### **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-47 ft MLLW	С	CNTNR52	SE	35 knots	Night	No

#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	19 April 2022	N/A	29:22
В	19 April 2022	N/A	22:33
С	28 April 2022	N/A	24:07
D	28 April 2022	N/A	19:59

#### Individual Pilot Feedback

Pilot Letter	Commente	Run Ratings		
	Comments		Safety**	
А	Stern uncomfortably close to ship at SMT Berth 1.	4	4	
В	<ul> <li>4 boats necessary.</li> <li>Range lights marking channel and Fairfield area would make this maneuver safer.</li> <li>Headway required to keep stern clear of vessels at Berths 1-3 and green side of channel may be excessive, especially at deeper drafts.</li> </ul>	4	4	
С	Good channel dimensions for swept path of vessel.	3	3	
D	4.3-4.4 knots going by 1/2 Berth to overcome set on to Berth. Worked #2/3 tugs full to regain red side.	4	4	

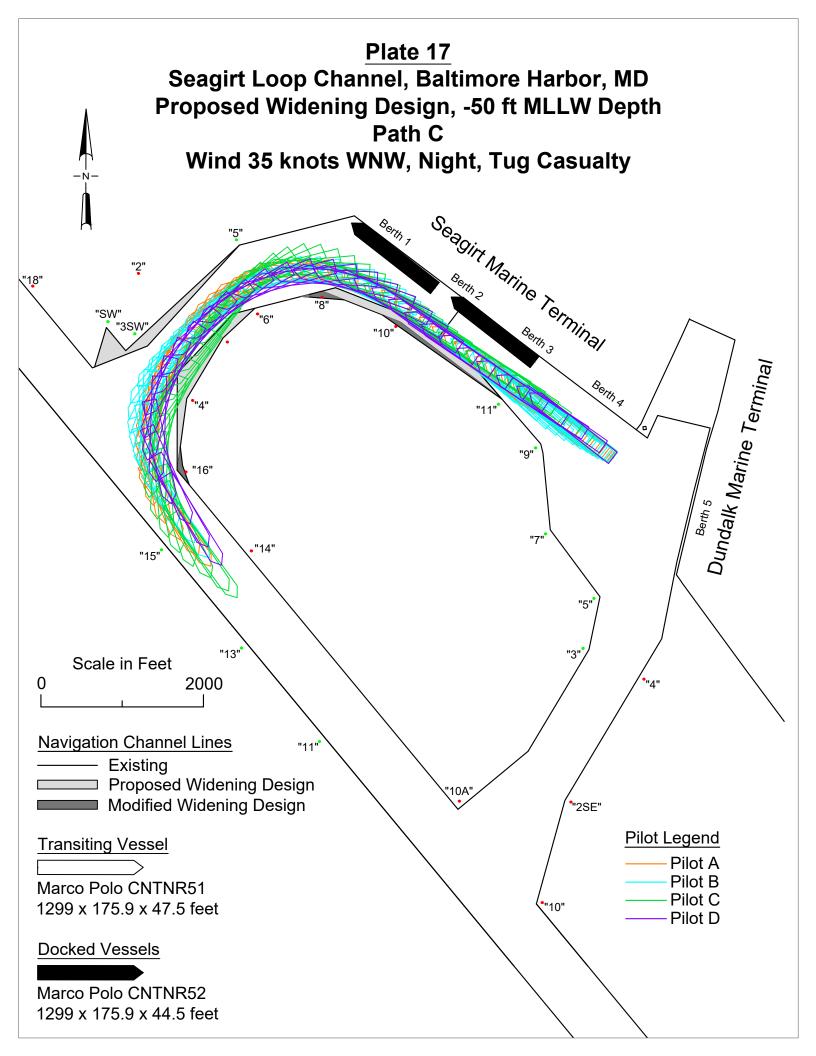


# <u>Plate 16</u>

## **Data Sheet**

#### **Test Conditions**

Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-50 ft MLLW	С	CNTNR51	WNW	35 knots	Night	No


#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	19 April 2022	N/A	36:22
В	19 April 2022	N/A	30:44
С	26 April 2022	N/A	26:19
D	26 April 2022	N/A	23:20

#### Individual Pilot Feedback

Pilot Letter	Comments	Run Ratings		
Filot Letter	Comments	Difficulty*	Safety**	
А	<ul> <li>Much safer than with turning basin.</li> <li>47.5 ft draft performed well in wind (50' channel).</li> <li>Did not require heavy tug bells.</li> </ul>	3	2	
В	This maneuver with a full 50 ft channel loop is a much safer and more efficient maneuver rather than backing out. Less time beam to wind. Directional momentum remains constant as well as rate of turn. Both these are important for control of the vessel.	4	4	
С	Much safer departing via new Elevator Channel than backing out to basin.	3	3	
D	None.	4	4	

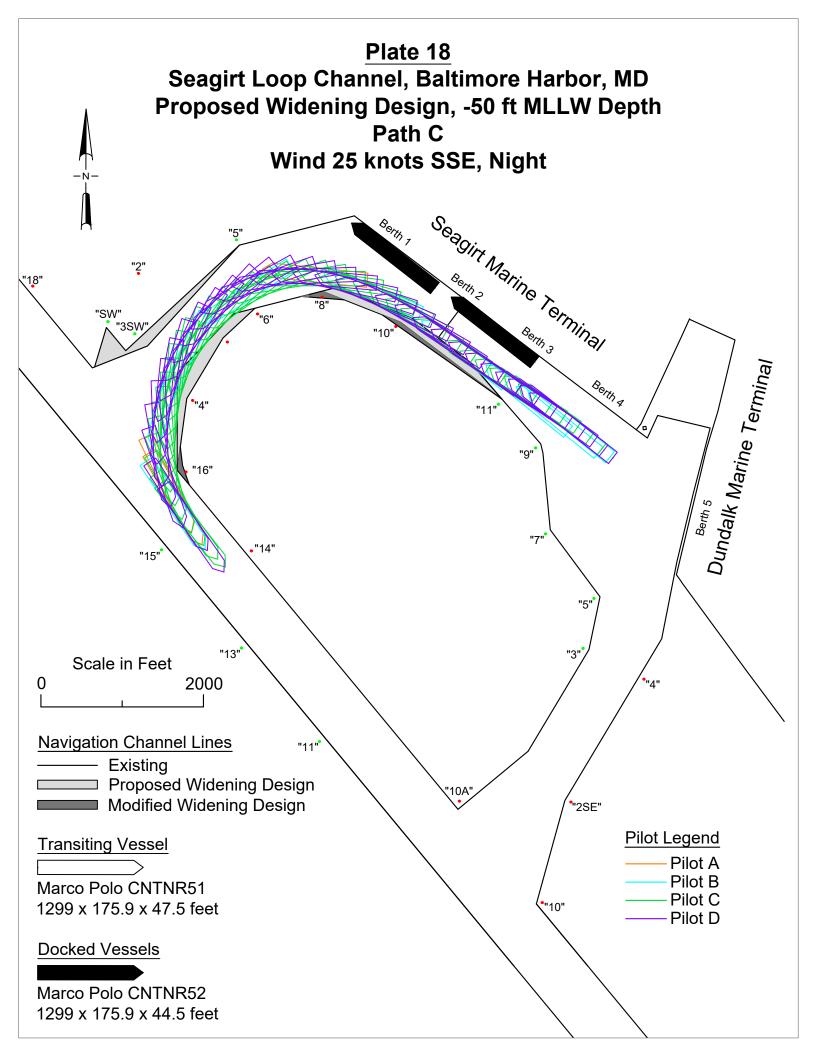
*Difficulty Rating:  $1 = Easy \mid 5 = Difficult$ 



# <u>Plate 17</u>

## **Data Sheet**

#### **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-50 ft MLLW	С	CNTNR51	WNW	35 knots	Night	Yes

#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	20 April 2022	Port shoulder	33:50
В	20 April 2022	Port quarter	31:12
С	27 April 2022	Port quarter	27:00
D	27 April 2022	Port quarter	19:49

#### Individual Pilot Feedback

Pilot Letter	Comments	Run Ratings		
Filot Letter	Comments	Difficulty*	Safety**	
А	Much safer in this channel than in turning basin. Was easily able to compensate for tug casualty. Also, same job (sailing SMT) was completed in half the time. Safer and more efficient.	3	1	
В	When tug is lost, remaining equipment is worked full, leaving no margin for safety/error. Maneuver was completed successfully through this channel however.	3	4	
С	The loss of port quarter tug made the last turn difficult.	4	4	
D	Lost tug #3 - Moved tug #1 to replace. Worked tug #2 45° astern to arrest headway and complete turn. Used tugs #2,3,4 to move stern to starboard.	4	4	

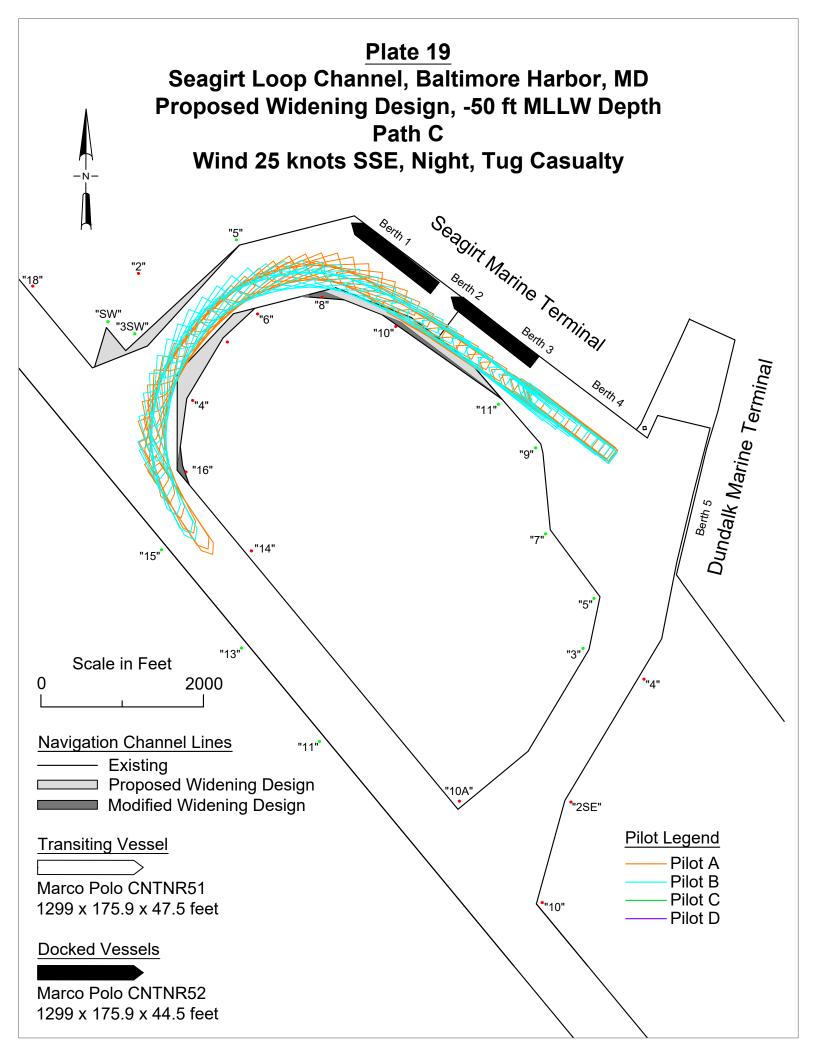


# <u>Plate 18</u>

## **Data Sheet**

#### **Test Conditions**

Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-50 ft MLLW	С	CNTNR51	SSE	25 knots	Night	No


#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	21 April 2022	N/A	29:12
В	21 April 2022	N/A	27:57
С	27 April 2022	N/A	25:43
D	27 April 2022	N/A	21:06

#### Individual Pilot Feedback

Pilot Letter	Comments	Run Ratings		
	Comments	Difficulty*	Safety**	
А	Good safety margins. Did not have to overuse tugs beyond safe margins.	3	2	
В	4 tugs required. Losing a tug would not have resulted in a failure to complete the maneuver.	3	3	
С	Safer maneuver at 25 knots.	3	3	
D	Proposed adjustments much better. Bow ran deep. Had to use forward boat to reposition bow closer to windward side of channel.	4	4	

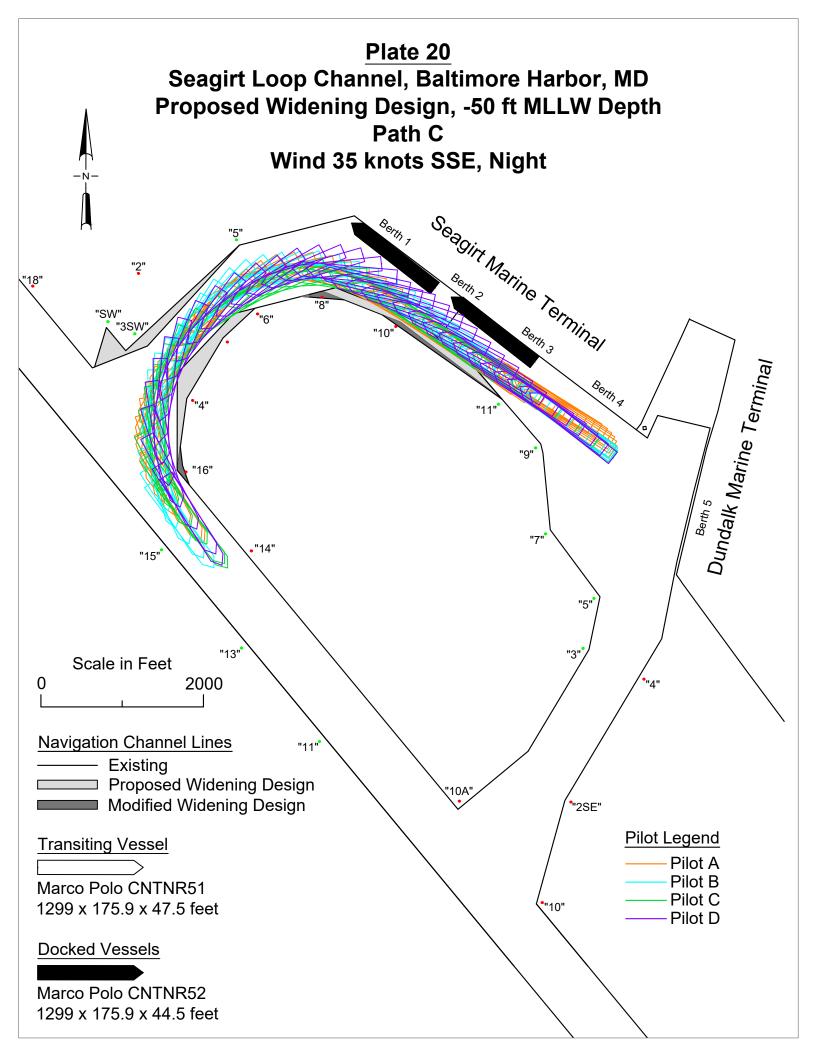
*Difficulty Rating: 1 = Easy | 5 = Difficult



# <u>Plate 19</u>

### **Data Sheet**

#### **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-50 ft MLLW	С	CNTNR51	SSE	25 knots	Night	Yes

#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time	
А	20 April 2022	Starboard shoulder	30:54	
В	20 April 2022	Starboard quarter	26:15	

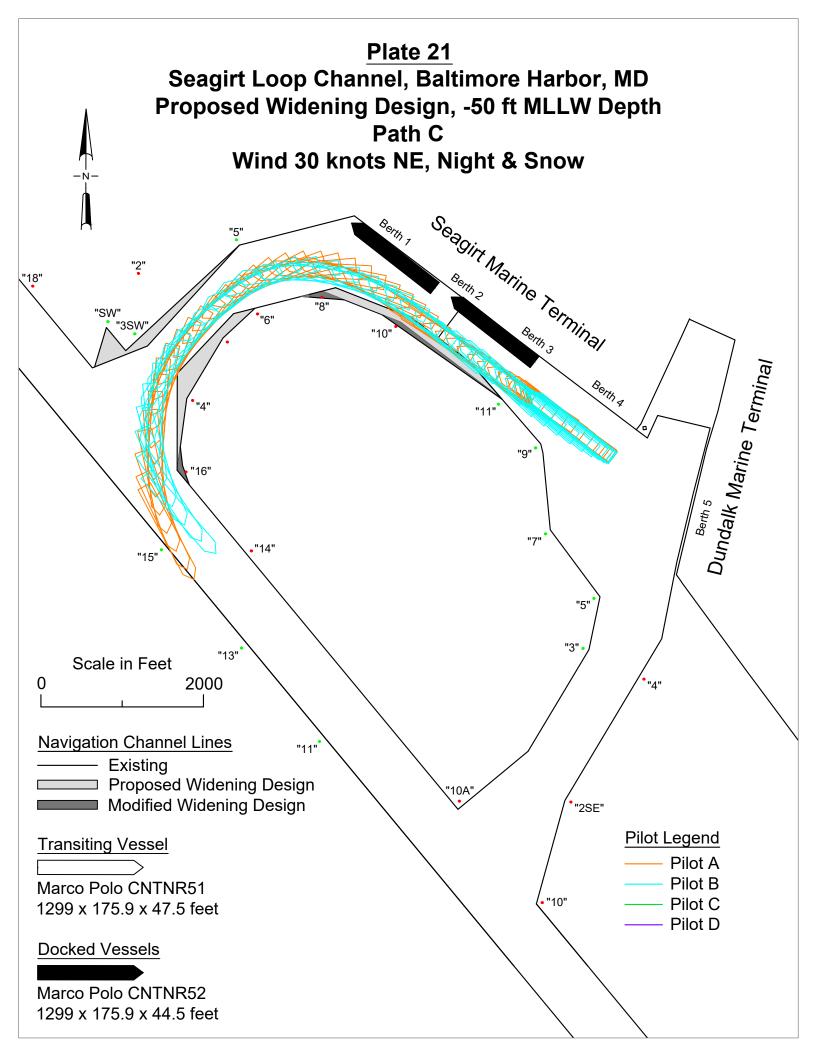
#### **Individual Pilot Feedback**

Pilot Letter	Comments	Run Ratings		
	Comments	Difficulty*	Safety**	
А	Worked very well. Was safely able to recover from tug casualty. Approx. half the time as using east basin and channel. Much safer and much more efficient.	3	2	
В	This maneuver is acceptable with 4 tugs and can be completed safely if one of these tugs is lost due to casualty.	3	3	



### **Data Sheet**

#### **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-50 ft MLLW	С	CNTNR51	SSE	35 knots	Night	No

#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	20 April 2022	N/A	30:50
В	20 April 2022	N/A	29:48
С	26 April 2022	N/A	19:30
D	26 April 2022	N/A	22:55

#### Individual Pilot Feedback

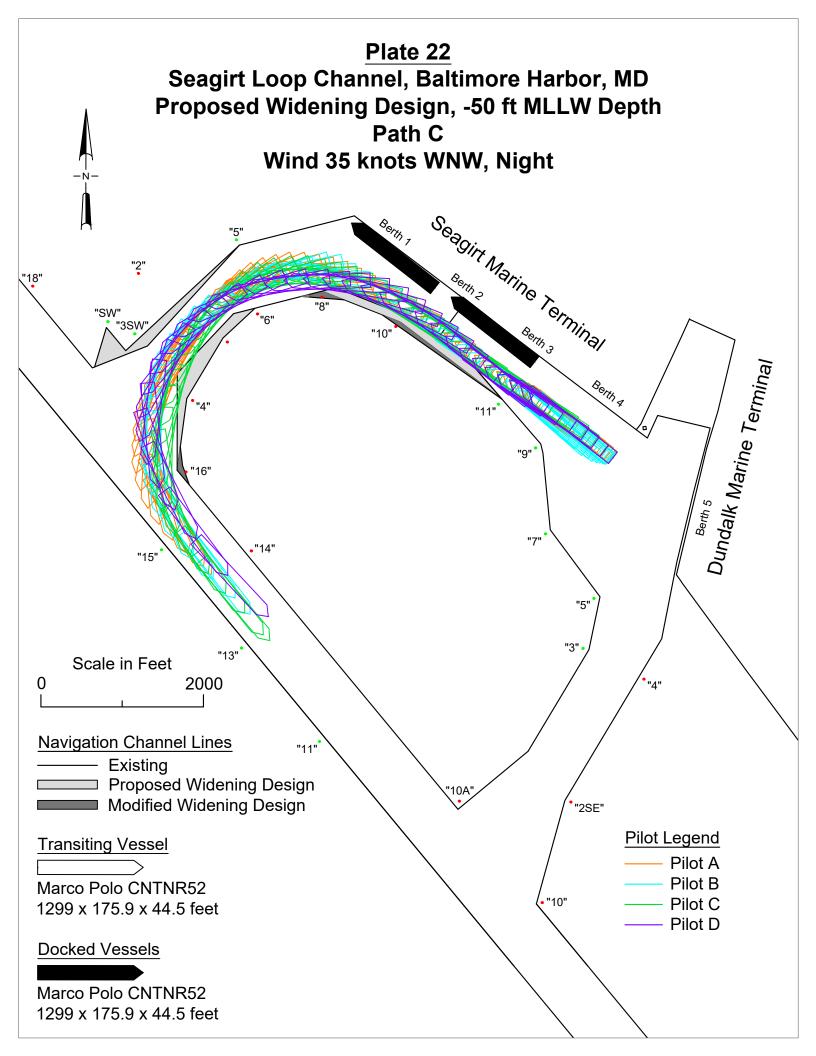
Dilat Latter	Comments	Run Ratings		
Pilot Letter	Comments	Difficulty*	Safety**	
А	Not safe with these winds in this direction. Had to max tug power on all boats at times, eliminating ability to recover from any failure.	4	5	
В	<ul> <li>Due to wind direction, tugs worked near maximum for too long of a period.</li> <li>Widener in vicinity of nun buoy "10" and lit buoy "8" off berths 1 and 2 may need to be increased. Swing distance from stern of vessel to ships at berth has been too close at all wind directions. Requires speeds ahead that are excessive.</li> </ul>	4	4	
С	Again, much safer departing via the Elevator Channel vs. backing to turning basin.	3	3	
D	SE wind very difficult for this configuration of channel.	5	5	



# <u>Plate 21</u>

## **Data Sheet**

#### **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-50 ft MLLW	С	CNTNR51	NE	30 knots	Night & Snow	No

### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	21 April 2022	N/A	32:28
В	21 April 2022	N/A	25:54

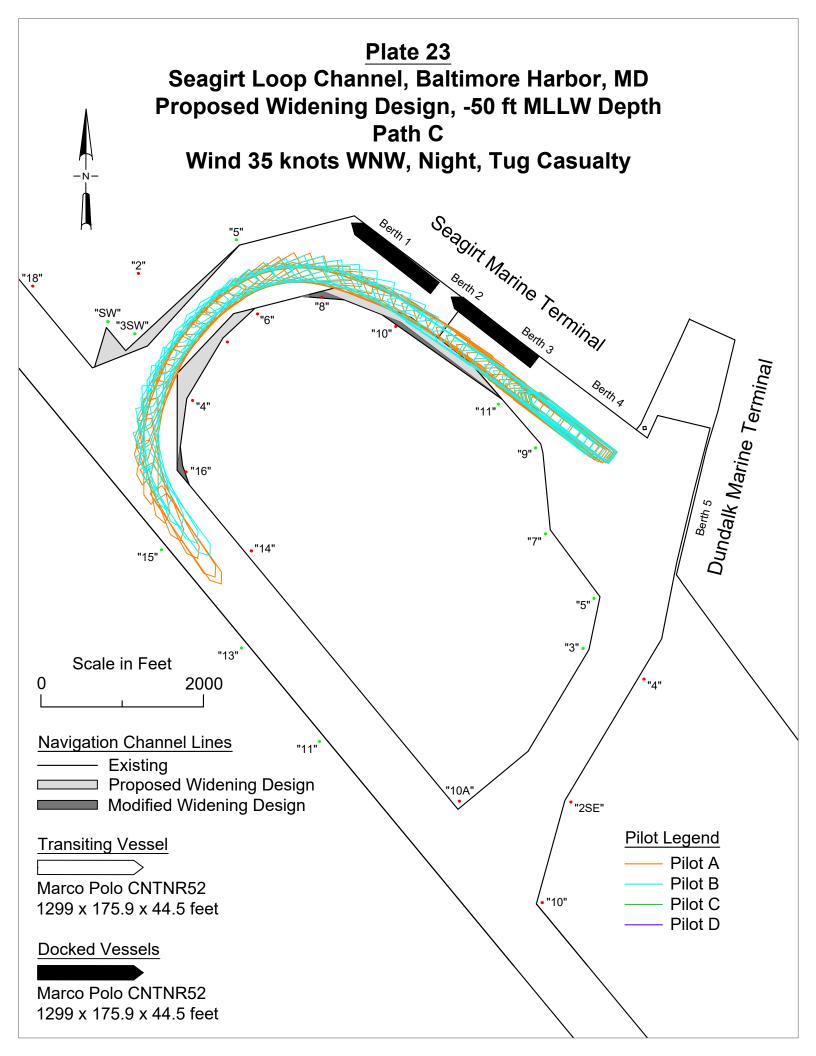
#### Individual Pilot Feedback

Pilot Letter	Commente	Run Ratings		
	Comments	Difficulty*	Safety**	
А	Evolution was feasible until loss of starboard shoulder tug, which resulted in grounding on green bank of Fort McHenry Channel. Four tugs necessary for safety margin. Grounding would have been recoverable in real loss of tug (operator would have known of loss).	4	2	
В	This maneuver requires 4 boats. Considerable power is required to hold ship up into wind. This should be preferable to turning in basin due to length of time exposed to beam winds.	4	4	



## **Data Sheet**

#### **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-50 ft MLLW	С	CNTNR52	WNW	35 knots	Night	No

#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	20 April 2022	N/A	36:23
В	20 April 2022	N/A	1:02:19
С	27 April 2022	N/A	28:14
D	27 April 2022	N/A	22:00

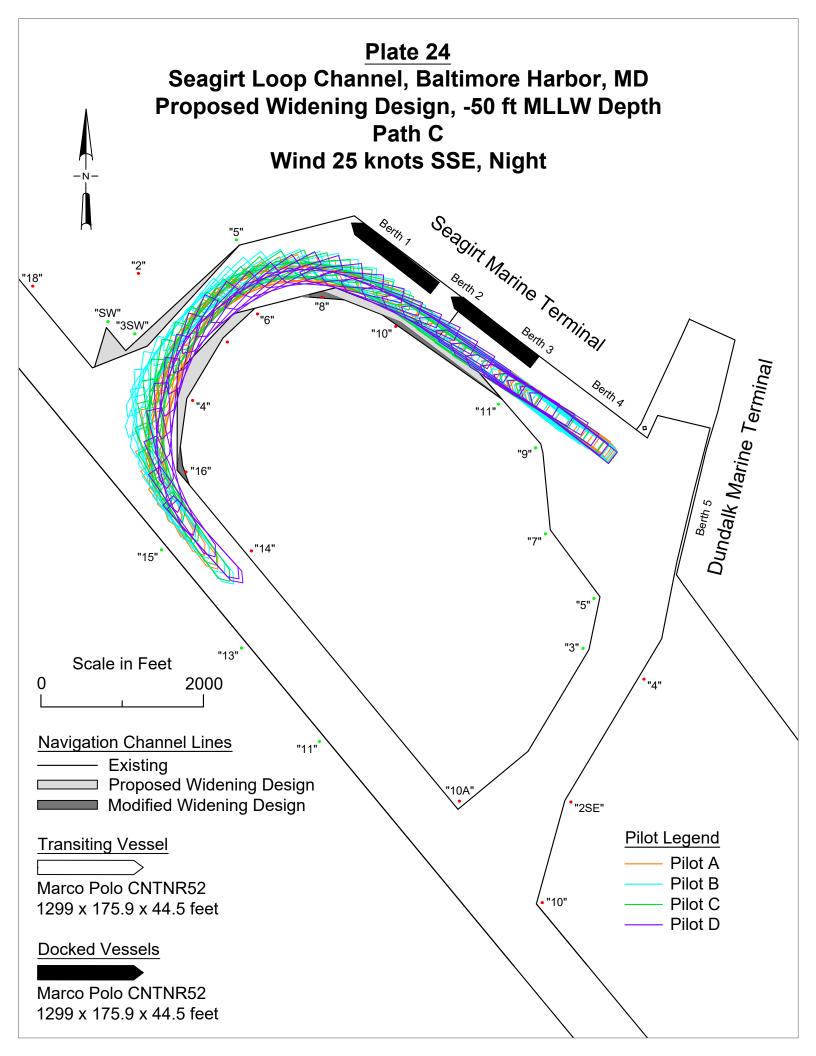
#### Individual Pilot Feedback

Pilot Letter	Comments	Run Ratings	
	Confinence	Difficulty*	Safety**
А	Increased UKC (50 ft depth) with 44.5 ft draft handled well with comfortable safety margin and contingency.	3	2
В	<ul> <li>Corner at buoy "16" could be/should be eased to assist with final turn in wind.</li> <li>4 tugs necessary.</li> <li>Effective mouth of channel is smaller than previously improved west channel of Dundalk. This should be at least as big.</li> </ul>	N/A	N/A
С	All good.	3.5	3.5
D	Channel reduction noticeable. Used tugs 2,3,4 100% at end of maneuver. 3.6-3.9 knots during entire maneuver.	4	4



## **Data Sheet**

#### **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-50 ft MLLW	С	CNTNR52	WNW	35 knots	Night	Yes

#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	21 April 2022	N/A	36:15
В	21 April 2022	Port quarter	1:02:19

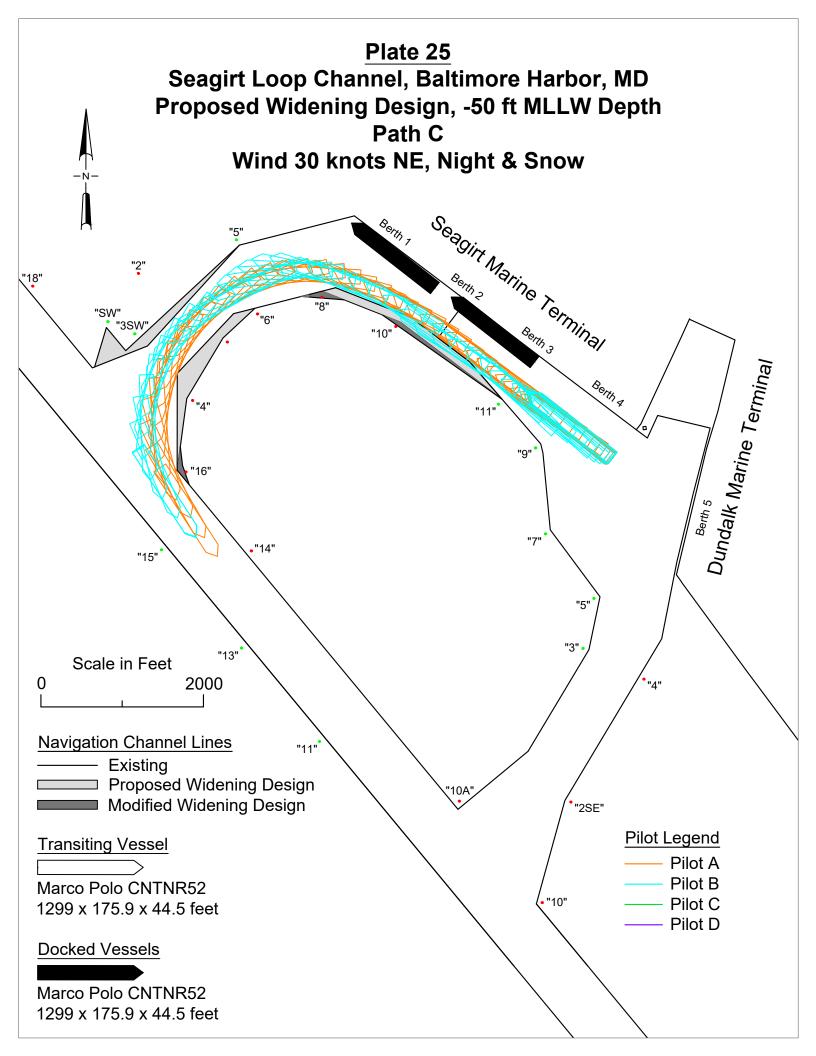
#### **Individual Pilot Feedback**

Pilot Letter	Commente	Run Ratings		
	Comments	Difficulty*	Safety**	
А	Easily able to safely recover from casualty, despite strong winds. Safety margin much higher. Also, less prolonged exposure to risk than in turning basin.	3	2	
В	Much safer option than turning in basin. Tug usage much less / very reasonable. Wind forces more distance off buoy "8" – this causes the stern to be closer to the ship at Seagirt Marine Terminal Berth 1/2. This corner is the issue.	3	3	



# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-50 ft MLLW	С	CNTNR52	SSE	25 knots	Night	No

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	20 April 2022	N/A	31:20
В	20 April 2022	N/A	59:32
С	27 April 2022	N/A	21:02
D	27 April 2022	N/A	20:47

# Individual Pilot Feedback

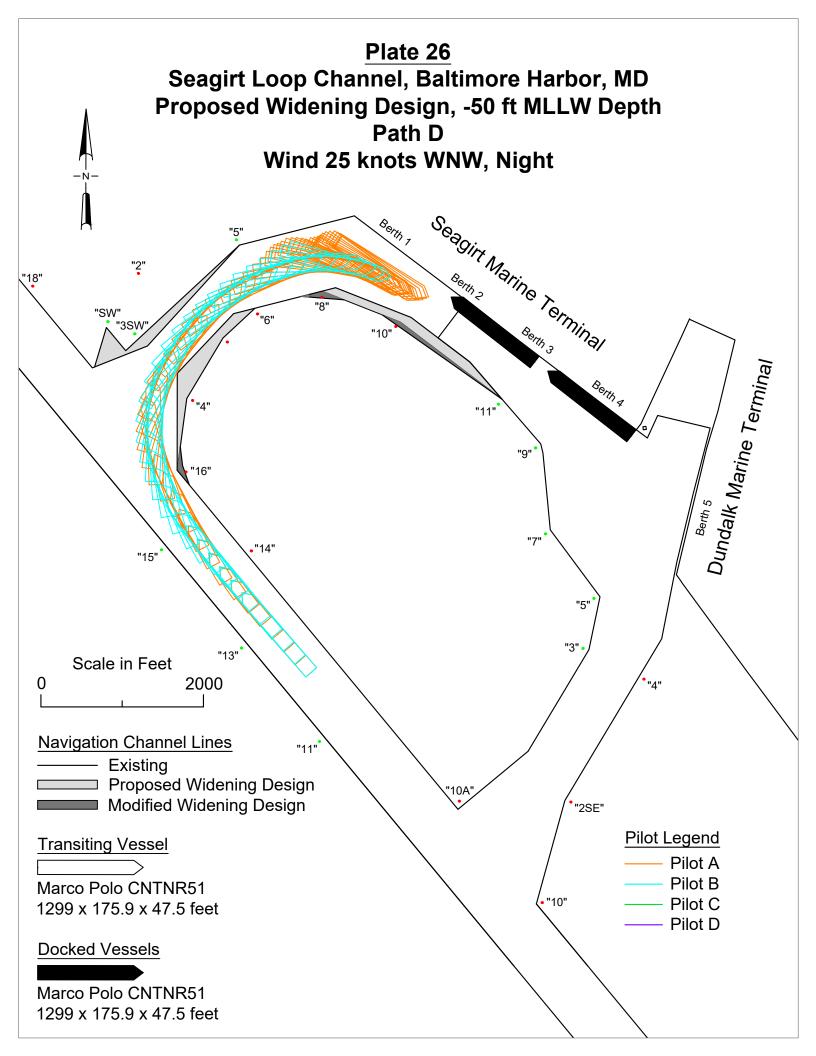
Dilet Letter	Commonto	Run Ratings		
Pilot Letter	Comments	Difficulty*	Safety**	
А	<ul> <li>Safe and feasible with adequate safety margin.</li> <li>Added UKC (50' depth) allows for emergency anchor use in event of casualty at 44.5' draft. This is not possible at 47' depth.</li> </ul>	2	2	
В	<ul> <li>With a tug failure, this maneuver became very dangerous - 4 boats required.</li> <li>Swing distance on starboard quarter to berthed ships is still a safety concern - too close if vessel is at all out of position.</li> <li>More with should be considered in vicinity from nun "10" to lit buoy "8".</li> </ul>	3	4	
С	The new wideners are needed with a vessel at Seagirt Berth 1.	3	3	
D	Needed 4.0 knots to keep off of berthed vessel at Seagirt. Slightly speedy. Needed tug #2 to reposition on red side. Very tight on red buoy in Fort McHenry Channel entrance.	4	4	



# <u>Plate 25</u>

# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-50 ft MLLW	С	CNTNR52	NE	30 knots	Night & Snow	No

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	21 April 2022	N/A	29:56
В	21 April 2022	N/A	26:43

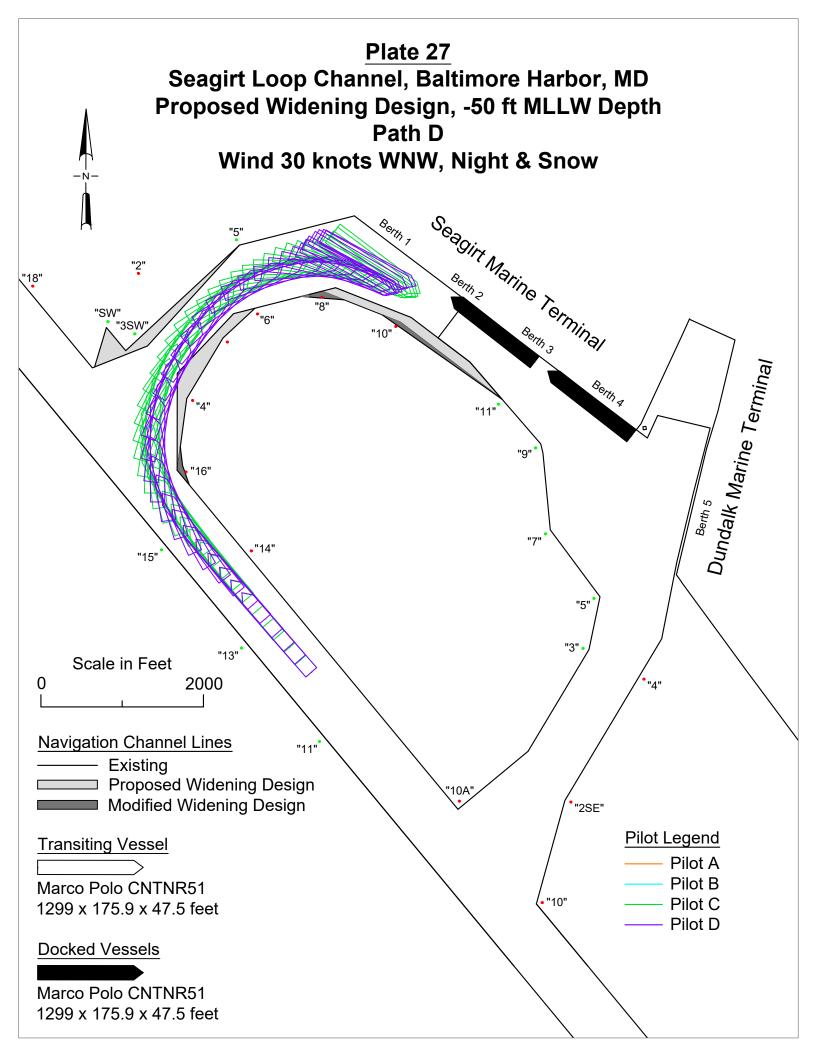
# **Individual Pilot Feedback**

Pilot Letter	Commonto	Run Ratings		
	Comments	Difficulty*	Safety**	
А	Worked great. Safe with good margins and available contingencies.	3	2	
В	This maneuver in beam wind pushes limitations of tugs.	4	4	



# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-50 ft MLLW	D	CNTNR51	WNW	30 knots	Night	No

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
А	22 April 2022	N/A	35:19
В	22 April 2022	N/A	21:17

#### **Individual Pilot Feedback**

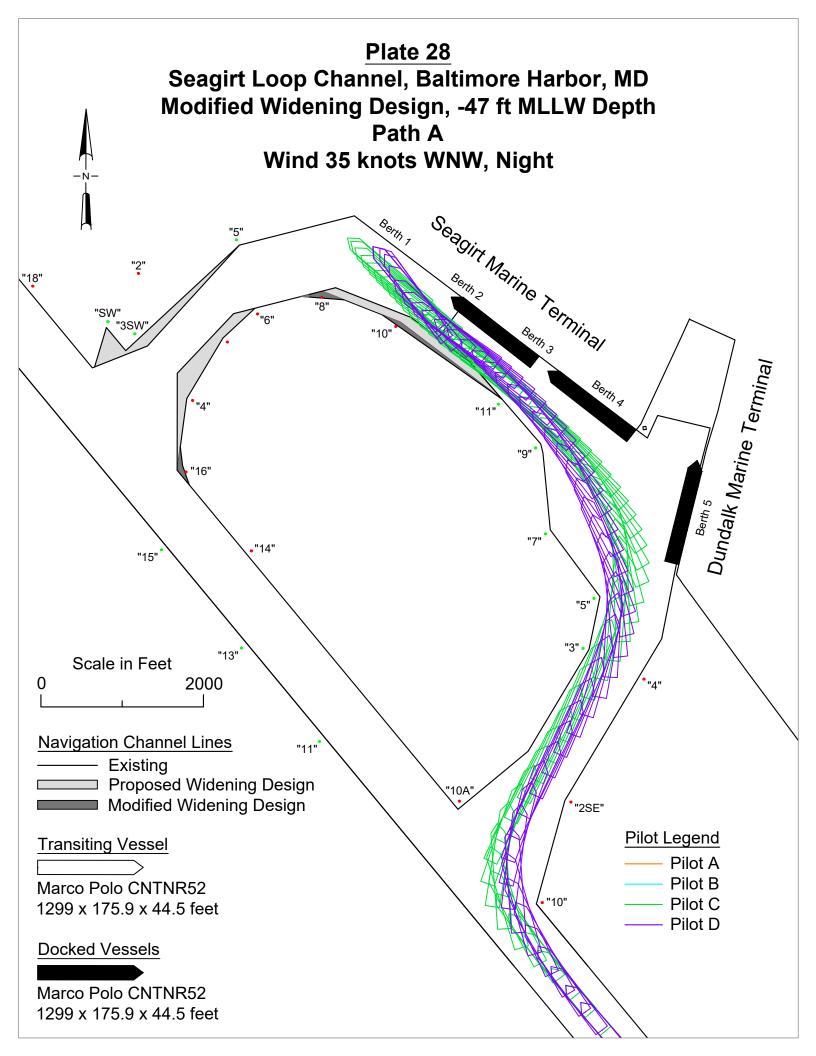
Pilot Letter	Commente	Run Ratings		
	Comments	Difficulty*	Safety**	
А	Very safe and feasible. Only acceptable safe way to bring in this ship port side to (which could occur from cause such as gangway damage on starboard side). Would be incredibly difficult and risky if done in Seagirt Marine Terminal Berth 4 turning basin.	3	2	
В	This maneuver was safe in these wind conditions with 4 boats.	3	3	



# <u>Plate 27</u>

# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Proposed	-50 ft MLLW	D	CNTNR51	WNW	30 knots	Night & Snow	No

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
С	28 April 2022	N/A	27:51
D	28 April 2022	N/A	23:09

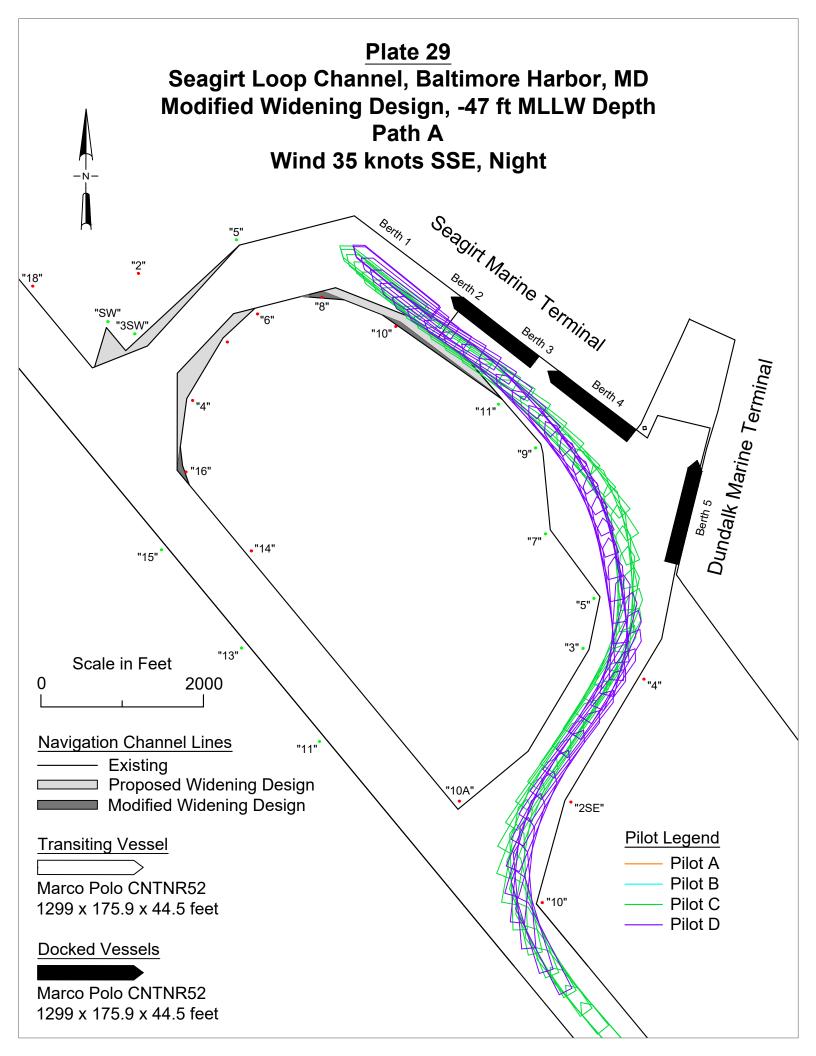
# **Individual Pilot Feedback**

Dilet Letter	Commonto	Run Ratings		
Pilot Letter	Comments	Difficulty*	Safety**	
С	Channel dimensions were good for path to SMT Berth 1.	3	3	
D	Tight on "16" to drive to green side. Needed tugs #3/4 to turn the ship against wind.	4	4	



# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-47 ft MLLW	A	CNTNR52	WNW	35 knots	Night	No

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
С	28 April 2022	N/A	35:56
D	28 April 2022	N/A	30:03

#### **Individual Pilot Feedback**

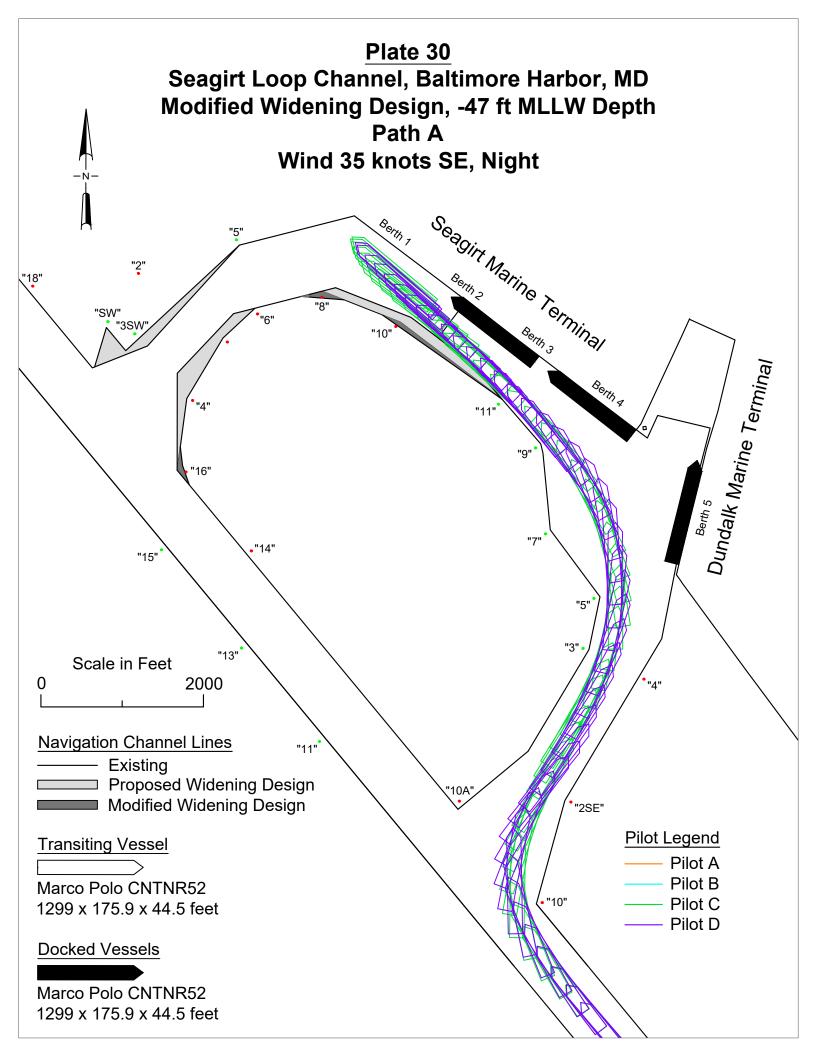
Dilet Letter	Commente	Run Ratings		
Pilot Letter	Comments	Difficulty*	Safety**	
С	Standard maneuver.	3	3	
D	Extra room essential to line up and clear berthed vessels and still allow room for assist boats.	4	4	



# <u>Plate 29</u>

# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-47 ft MLLW	Α	CNTNR52	SSE	35 knots	Night	No

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
С	28 April 2022	N/A	29:55
D	28 April 2022	N/A	27:26

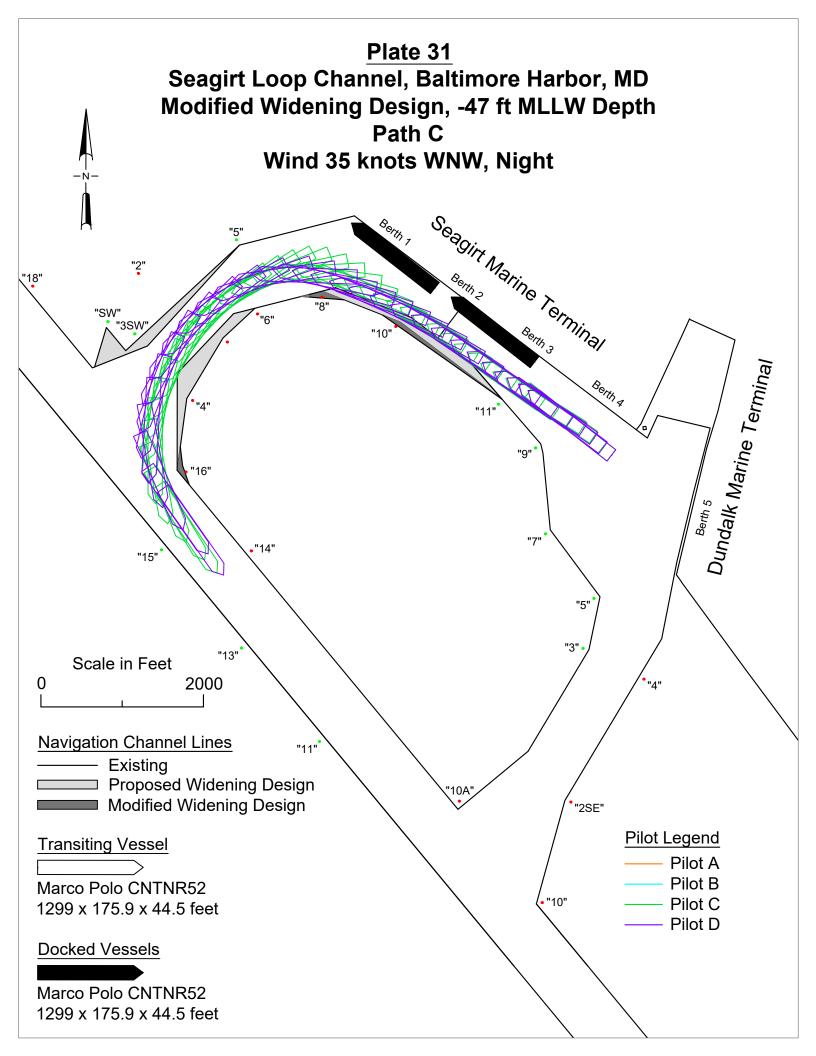
#### **Individual Pilot Feedback**

Pilot Letter	Comments	Run Ratings		
	Comments	Difficulty*	Safety**	
С	Difficult maneuver with 35 knots on starboard quarter.	5	5	
D	Wind on starboard quarter hard to overcome at 4.5 knots. Used all four tugs to fair up of Seagirt.	5	5	



# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-47 ft MLLW	Α	CNTNR52	SE	35 knots	Night	No

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
С	29 April 2022	N/A	31:58
D	29 April 2022	N/A	29:33

#### **Individual Pilot Feedback**

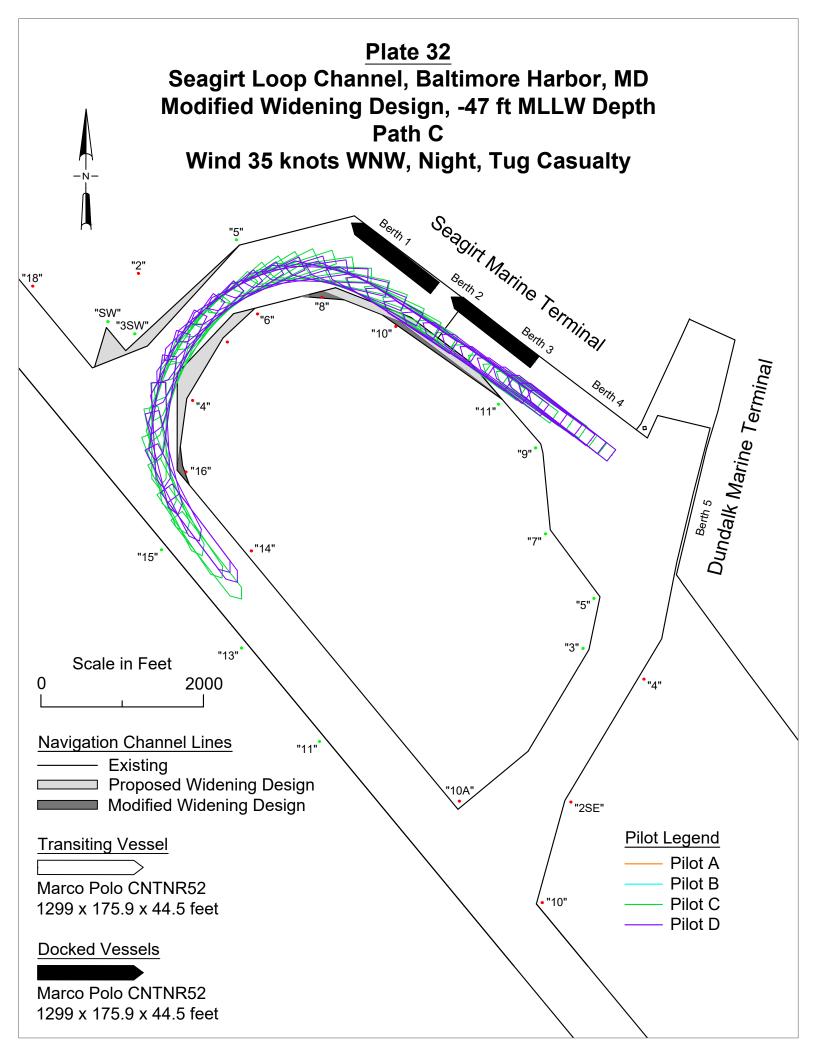
Dilet Letter	Comments	Run Ratings		
Pilot Letter	Comments	Difficulty*	Safety**	
С	Used a lot of tug force at 35 knots.	4	4	
D	Inbound went well. Used tugs #3/4 to get quarter up into wind and tug #2/1 to full bow down.	4	4	



# <u>Plate 31</u>

# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-47 ft MLLW	С	CNTNR52	WNW	35 knots	Night	No

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
С	28 April 2022	N/A	25:10
D	28 April 2022	N/A	19:45

#### **Individual Pilot Feedback**

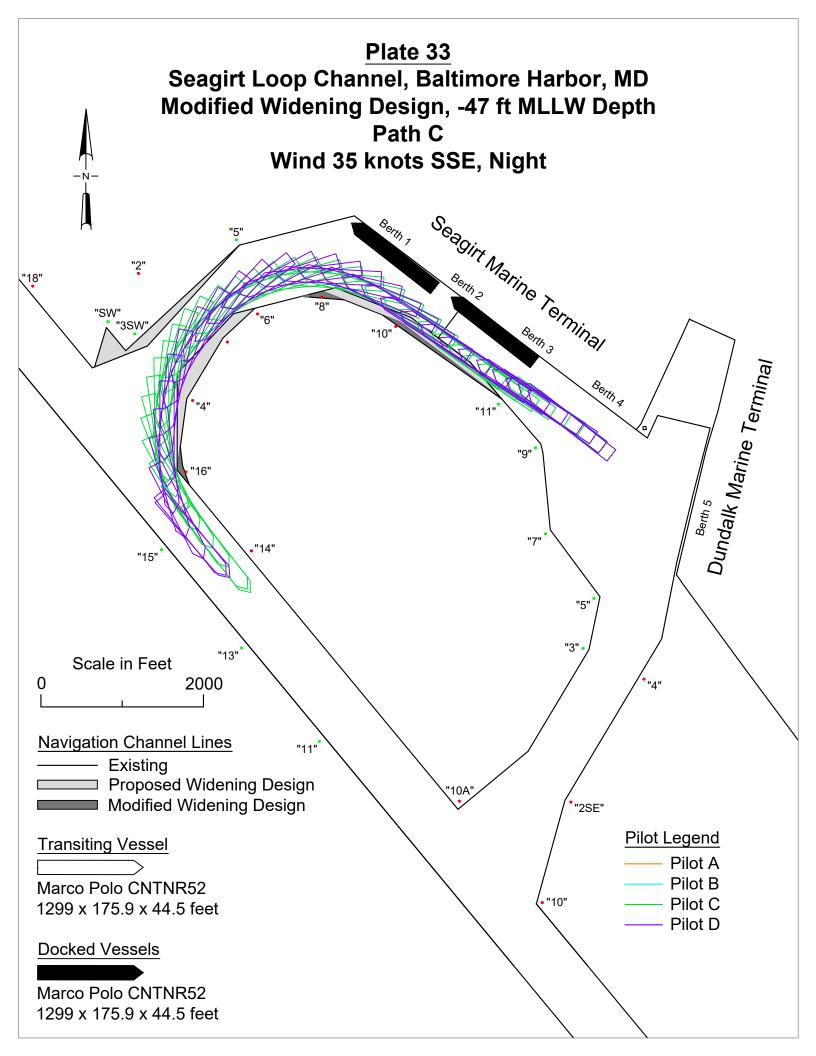
Pilot Letter	Comments	Run Ratings		
	Comments	Difficulty*	Safety**	
С	Needed to work the boats strong to make the final turn.	3.5	3.5	
D	This is the preferred configuration with the widest safety margin. Exited at 4.5 knots and it was doable.	N/A	N/A	



# <u>Plate 32</u>

# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-47 ft MLLW	С	CNTNR52	WNW	35 knots	Night	Yes

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
С	28 April 2022	Port quarter	23:18
D	28 April 2022	Port quarter	19:31

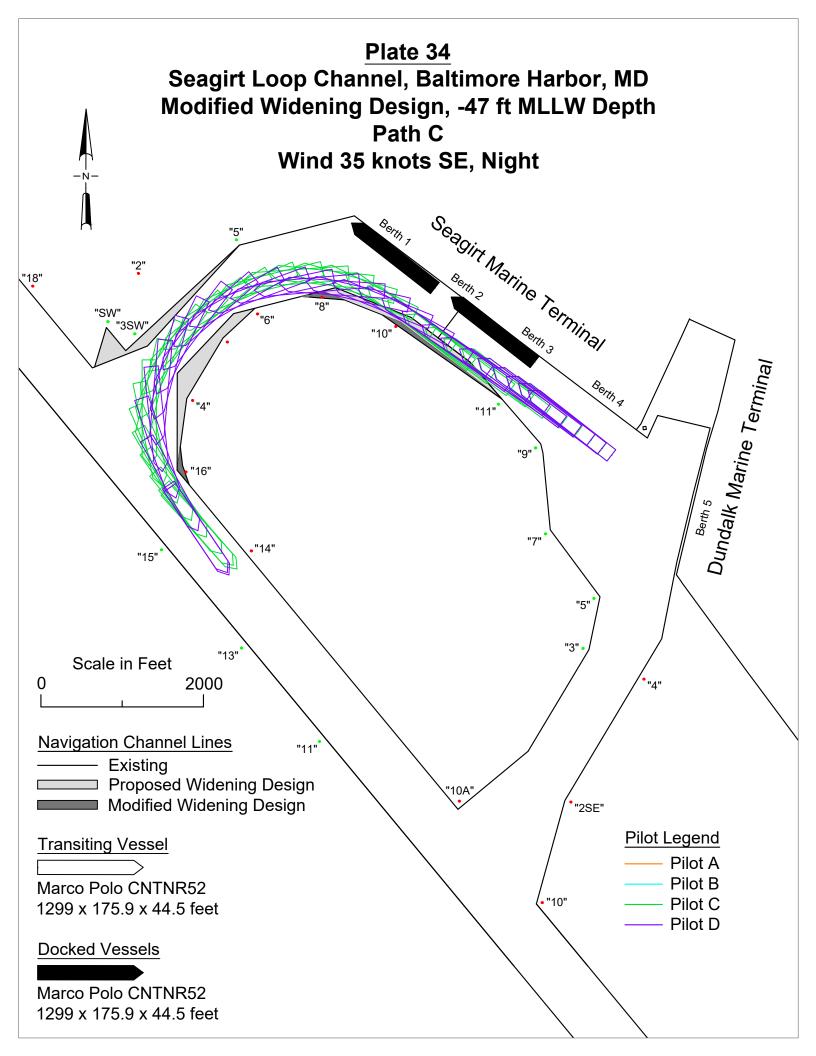
#### **Individual Pilot Feedback**

Pilot Letter	Commente	Run Ratings		
	Comments	Difficulty*	Safety**	
С	None.	3	3	
D	Continues to be the preferred channel for vessel maneuvers.	4	4	



# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-47 ft MLLW	С	CNTNR52	SSE	35 knots	Night	No

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
С	28 April 2022	N/A	23:27
D	28 April 2022	N/A	19:28

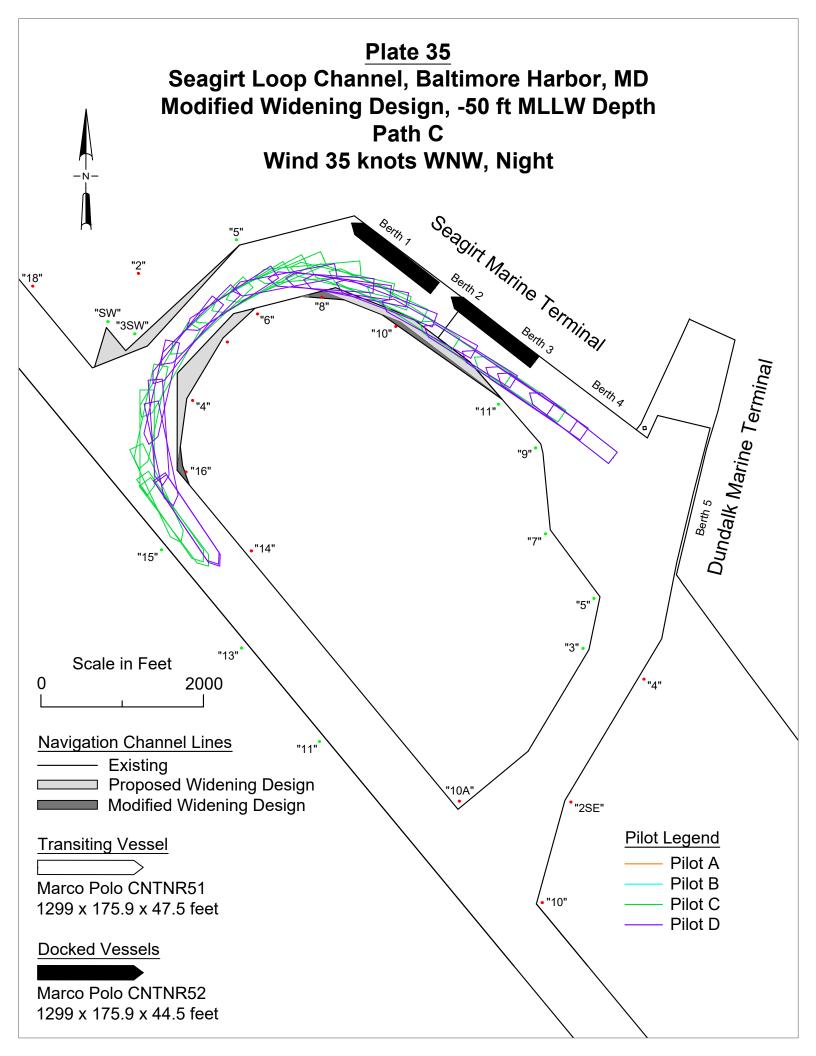
#### **Individual Pilot Feedback**

Dilet Letter	Comments	Run Ratings		
Pilot Letter	Comments	Difficulty*	Safety**	
С	Smooth operation. Safer than backing out of Berth 4 with strong winds.	3	3	
D	Tried to keep 4.0 knots through maneuver. Used tug #2 to assist turn twice. Very tight on red side throughout.	4	4	



# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-47 ft MLLW	С	CNTNR52	SE	35 knots	Night	No

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
С	28 April 2022	N/A	20:18
D	28 April 2022	N/A	17:24

#### **Individual Pilot Feedback**

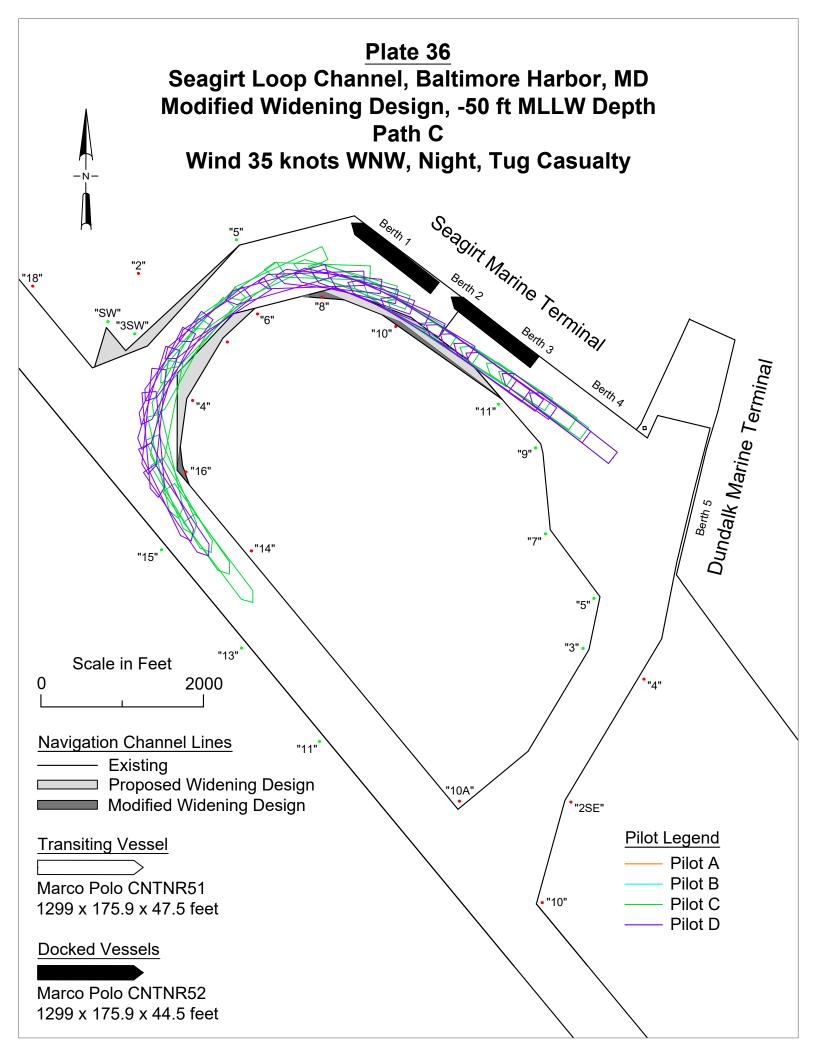
Pilot Letter	Comments	Run Ratings		
	Comments	Difficulty*	Safety**	
С	Too much speed needed all boats and extra room on green side of Elevator Channel. Good proof of concept.	3	3	
D	Preferred channel configuration - Allows for appropriate speed to overcome elements while still slow enough for external assistance.	4	4	



# <u>Plate 35</u>

# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-50 ft MLLW	О	CNTNR51	WNW	35 knots	Night	No

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
С	26 April 2022	N/A	20:12
D	26 April 2022	N/A	24:06

#### **Individual Pilot Feedback**

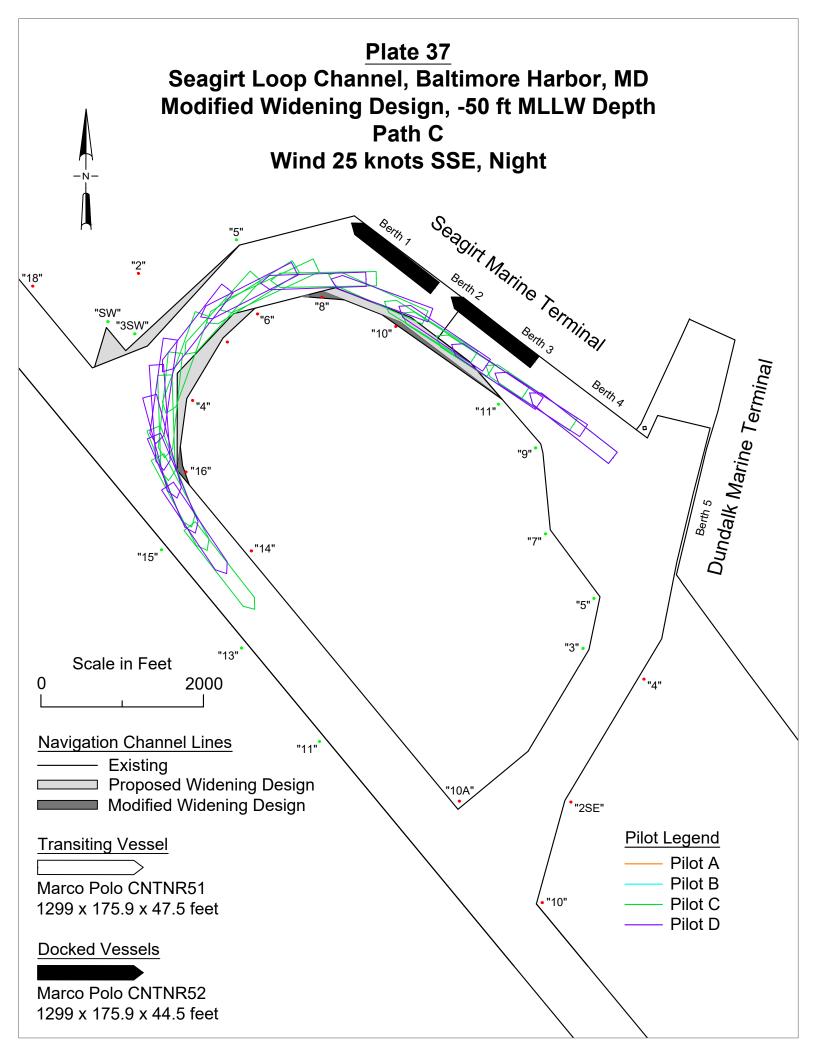
Pilot Letter	Commente	Run Ratings		
	Comments	Difficulty* Safety**		
С	New modifications look good!	3	3	
D	None.	3	3	



# <u>Plate 36</u>

# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-50 ft MLLW	С	CNTNR51	WNW	35 knots	Night	Yes

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time	
С	27 April 2022	Port quarter	28:48	
D	27 April 2022	Port quarter	22:32	

#### **Individual Pilot Feedback**

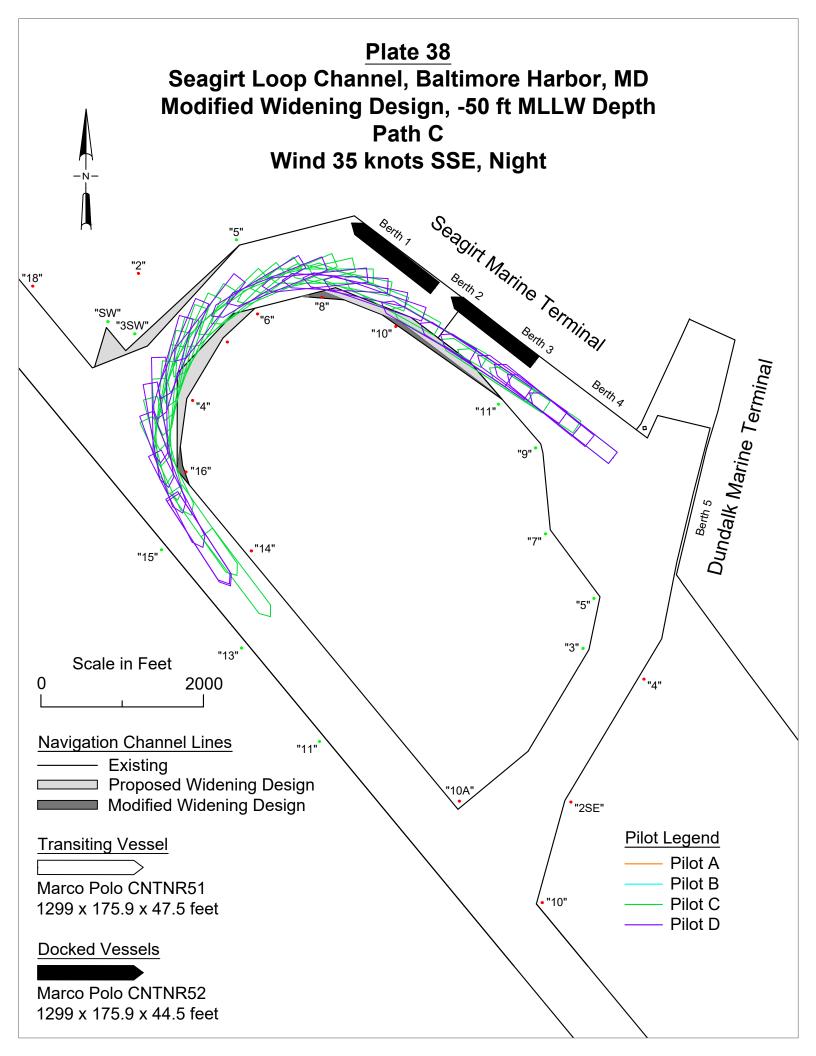
Pilot Letter	Comments	Run Ratings		
	Comments	Difficulty*	Safety**	
С	Good channel dimensions. Smooth operation.		3	
D	Channel configuration much more accommodating to handling the vessel. A safe evolution should not be overly reliant on tug assistance. Speed was targeted at 4.0 knots by the end of the maneuver.	4	4	



# <u>Plate 37</u>

# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-50 ft MLLW	С	CNTNR51	SSE	25 knots	Night	No

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
С	29 April 2022	N/A	21:37
D	29 April 2022	N/A	18:41

#### **Individual Pilot Feedback**

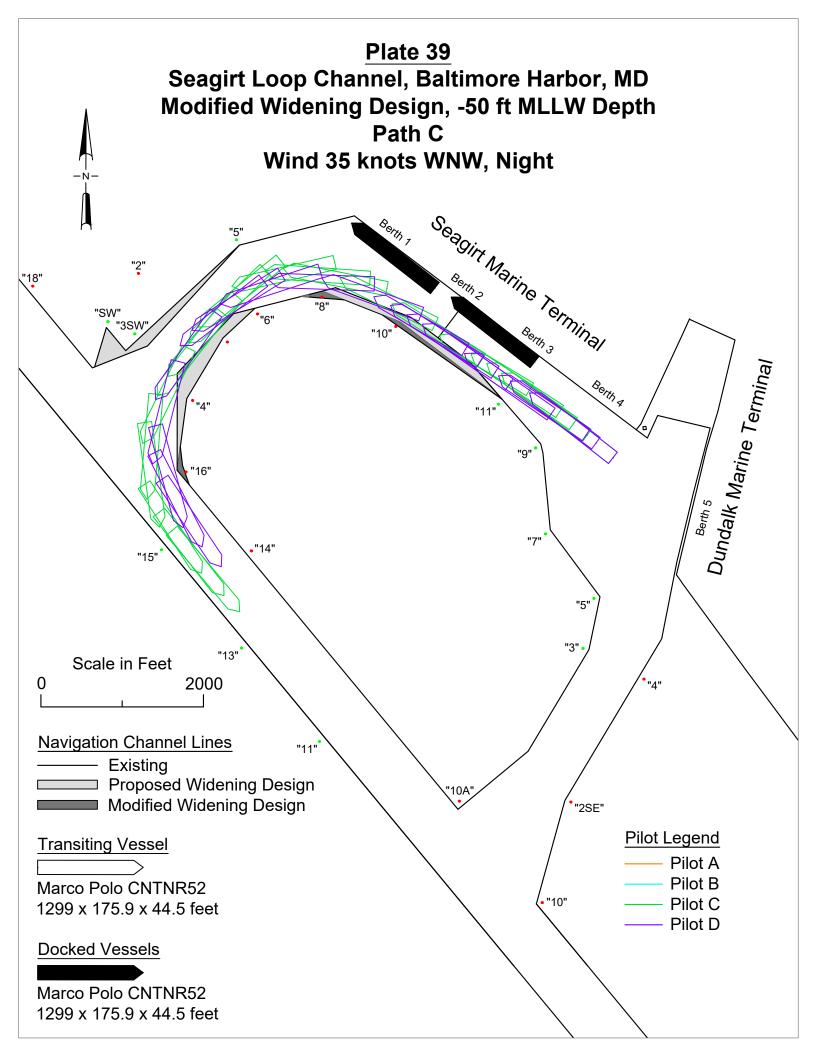
Pilot Letter	Commente	Run Ratings		
	Comments	Difficulty*	Safety**	
С	Smooth operations with new channel dimensions.	2	2	
D	Best configuration! Minimal tugs required.	4	4	



# <u>Plate 38</u>

# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-50 ft MLLW	С	CNTNR51	SSE	35 knots	Night	No

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
С	26 April 2022	N/A	25:03
D	26 April 2022	N/A	20:03

#### **Individual Pilot Feedback**

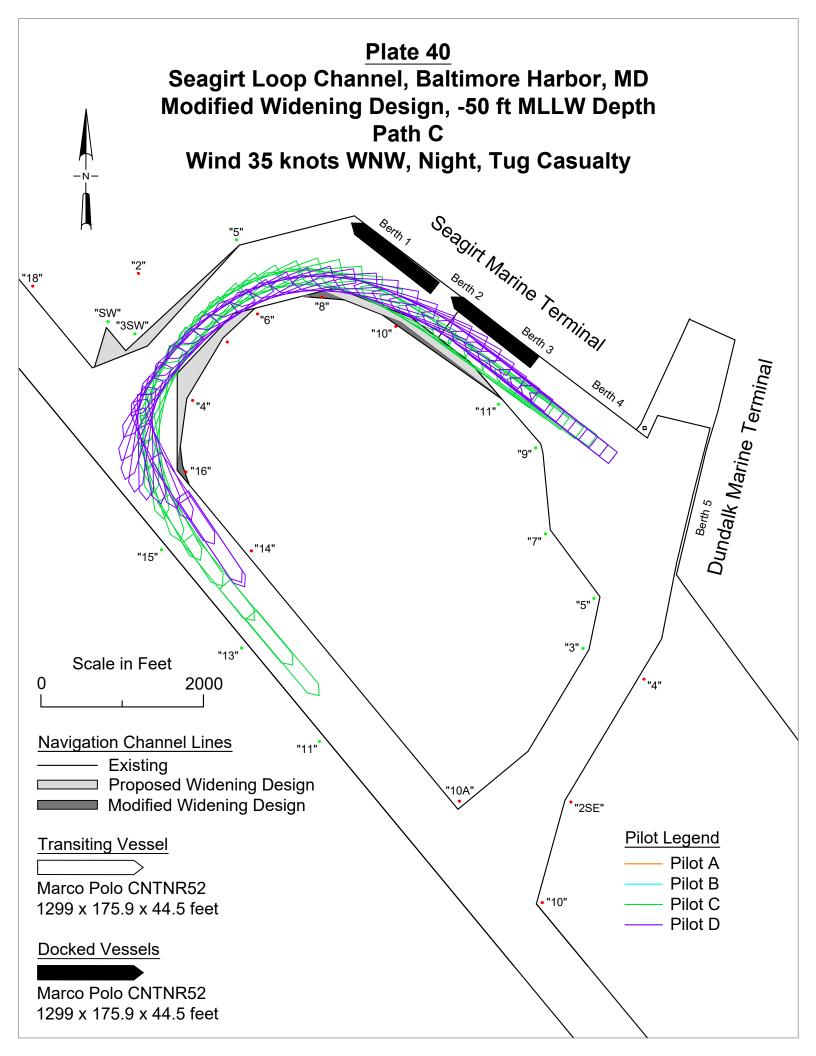
Pilot Letter	Commente	Run Ratings		
	Comments	Difficulty*	Safety**	
С	Looks good!!	3	3	
D	Channel is much improved.	4	4	



# <u>Plate 39</u>

# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-50 ft MLLW	С	CNTNR52	WNW	35 knots	Night	No

# **Individual Pilot Results**

Pilot Letter	Date Performed	Date Performed Tug Casualty Location	
С	27 April 2022	N/A	22:30
D	27 April 2022	N/A	23:18

#### **Individual Pilot Feedback**

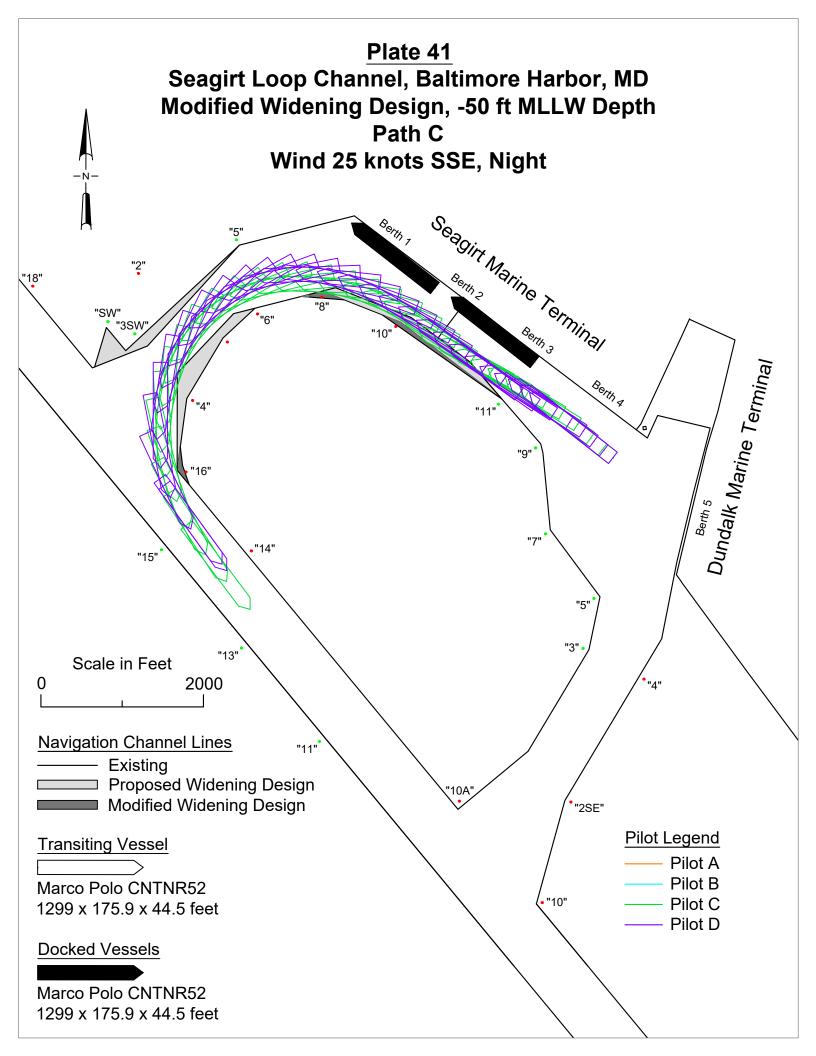
Dilat Latter	Comments	Run Ratings		
Pilot Letter	Comments	Difficulty*	Safety**	
С	Experimented with more speed. Bad idea.	3	3	
D	Used tugs at final turn. 3/4 boats full. Good room to swing over the stern.	4	4	



# <u>Plate 40</u>

# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-50 ft MLLW	С	CNTNR52	WNW	35 knots	Night	Yes

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
С	29 April 2022	Port quarter	23:05
D	29 April 2022	Port quarter	24:05

#### **Individual Pilot Feedback**

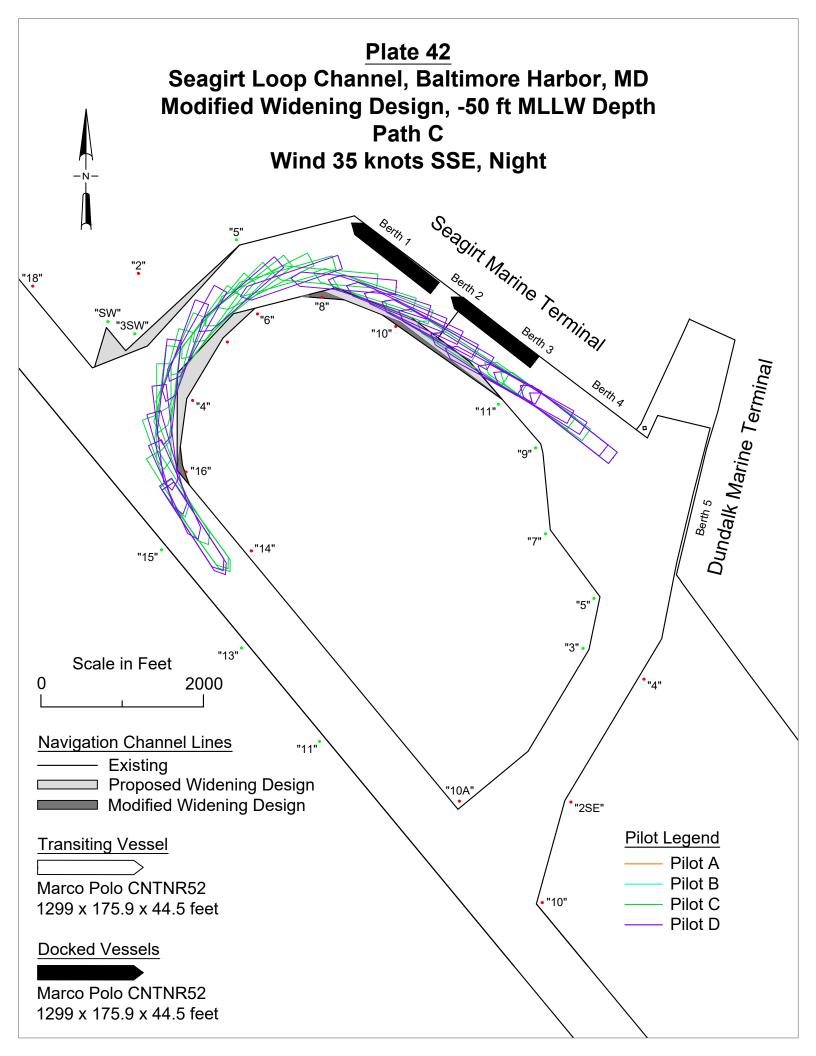
Pilot Letter	Commente	Run Ratings		
	Comments	Difficulty*	Safety**	
С	None.	3.5	3.5	
D	Kept vessel in old channel configuration (current channel configuration – present day Baltimore) on PPU. Without thruster – channel width necessary for safe, efficient transit.	5	5	



# <u>Plate 41</u>

# **Data Sheet**

# **Test Conditions**


Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-50 ft MLLW	С	CNTNR52	SSE	25 knots	Night	No

# **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
С	29 April 2022	N/A	20:02
D	29 April 2022	N/A	19:28

#### **Individual Pilot Feedback**

Pilot Letter	Commente	Run Ratings		
	Comments	Difficulty*	Safety**	
С	Minimal tug use with 25 knots of wind.	2	2	
D	Channel width most safe for departures.	3	3	

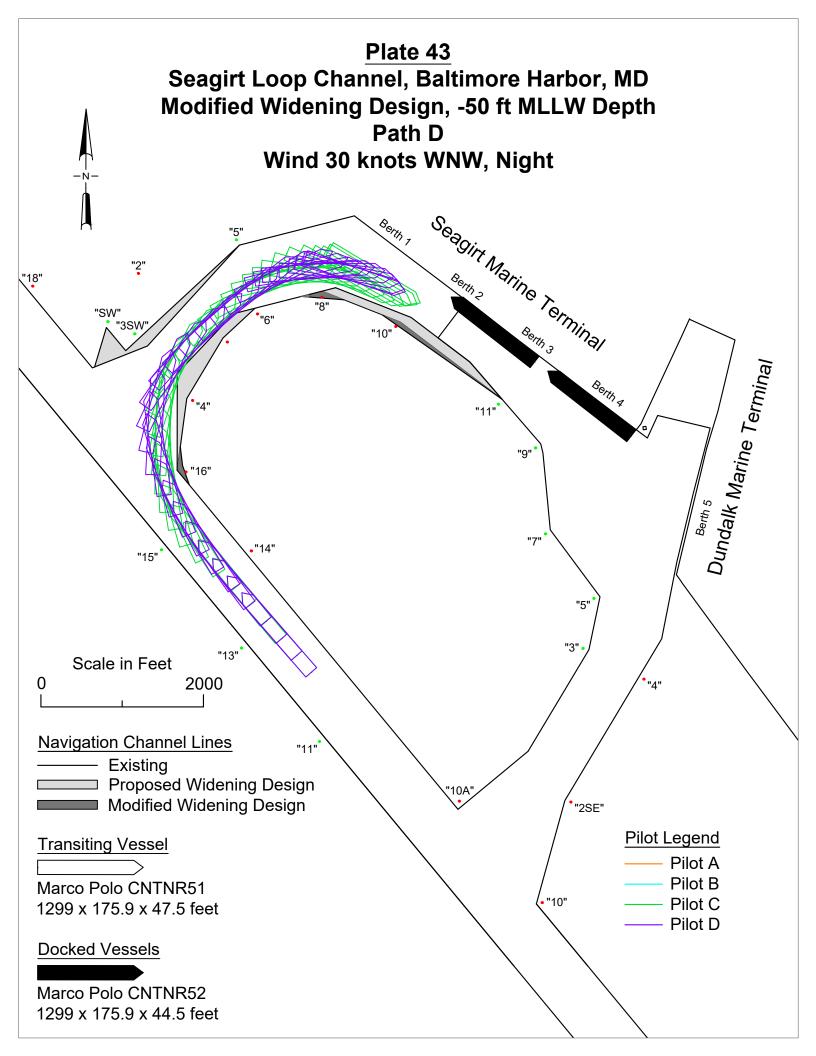


#### <u>Plate 42</u>

#### **Data Sheet**

#### **Test Conditions**

Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-50 ft MLLW	С	CNTNR52	SSE	35 knots	Night	No


#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
С	27 April 2022	N/A	22:04
D	27 April 2022	N/A	21:24

#### **Individual Pilot Feedback**

Dilot Lottor	Commente	Run Ratings		
Pilot Letter	Comments	Difficulty*	Safety**	
С	Good dimension. Smooth run.	3	3	
D	New configuration much better for Fort McHenry Ingress. Rounded corner makes a smoother maneuver.	4	4	

*Difficulty Rating: 1 = Easy | 5 = Difficult **Safety Rating: 1 = Safe | 5 = Dangerous



#### <u>Plate 43</u>

#### **Data Sheet**

#### **Test Conditions**

Widening Design	Depth Design	Path	Vessel Model	Wind Direction	Wind Speed	Visibility	Tug Casualty?
Modified	-50 ft MLLW	D	CNTNR51	WNW	30 knots	Night	No

#### **Individual Pilot Results**

Pilot Letter	Date Performed	Tug Casualty Location	Total Elapsed Time
С	29 April 2022	N/A	21:50
D	29 April 2022	N/A	19:37

#### **Individual Pilot Feedback**

Pilot Letter	Commente	Run Ratings		
	Comments	Difficulty*	Safety**	
С	Great week of simulations!!	2.5	2.5	
D	Little hard to hold up on green side. Went well.	4	4	

*Difficulty Rating: 1 = Easy | 5 = Difficult **Safety Rating: 1 = Safe | 5 = Dangerous

### **Appendix D: Final Pilot Surveys**



#### **Seagirt Loop Channel Navigation Impact Assessment**

#### **Final Pilot Survey**

A ship simulation study was performed to evaluate vessel navigation and safety of the proposed navigation channel modifications to the Seagirt Loop Channel in the Baltimore Harbor in Maryland. The purpose of this study is to evaluate channel widening designs and two depth designs (-47 ft and -50 ft MLLW Plans) in the West Seagirt Branch Channel, also known as the "Elevator Channel." Four experienced pilots from the Association of Maryland Pilots participated in the study. A series of ship simulation exercises were conducted on 18-22 April 2022 and 25-29 April 2022 at the ERDC Ship/Tow Simulator facility at the U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory (CHL) in Vicksburg, Mississippi.

Figure 1 shows the proposed channel deepening and widening designs for the West Seagirt Branch Channel (Elevator Channel).



Figure 1: Seagirt Loop Channel Designs Tested in the ERDC Ship/Tow Simulator

Please answer the following questions based on your experience.

Name	Affiliation	Role	Pilot Letter
Capt. John Kinlein	AMP	Pilot	А
Capt. Shimon Horowitz	AMP	Pilot	В
Capt. Mike Flanagan	AMP	Pilot	С
Capt. Jim Luke	AMP	Pilot	D

### 1. Please provide insight on your experience as a pilot in the industry, specifically navigating vessels in the Baltimore Harbor.

#### Pilot A - Capt. John Kinlein

I have been piloting on Baltimore Harbor and the Chesapeake Bay for 10 years, which started as a full time training program for the first two. Since starting here in 2012, I have conducted well over 1000 ship movements on ships as large as Ultra Large Container Vessels. I currently hold a Maryland State License as a Pilot of Unlimited Draft, as well a Federal (USCG issued) license as a Master of Self Propelled Vessels of Any Gross Tons upon Oceans with a First Class Pilot Endorsement. Prior to becoming a pilot, I operated ships in both the Merchant Marine and the military, formerly serving in both the US Coast Guard and US Army.

#### **<u>Pilot B</u>** – Capt. Shimon Horowitz

I have been with the Association of Maryland Pilots since 2012, initially training as both a docking pilot and a bay pilot. Since completing training I have continually worked on both the bay pilot and docking pilot rotations. Since starting in the Port of Baltimore, I have seen the size of containerships quickly grow to exceed the capacities of the seagirt loop, specifically utilizing the "elevator" channel.

#### <u>Pilot C</u> – Capt. Mike Flanagan

I have been a senior pilot with the Association of MD Pilots for 13 years. The five years prior we spent as an apprentice and limited license pilot. While the learning never ends, I have been piloting and handling vessels with tugs in Baltimore Harbor for 18 years. In this time frame, it has been astounding to see how fast vessels have grown in size. The infrastructure to handle these larger vessels has lagged behind.

#### Pilot D – Capt. Jim Luke

Have held 1st Class Pilots license since 1996. St. Lawrence Seaway Pilot 2004-2010. 2005-2010 US Navy Docking Pilot ports of Ash Shuaiba and Mohamed Al-Ahmed Navy Base, Kuwait. Maryland Pilots 2010 to current. Currently Hybrid pilot responsible for berthing and unberthing in Baltimore Harbor.

2. Please comment on your overall experience with using the ERDC Ship/Tow Simulator for this project.

#### Pilot A - Capt. John Kinlein

This was a great experience. The professionalism and meticulousness of the ERDC personnel was second to none. Once properly tuned, the simulator produced realistic feeling results.

#### Pilot B - Capt. Shimon Horowitz

This experience was very productive, and the volume of exercises conducted allowed us to fully evaluate most situations which we could reasonably encounter day to day in expected conditions. The flexibility provided allowed us to change factors and scenarios on the fly, which was very important to ensure the feedback of the pilots was properly integrated into the scenarios conducted.

#### Pilot C - Capt. Mike Flanagan

The experience was great! The ERDC team and pilots worked hard to collect data and show the need for wider/deeper channels to accommodate these larger container vessels calling the Port of Baltimore.

#### <u>**Pilot D**</u> - Capt. Jim Luke

The simulator was great! It allowed to comfortably simulate adverse conditions in the proposed dredging project.

3. Did the wind conditions (speed and direction), the visual scene (container ships, tug boats, water, buoys, structures, terminals, weather, visibility, etc.), and tug boats (forces, response time, etc.) provide an accurate representation of the Seagirt Loop Channel and its surroundings?

Pilot A - Capt. John Kinlein

Yes, they absolutely did.

#### **Pilot B - Capt. Shimon Horowitz**

The factors listed above did provide a very accurate representation as far as simulators are concerned, and certainly were better than I personally have experienced in any other simulation environment. Particularly in difficult wind conditions, the ships did behave in a very unmanageable and realistic way. Some refinement could be provided with visuals as far as lights/navaids and terminals are considered.

Pilot C - Capt. Mike Flanagan

Yes.

Pilot D - Capt. Jim Luke

Yes.

4. Two configurations of the post-Panamax CMA CGM Marco Polo container ship were used in the simulation testing. The dimensions of these vessels are as follows:

Overall Length: 1,299 ft Beam: 176 ft

CNTNR51 – Static Draft 47.5 ft CNTNR52 – Static Draft 44.5 ft

Please comment on the handling and behavior of the vessel models. Were these vessel models adequate as a means of testing various scenarios through the different designs of the proposed modifications to the Seagirt Loop Channel? Did the vessel models handling respond as you expected?

#### a. Heavier loaded vessel (47.5 ft draft)

Pilot A - Capt. John Kinlein

Yes. The model behaved in a realistic manner.

#### **Pilot B** - Capt. Shimon Horowitz

In general, this vessel did behave and respond as would be expected of a very large and heavy containership. If anything, the ship handled too well, and was a little too responsive based on the displacement and proximity to the bottom.

#### **<u>Pilot C</u>** - Capt. Mike Flanagan

These models handled as expected

#### Pilot D - Capt. Jim Luke

Much more sluggish and needed more external assistance, consistent with real word scenarios.

#### b. Lighter loaded vessel (44.5 ft draft)

#### Pilot A - Capt. John Kinlein

Yes. This model behaved in a realistic manner, as well.

#### **Pilot B - Capt. Shimon Horowitz**

This vessel was realistic to handle, perhaps slightly more so than the loaded vessel. The lighter shipped responded realistically to the wind forces, being set more readily as one would expect.

#### Pilot C - Capt. Mike Flanagan

These models handled as expected.

#### **Pilot D -** Capt. Jim Luke

Both models handled similar to what I would expect from this class of ship and similar classes.

## 5. Were the scenarios completed in the ship simulation exercises representative of realistic environmental conditions and piloting operations?

<u>Pilot A</u> – Capt. John Kinlein

Yes. This was because the ERDC staff took the time to work with us to make it happen. These scenarios in their entirety did represent realistic conditions, and the scenarios with greater wind were representative of what we regularly experience in the Port of Baltimore for many months of the year. We were unable to manipulate the height of the tide, and this would be an environmental which we would be looking at and considering closely during many of these maneuvers. This is something that should be addressed in the future.

#### **Pilot B** – Capt. Shimon Horowitz

As a note for all exercises and scenarios conducted, four (4) tugs would be necessary at all times, but particularly for poor conditions and in the event of a tug casualty during maneuvers.

**Pilot C** – Capt. Mike Flanagan

Yes, as realistic as possible.

Pilot D - Capt. Jim Luke

Yes, all scenarios represented are experienced frequently in Baltimore Harbor, namely at Seagirt Terminal.

## 6. Please comment on your experience navigating the lighter loaded vessel (44.5 draft) in the -47 ft deep Elevator Channel with the -47 feet MLLW Plan channel widening design (yellow channel lines in Figure 1).

#### Pilot A - Capt. John Kinlein

While the widening was helpful, the reduced underkeel clearance resulted in poorer handling as well as elimination of the ability to utilize anchors to stop the ship in an emergency. This is due to the lack of space between the hull and the channel floor. This significantly decreases the safety margin of the operation.

#### **Pilot B - Capt. Shimon Horowitz**

The lighter vessel in this condition was safe to maneuver until conditions deteriorated or casualties with tugs occurred. Following either of these circumstances, the reduced UKC and lack of additional small wideners made the maneuvers dangerous.

#### Pilot C - Capt. Mike Flanagan

This widening is required to handle these larger vessels. With such a swept path, you need to have the room to safely clear a vessel docked at Seagirt 1.

#### Pilot D - Capt. Jim Luke

Vessel was handy given the reduced weight but did not handle as well as in the 50' channel. The ship needed considerable external assistance to make the initial turn off Seagirt 1 and the final turn in the McHenry channel as opposed to the 50' channel.

7. Please comment on your experience navigating the lighter loaded vessel (44.5 draft) in the 50 ft deep Elevator Channel with the -50 ft channel widening design (yellow channel lines in Figure 1).

Pilot A - Capt. John Kinlein

The ship handled better than in the shallower design, plus the safety margin was increased through the availability of emergency anchor utilization.

Pilot B - Capt. Shimon Horowitz

Maneuvers were generally safe in reasonable conditions with the deeper channel, and initially proposed wideners. In poor conditions, the additional small wideners are needed to keep safe distance from other vessels and shoal water.

**Pilot C** - Capt. Mike Flanagan

Same as above. You need to extra room to safely maneuver these longer, wider vessels.

**Pilot D** - Capt. Jim Luke

See number 6.

8. Please comment on your experience navigating the heavier loaded vessel (47.5 draft) in the 50 ft deep Elevator Channel with the -50 ft channel widening design (yellow channel lines in Figure 1).

**Pilot A -** Capt. John Kinlein

This is vastly safer than the current method of backing and spinning to utilize the eastern channel. This -50 ft design allows for the ship to be brought out of the west loop ("elevator") channel, which allows the operator to move away from danger using a combination of the ships control mechanisms (engine, rudder, thruster) and the tugs, as opposed to the current method that is fully dependent on the tugs to spin and hold the ship away from leeward (downwind) danger (moored ships, concrete wharf). Also the -50 ft plan allows for the maneuver to be conducted in approximately half the time, also significantly lowering risk exposure. Pilot B - Capt. Shimon Horowitz

The heavier vessel handled as would be expected in the 50 ft channel, with tug and thruster/engine resources used heavily as conditions deteriorated. Due to the sluggish nature of the ship, and the amount of time it took to initiate and complete turns, the small additional wideners were extremely helpful to maintain safety margins.

#### Pilot C - Capt. Mike Flanagan

Same as above. A vessel will handle better with a greater UKC.

#### Pilot D - Capt. Jim Luke

Vessel needed more external assistance to complete the maneuver; limited UKC degraded performance

9. Does the -50 ft/-47 ft Plan channel wideners design in the Elevator Channel provide the additional space necessary for the Marco Polo container ship to safely transit the channel? Pilot A - Capt. John Kinlein

The additional wideners suggested by us are necessary.

Pilot B - Capt. Shimon Horowitz

With vessels at Berth 1 Seagirt, and with poor conditions, both factors which are very likely to occur, the additional wideners recommended by the Maryland Pilots in conjunction with the -50/-47 ft Plan provided the necessary space to complete these maneuvers safely. Pilot

#### C - Capt. Mike Flanagan

The additional widening is required for the Marco Polo class.

#### Pilot D - Capt. Jim Luke

Not without the additional proposed widening.

- 10. In the proposed -47 ft Plan channel depth design, the 47.5 ft draft Marco Polo vessel must exit the Seagirt Loop Channel through the turning basin. There are no proposed navigation channel modifications in the turning basin or the existing access channels near Dundalk Marine Terminal. To create a realistic scenario, two Marco Polo vessel models were docked in the simulations at the Seagirt Marine Terminal Berth 3/4 and Dundalk Marine Terminal Berth 5/6. Please comment on your experience completing the maneuver in the turning basin using each vessel model.
  - a. Lighter loaded vessel (44.5 ft draft)

Pilot A - Capt. John Kinlein

This maneuver imposes unacceptable levels of risk in normal wind conditions. It is completely dependent on the use of all four tugs, with no room for failure of any component. If anything fails, there is substantial risk of allision with a moored vessel or concrete wharf.

#### Pilot B - Capt. Shimon Horowitz

In general, this is not a safe maneuver, especially with deteriorating environmental conditions or tug/vessel casualty. The risks for serious incident and the lack of space to accommodate and recover from a casualty make this scenario quite risky.

#### Pilot C - Capt. Mike Flanagan

This is a very tight maneuver, which comes with many risks. the safest way to handle this departure is via a widened/deeper elevator channel

#### Pilot D - Capt. Jim Luke

Both turning basin scenarios closely replicated real world conditions, with the deeper vessel being harder to maneuver. This evolution is far less preferable than driving the vessel out the proposed elevator channel. In the Basin maneuver as there is less control and the vessel is significantly more exposed to the elements, which have greater effect on the ship due to the static nature of evolution.

#### b. Heavier loaded vessel (47.5 ft draft)

#### Pilot A - Capt. John Kinlein

Just as above, this is unacceptably risky for the same reasons.

#### <u>Pilot B</u> - Capt. Shimon Horowitz

Again, this proved to be a very risky maneuver, particularly with poor conditions or in the case of casualty. The risks and consequences of an accident would be very difficult to justify as opposed to proceeding outbound in a widened and deepened elevator channel.

<u>Pilot C</u> - Capt. Mike Flanagan Same.

<u>Pilot D</u> - Capt. Jim Luke See above

### 11. Please comment on your experience navigating each vessel model in the approach to the Seagirt Marine Terminal in the existing access channels.

#### a. Lighter loaded vessel (44.5 ft draft)

<u>Pilot A</u> - Capt. John Kinlein It was a safe evolution.

#### Pilot B - Capt. Shimon Horowitz

The approach maneuver was safe during the scenarios we conducted with varying environmental conditions.

#### Pilot C - Capt. Mike Flanagan

This access channel is already designed for this class of vessel.

<u>Pilot D</u> - Capt. Jim Luke

See below

#### b. Heavier loaded vessel (47.5 ft draft)

Pilot A - Capt. John Kinlein

It was a safe evolution.

#### **Pilot B – Capt. Shimon Horowitz**

With four tugs, this approach was also safe in the scenarios we conducted.

Pilot C - Capt. Mike Flanagan

Same

#### Pilot D - Capt. Jim Luke

Both vessels handled as expected when entering the West Channel from the McHenry Channel, the heavier vessel being more sluggish. There was a tendency for each vessel to seek the windward side of the West Channel due to quartering wind. Thus with the heavier vessel in the sw'ly wind it took quite a bit to keep the vessel fair in the channel and maintain an appropriate approach to the Seagirt Terminal.

12. On rare occasions, pilots may need to enter the Elevator Channel from the opposite direction, beginning in the Fort McHenry Channel and docking at Berth 1 at the Seagirt Marine Terminal, to access equipment on the port side of the ship. Please comment on your experience navigating the vessels in the channel in this approach.

#### Pilot A - Capt. John Kinlein

This was acceptably safe.

#### Pilot B - Capt. Shimon Horowitz

With the Maryland Pilot proposed modifications and the planned wideners, this maneuver was safely conducted using four tugs. There was enough space to accommodate for stronger winds from most directions and still effect the transit.

#### Pilot C - Capt. Mike Flanagan

This would not be an issue with a widened elevator channel.

#### Pilot D - Capt. Jim Luke

This will be impossible on ships this size without channel modification. In the scenarios, however, there was adequate room to turn into the elevator channel and approach the terminal safely.

13. Did you encounter any challenges with navigating in the Elevator Channel, and what did you do to adjust? How did the vessel size, navigation channel dimensions, and wind conditions affect the transit?

#### **Pilot A** – Capt. John Kinlein

With our proposed additional wideners, this is a much safer and easier operation than currently exists.

#### **Pilot B –** Capt. Shimon Horowitz

The greatest challenge occurred if there was a delay in initiating turns due proximity of the stern to other vessels, infrastructure or shoal water. Also, delays were caused by tug casualty. In this scenario it was very difficult to regain the necessary positioning to complete the maneuvers safely. The deeper loop channel, and the slighter larger proposed wideners allowed a margin for recovery in the event of a delay in initiating critical stages of each maneuver.

#### <u>Pilot C</u> – Capt. Mike Flanagan

Strong winds combined with the size of vessel is always a challenge.

#### Pilot D - Capt. Jim Luke

The two main challenges in navigating the elevator channel are

- 1 Maintaining safe distance on moored vessel outbound (starboard quarter) in the initial turn around the #8 buoy. This is done by maintaining sufficient headway and reaching into the turn. The proposed modifications to the dredging plan help maintain an appropriate safety margin.
- 2 Completing he final turn into the McHenry Channel. External assistance will be needed complete this turn in almost any scenario involving ships of this size. Even under the modified plan the stern will swing close on the green side (#3SW) and the vessel will be close to the red side (corner #16) to facilitate the final turn, however the modified plan contains the best safety margin.
- 14. A modified channel widening design was tested during the second week based on recommendations provided by the two pilots who performed testing the first week. These modifications included bend easings at Buoy 8 in the Elevator Channel and at Buoy 16 where the Elevator Channel meets the Fort McHenry Channel. The widening design is shown in pink in Figure 1.

Please provide comments on this channel design and how the additional widening helped in the transits in both design depths.

#### a. 47 ft channel depth

<u>Pilot A</u> – Capt. John Kinlein I was a first-week pilot.

#### Pilot B - Capt. Shimon Horowitz

This widening allows for both a safety margin in the maneuver, and also allows the pilot to recover safely in the event of a casualty or very poor environmentals.

<u>Pilot C</u> – Capt. Mike Flanagan

This size of vessel needs the extra room to safely maneuver.

<u>Pilot D</u> – Capt. Jim Luke See 13

#### b. 50 ft channel depth

<u>Pilot A</u> – Capt. John Kinlein See above.

#### **Pilot B** – Capt. Shimon Horowitz

The addition of the proposed changes here really made a difference, particularly moving these ships in conditions which were near the upper threshold of environmentals. They provide a margin which in many cases reduced the risk to an acceptable level that would allow the scenario to be conducted in actual practice.

<u>Pilot C</u> – Capt. Mike Flanagan Same

<u>Pilot D</u> – Capt. Jim Luke See 13

15. The prevailing wind conditions tested in this study consisted of WNW (300°) and SSE (170°) winds at 25 knots and 35 knots. How did your approach, maneuvers, and tug boat work change with the various wind conditions tested?

#### Pilot A – Capt. John Kinlein

As would be expected, the tug make up and utilization changes to account for the different wind directions. Also, the ship is generally maneuvered to the windward side of a channel.

#### <u>Pilot B</u> – Capt. Shimon Horowitz

We found that tug usage increased drastically as wind conditions worsened. Without four tugs, a casualty was not manageable in wind from both directions simulated. Additionally in wind, without four tugs, speeds of the vessel had to be increased to an unsafe level to deal with the set of the ship. Four tugs allowed ship speed and position in the channel to be maintained safely. In the case of all wideners in place, there was enough room to position the ship in the wind correctly so as to complete the different maneuvers with acceptable margins of safety.

#### **Pilot C** – Capt. Mike Flanagan

A forth tug was needed with 35 kts. of wind.

#### **Pilot D** – Capt. Jim Luke

Approach and tug usage varied due to the wind. These vessels must be held up in the wind to provide adequate leeway for the maneuver.

16. The proposed channel depth designs in the Elevator Channel assume an underkeel clearance (UKC) of 2.5 feet. Did the Marco Polo container ship provide safe UKC throughout the transits?

<u>Pilot A</u> – Capt. John Kinlein Yes, it did.

#### Pilot B - Capt. Shimon Horowitz

The UKC in transits was safe in the scenarios conducted. The additional UKC provided by the 50 foot channel provided a very noticeable improvement in safety and vessel handling in every circumstance it was utilized.

<u>Pilot C</u> – Capt. Mike Flanagan My opinion, yes.

<u>Pilot D</u> – Capt. Jim Luke Yes

- 17. Please comment on your experience with using 65-ton tug boats in the Seagirt Loop Channel.
  - a. How did your use of the tug boats (number of tug boats used, positions along the ship, forces, period of time used, and so on) change between transits in the Elevator Channel, the turning basin, and the existing access channels near the Dundalk Marine Terminal?

#### <u>Pilot A</u> – Capt. John Kinlein

The turning basin requires excessive tug utilization and leaves no room for equipment failure or casualty. In that maneuver, all four tugs are continually used at high power.

In the tested wind conditions, four boats are necessary for all maneuvers. The make up is centerline fwd and aft, and shoulder and quarter boats. When utilizing the Elevator Channel, the tugs required much less utilization and gentler power settings, also one tug was left as a emergency reserve.

#### **Pilot B – Capt. Shimon Horowitz**

In general, tugs were made up centerlead forward and aft, and on the port bow and port quarter, all with lines. In the event of unexpected wind conditions, or tug

casualty, tugs were often moved and utilized to push with no line on the leeward side of the ship, or in the place of tug which experienced a casualty.

Tug usage was as expected in the approach scenarios using the existing channels. The equipment was utilized in a safe manner without causing undue stressed due to excessive continual use. Tug casualty could be dealt with.

Tug usage was also acceptable outbound in the deepened and widened elevator channel, as long as four boats were used.

Turning these ships in the existing basin and proceeding outbound in the existing channel in poor conditions is where tug usage became unreasonable and excessive as applied in the real world operational environment. The amount of power and duration of application would be unreasonable to expect, and could likely result in a tug casualty or some other mishap with the equipment.

#### <u>Pilot C</u> – Capt. Mike Flanagan

The tug horsepower and extra room in the channels is needed to handle these vessels especially with strong winds.

#### <u>Pilot D</u> – Capt. Jim Luke

Three boats seemed sufficient, however in real life these ships will most likely require 4 boats or more for inclimate weather.

## b. How did your use of the tug boats change for transits with the additional widening design (pink channel lines in Figure 1)?

<u>Pilot A</u> – Capt. John Kinlein N/A

#### Pilot B - Capt. Shimon Horowitz

Particularly with these proposed additions, the tugs could be more effectively utilized throughout the maneuver as they were not placed dangerously close to buoys and shoal water as the ship made each stage of the turn. Without the additional widening, the tugs were put unreasonably close to the buoys/navaids.

#### <u>Pilot C</u> – Capt. Mike Flanagan

The widening is a must for this class of vessel.

#### Pilot D – Capt. Jim Luke

The maneuver became more organic as there was more room for more traditional shiphandling.

c. How did you adjust the vessel maneuver and use of the tug boats in the simulation exercises where a tug boat unexpectedly stopped working? Did the tug causalities capture realistic scenarios that can occur in real life?

#### Pilot A – Capt. John Kinlein

The Elevator Channel allows for safety in the event of tug casualty. The turning basin does not. These casualties are absolutely realistic scenarios.

#### Pilot B - Capt. Shimon Horowitz

In the event of a casualty, often the remaining tugs were repositioned as necessary to ensure safe completion of the maneuver. The vessel often had to be slowed to ensure the remaining tugs were able to work effectively. The tug failures did simulate realistic scenarios that could occur in day to day operations in real life.

#### <u>Pilot C</u> – Capt. Mike Flanagan

There was no room for error with a tug causalities-little safety factor.

#### Pilot D - Capt. Jim Luke

I moved the third tug to the position of the casualty, usually from the center lead aft. The casualty simulations were realistic.

## 18. Were there any scenarios performed in the Ship Simulator that you would not perform in real life in the Seagirt Loop Channel?

<u>Pilot A</u> – Capt. John Kinlein No.

#### **Pilot B –** Capt. Shimon Horowitz

Turning either ship in poor environmental conditions in the existing turning basin and proceeding outbound with ships berthed at Seagirt 4 and Dundalk 5. There is not sufficient space to conduct this maneuver with a reasonable safety margin and recover from a casualty.

Heavy winds on the pier, a large ship at Seagirt 1, and a light ship being maneuvered utilizing the elevator channel.

Heavy wind conditions from either direction, light or loaded ship being maneuvered, and a large ship at Seagirt 1, without the additional widener recommended off of Seagirt 1. This would consider using the elevator channel. The risk of a problem with the stern of the ship and the ship at Seagirt 1 would be too great

#### **Pilot C** – Capt. Mike Flanagan

This would be a judgement call based on the wind conditions at the time.

#### Pilot D - Capt. Jim Luke

NE gale in the turning basin outbound west channel.

### 19. Were there any scenarios not performed during the simulation testing weeks that you feel should have been considered for the study?

**Pilot A** – Capt. John Kinlein

No.

#### Pilot B - Capt. Shimon Horowitz

The breadth of scenarios seemed complete. There are no critical additions that I can think of at this time.

<u>Pilot C</u> – Capt. Mike Flanagan

No.

**<u>Pilot D</u>** – Capt. Jim Luke

No.

## 20. Do you have recommendations that could improve safety and efficiency of navigation in the Seagirt Loop Channel, specifically the Elevator Channel?

#### **Pilot A** – Capt. John Kinlein

This channel needs to be at 50' and needs to be the primary route for sailing large ships from Seagirt. Also, our suggested wideners are necessary.

#### **Pilot B** – Capt. Shimon Horowitz

The Maryland Pilot recommended wideners would drastically improve safety and efficiency of navigation. The 50 foot channel depth is nearly a necessity for not only the deep ship, but also for the light loaded ship to conduct maneuvers as environmental conditions change or worsen.

#### Pilot C - Capt. Mike Flanagan

The widening and deepening, as simulated, is a must to handle this class of vessel.

#### Pilot D - Capt. Jim Luke

The channels should be dredged to the modified design.

21. What is your overall feedback on the proposed widening designs and the proposed 47 ft and 50 ft depths in the Elevator Channel? What is your feedback on navigation of the Marco Polo container ship in the Seagirt Loop Channel? Do you think that the proposed navigation modifications are sufficient to accommodate post-Panamax vessels similar to the Marco Polo container ship?

#### <u>Pilot A</u> – Capt. John Kinlein

The 50' design is what is necessary to operate ships of this size. The turning basin is not adequate for safely sailing them.

#### <u>Pilot B</u> – Capt. Shimon Horowitz

With four tugs utilized, and a 50 foot channel depth, this class of vessel was safely maneuvered in the majority of circumstances we would encounter at the port of Baltimore. All wideners proposed should be integrated into the final dredging plan to ensure these vessels can be moved safely in the majority of conditions that are likely to be encountered.

#### Pilot C – Capt. Mike Flanagan

Yes, with the extra widening that was simulated.

#### <u>Pilot D</u> – Capt. Jim Luke

The channels should most definitely be brought to 50'and the modified dredging plan implemented. This plan provided the appropriate safety margin for this class of vessels. As it stands 140' beam ships regardless of draft must use the basin to sail creating a bottleneck for traffic and restricting moments to Seagirt 1-4 (inbound), Dundalk 1-5 and possibly all berths upriver of buoy #10A.

22. What are the advantages and disadvantages of exiting the Seagirt Loop Channel through the Elevator Channel compared to the turning basin? How would the proposed navigation modifications in the Elevator Channel facilitate navigation safety, enhance port operations, and improve existing transportation delays?

#### <u>Pilot A</u> – Capt. John Kinlein

The Seagirt Loop (Elevator Channel) is advantageous over the turning basin in every way. The maneuver has reduced risk exposure duration (50% less time), allows for contingencies in the event of casualty, and moves away from high risk areas with moored ships and wharves to leeward (downwind). It does not require 100% high power tug utilization for the

entire maneuver, as happens in the turning basin. This will allow for more predicable operations because the higher safety margin allows for more sustained operations in normally encountered wind and environmental conditions. Because the safety envelope is wider, less wind-based cancellations would be necessary.

#### **Pilot B – Capt. Shimon Horowitz**

The advantages for utilizing the improved elevator channel are significant in every way as opposed to using existing channels. It is much safer, can be performed poorer conditions, is more efficient from a time and traffic perspective and protects the surrounding critical infrastructure in the case of a casualty. The new channel will provide the safety margins necessary and the flexibility/efficiency expected by industry and ship operators which call/may call the Port of Baltimore.

#### Pilot C - Capt. Mike Flanagan

Without the modifications to the loop channel, Seagirt Marine Terminal will be very limited to the size of vessels that could operate safely in and out of the terminal. This would cause major delays and the Port of Baltimore's infrastructure would really fall behind other east coast ports.

#### Pilot D - Capt. Jim Luke

This is the only plan that allows for simultaneous harbor movements for Seagirt 1-4 and DMT 1-5 which enhances overall port safety and reduces delays. The safety factor in a widened elevator channel, allowing for a more dynamic mauver is far and away safer than backing the same ULCV at speeds of 1.5 knots into the turning basin. An average departure utilizes a speed of 3.5 knots thus making the elevator channel egress up to three times faster than the less appealing turning basin option.

#### 23. Do you have any additional comments?

Pilot A – Capt. John Kinlein

I have none at this time. Feel free to contact me.

Shannon, Mary Claire and their team were phenomenal to work with.

<u>Pilot B</u> – Capt. Shimon Horowitz

(blank)

<u>Pilot C</u> – Capt. Mike Flanagan

Thank you for all your efforts!!

**Pilot D** – Capt. Jim Luke

None

Please contact the below personnel for any questions, comments, or concerns about the Seagirt Loop Channel ship simulation study.

#### Shannon N. Stever, E.I.

Research Civil Engineer
Shannon.N.Stever@usace.army.mil
(601) 634-3603

#### **Mary Claire Allison**

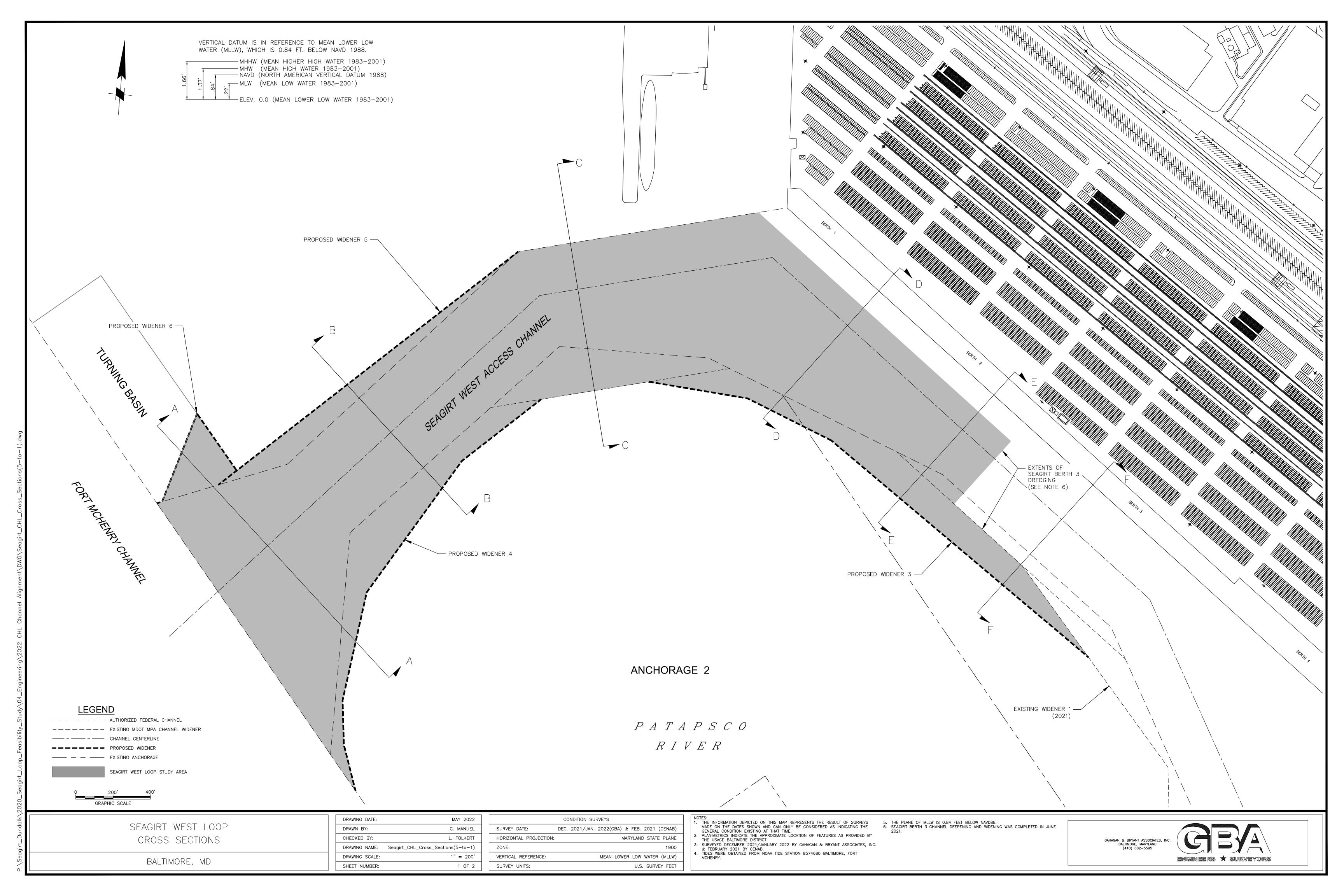
Computer Scientist

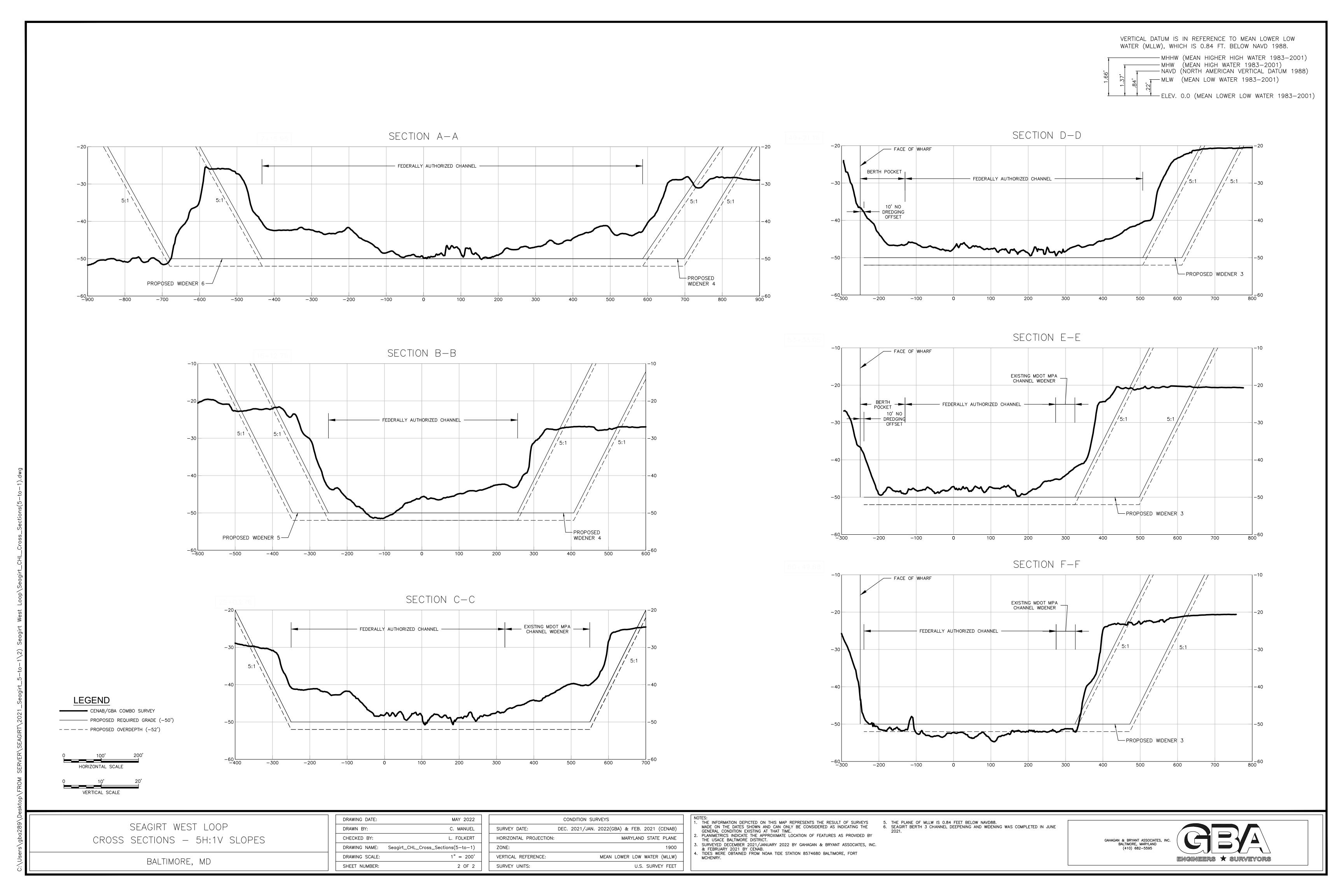
Mary.C.Allison@erdc.dren.mil

(601) 634-3088

Thank you for participating in the study and completing this survey!

# BALTIMORE HARBOR ANCHORAGES AND CHANNELS (BHAC)


## MODIFICATION OF SEAGIRT LOOP CHANNEL


#### **FEASIBILITY STUDY**

## FINAL INTEGRATED FEASIBILITY REPORT & ENVIRONMENTAL ASSESSMENT

APPENDIX B5:
West Seagirt Branch
Channel Sections

Baltimore Harbor Anchorages and Channels (BHAC)
Modification of Seagirt Loop Channel Feasibility Study





# BALTIMORE HARBOR ANCHORAGES AND CHANNELS (BHAC)

## MODIFICATION OF SEAGIRT LOOP CHANNEL

#### **FEASIBILITY STUDY**

## FINAL INTEGRATED FEASIBILITY REPORT & ENVIRONMENTAL ASSESSMENT

# APPENDIX B6: Berth Stability Assessment

Baltimore Harbor Anchorages and Channels (BHAC)
Modification of Seagirt Loop Channel Feasibility Study



(410) 563-7300 www.moffattnichol.com

#### **MEMORANDUM**

To: MES/MPA PDT
From: Moffatt & Nichol
Date: 1/13/2022

Subject: Berth Stability Assessment with Cofferdam Global Stability

M&N Job No.: 10848-05 BHAC Seagirt Loop Deepening Feasibility

#### Introduction

The purpose of this memorandum is to summarize the findings regarding potential impact of the proposed Seagirt West Loop deepening on existing berth structures in the vicinity. Moffatt & Nichol has reviewed the Seagirt West Loop dredge plan and cross sections dated June 2021 prepared by Gahagan & Bryant Associates, Inc (GBA), attached. We have also reviewed available structural drawings for Seagirt Marine Terminal Berths 1 and 2 and Canton Marine Terminal Pier 13. Relationship of these structures to the proposed dredge limits is shown in Figure 1, below. The analysis herein evaluates the potential impact, if any, the channel deepening may have on the stability of the existing structures.

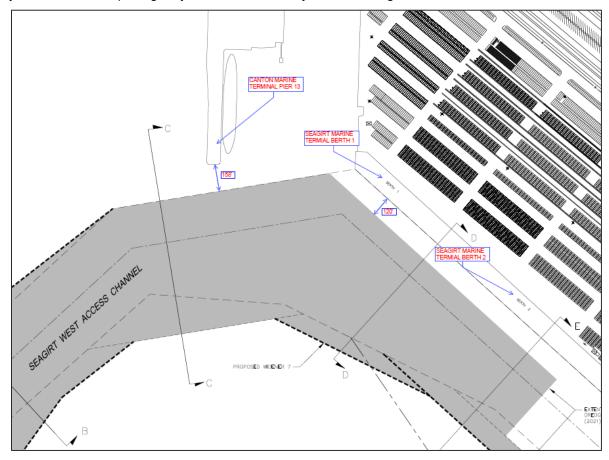
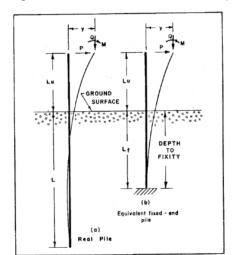



Figure 1 – Structure Location Relative to Proposed Channel Deepening


#### **Analysis Procedure**

The primary concern with dredging near existing structures is the effective lengthening of the structure's piles. If the mudline is deepened near a pile, its effective length increases, and it becomes more flexible, with a lower capacity. This deepening can result in lowering the overall capacity of the structure. In the worst case, this deepening can make a structure unstable.

In order to determine whether or not the proposed dredging will compromise the lateral stability or unbraced length of the piles, an estimated depth to fixity was first calculated. The depth to fixity is the depth of pile embedment into the river bottom where the pile is fully laterally braced. This lateral bracing is provided by the surrounding soils and is affected primarily by stiffness of the pile element and stiffness of the soil. A stiff pile in "soft" soil will have a much deeper point of fixity than a relatively flexible pile in very stiff soil.

After depth to fixity was calculated, the width of the passive soil wedge in front of the pile was estimated. The method used to determine the width of the passive wedge for a sheetpile deadman anchor was used as shown in US Army Corps of Engineers EM 1110-2-204 *Design of Sheet Pile Walls*. An excerpt of this manual is included in Attachment B to this memo. In sheet pile wall design, the deadman anchor is placed a distance behind the wall sufficient to preclude overlap of the wall's active soil wedge and the anchors passive soil wedge. For evaluation of possible impact of the proposed dredging, if it can be shown the proposed dredging does not overlap the pile's passive soil wedge, then the lateral stability of the pile is not affected by the dredging.

Figure 2, below, illustrates the concepts of depth to fixity and passive soil wedge.



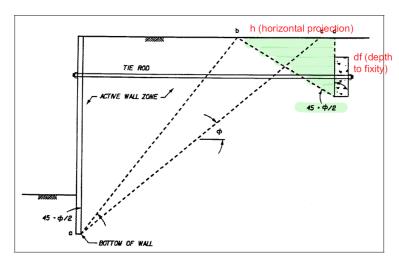



Figure 2 - Depth to Fixity and Passive Soil Wedge

Soil properties were estimated based upon soil boring information included in the Seagirt Berth 1-3 construction drawings. A formula to calculate depth to fixity was used as published in the USDOT FHWA manual *Design and Construction of Driven Pile Foundations – Volume I.* Both the soil boring data and excerpts from the referenced manual are included in Attachment B to this memo.

The pile stiffness is determined primarily by the pile material (concrete, timber, steel) and pile shape (hollow pipe, solid square, H-shape). The pile properties for both Canton Marine Terminal Pier 13 and Seagirt Marine Terminal Berths 1-2 were considered. The resultant depth to fixity and passive soil wedge width for each were compared to the proximity of the proposed dredging. Results of this analysis are summarized below, and calculations are included in Attachment C to this memo.

#### **Canton Marine Terminal Pier 13**

Pier 13 at Canton Marine Terminal is a timber pile-supported pier with a low-level concrete deck, several feet of ballast, and an asphalt surface. A typical section of the pier is shown in Figure 3 below. The age of the structure and its original dredge depth are not known. A 2008 inspection report references original drawings dated 1918. Notes from that inspection include some mudline elevations from which we calculate an average depth of 28.6 feet, at the A and V-piles, over the outboard 150 feet of the pier.

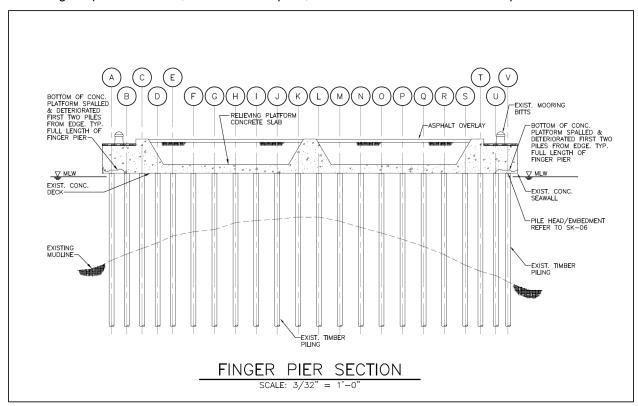



Figure 3 - Typical Section - Canton Marine Terminal Pier 13

The proposed 50-ft dredge depth for the federal channel footprint is within 158 feet of the southeast corner of the pier. If a 3:1 side slope is used, the slope intersects existing river bottom approximately 64 feet horizontally from the edge of the 50-ft channel, or 94 feet from the pier, see Figure 4 below. If a 5:1 side slope is used, it intersects existing river bottom approximately 113 feet from the edge of the 50-ft channel, or 45 feet from the pier, see Figure 5, below.

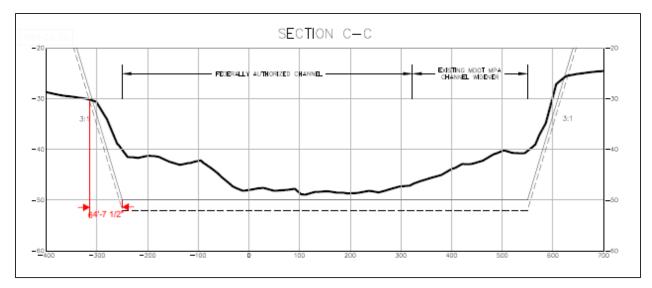



Figure 4 – Dredge Section C-C – 3:1 side slope

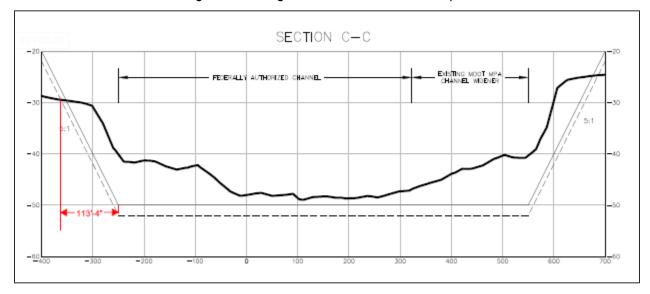



Figure 5 – Dredge Section C-C – 5:1 side slope

#### Proposed Dredge Impact on Canton Marine Terminal Pier 13

As noted above, the depth to fixity and resulting passive soil wedge for Pier 13's timber piles was compared to the proximity of the proposed dredge profile. As timber piles are relatively flexible compared to concrete or steel piles, the depth to fixity was relatively shallow at seven feet below mudline.

A pile diameter of 12 inches was used along with the modulus of elasticity for a new timber pile. The modulus of elasticity is a measure of a material's resistance to being deformed; stiffer materials have a higher modulus of elasticity. It should be noted that due to the age of the timber piles at Pier 13, the current modulus of elasticity is likely significantly reduced from this value, making it more flexible. Sampling of timber piles from nearby Dundalk Marine Terminal originally installed in 1929 were found to have a residual modulus of elasticity 65% that of a new pile. An excerpt of the testing report is included in Attachment C to this memo.

Using the seven-foot depth to fixity, a passive wedge with a horizontal projection of approximately 10 feet was calculated. Two conditions for the passive wedge were considered, a short term and long term (drained) condition. In the short-term, undrained condition, the soil has an effective angle of internal friction (phi) of zero. In the drained condition, the soil would have an angle of internal friction estimated at 20-degrees; this value was taken from a geotechnical report prepared for Seagirt Marine Terminal Berth 4, excerpt included in Attachment C to this memo. A third estimate of passive wedge width was made assuming a soil with a high angle of internal friction. If the soil were sand with a phi of 34-degrees, the passive soil width would be approximately 13 feet.

As the nearest potential dredging is 45 feet from Pier 13, no effect on the pile's lateral support, and resulting capacity, would be expected.

#### Seagirt Marine Terminal Berths 1 and 2

Seagirt Marine Terminal Berths 1 and 2 consist of prestressed concrete piles supporting a concrete low-deck, approximately two feet of ballast, and a paved surface. The landside edge of the structure is supported by steel cofferdam cells. The structures were built under the same contract in 1986. The construction drawings note the design dredge depth as 42 feet. A typical section of the structure is shown in Figure 6, below.

The current dredge profile includes a depth of 45 feet (plus two feet overdredge) approximately 64 feet from the face of the structure. The depth at the face of structure is approximately 37 feet, based on the sections in the Seagirt West Loop dredge plans, resulting in an approximate 6:1 average slope to the existing channel.

The proposed 50-ft dredge depth within the federal channel footprint is within 120 feet of SMT Berths 1 and 2. If a 3:1 side slope is used, the slope intersects existing river bottom approximately 103 feet outboard of the berthing face of Berth 1 (108 ft outboard of Berth 2), see Figures 7 and 8, below. If a 5:1 side slope is used, the slope intersects existing river bottom approximately 92 feet outboard of the berthing face of Berth 1 (103 ft outboard of Berth 2), see Figures 9 and 10, below.

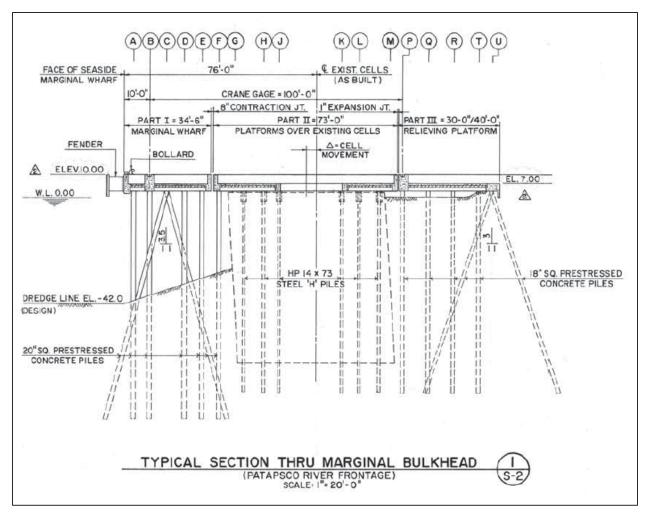



Figure 6 – Typical Section – SMT Berths 1 and 2

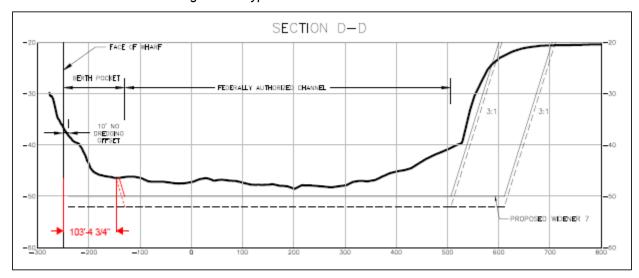



Figure 7 – Proximity of 3:1 Side Slope to SMT Berth 1




Figure 8 – Proximity of 3:1 Side Slope to SMT Berth 2

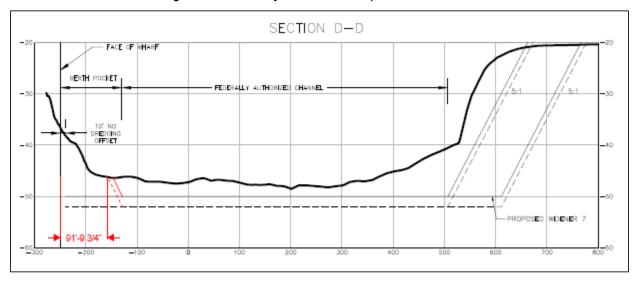



Figure 9 – Proximity of 5:1 Side Slope to SMT Berth 1

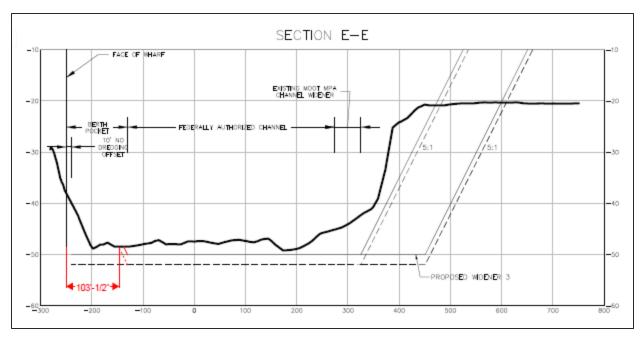



Figure 10 - Proximity of 5:1 Side Slope to SMT Berth 2

#### Proposed Dredge Impact on Seagirt Marine Terminal Berths 1-2

As noted above, the depth to fixity and resulting passive soil wedge for SMT Berths 1-2 concrete piles was compared to the proximity of the proposed dredge profile. As concrete piles are relatively stiff compared to timber piles, the depth to fixity was deeper than that calculated for Pier 13, at 17 feet below mudline.

The piles are 20-inch square with a compressive strength of 5,000 psi, as shown in the contract drawings, excerpt included in Attachment C to this memo. Modulus of elasticity was calculated per ACI 318-14 for normal weight concrete using the compressive strength specified in the contract drawings.

Using the 17-foot depth to fixity, a passive wedge with a horizontal projection of approximately 24 feet was calculated. Two conditions for the passive wedge were considered, a short term and long term (drained) condition. In the short-term, undrained condition, the soil has an effective angle of internal friction (phi) of zero. In the drained condition, the soil would have an angle of internal friction estimated at 20-degrees; this value was taken from a geotechnical report prepared for Seagirt Marine Terminal Berth 4, excerpt included in Attachment C to this memo. A third estimate of passive wedge width was made assuming a soil with a high angle of internal friction. If the soil were sand with a phi of 34-degrees, the passive soil width would be approximately 32 feet.

As the nearest potential dredging is 92 feet from Berths 1-2, no effect on the pile's lateral support, and resulting capacity, would be expected.

#### SMT Cofferdam Stability

The west end of the proposed dredging fronts SMT Berths I and II. The inshore toe of the Federally Authorized Channel is approximately 115' offset from face of berth. An allowance for 2.0' for overdredge takes the permitted depth to -52.0 MLLW. Existing mudline elevations within the existing channel vary, but typically average -47' MLLW. See dredging cross sections in Attachment A.

Local and global stability analyses were performed to assess the 3:1 proposed dredging pocket slope and the impact of deepening the Federally Authorized portion of the channel on the structural stability of the existing cofferdam.

#### **Design Assumptions**

The local and global stability analyses were performed at cell #50 (bent #95) located in Berth II, which roughly aligns with Section E-E shown in Figure 1. Data sources include:

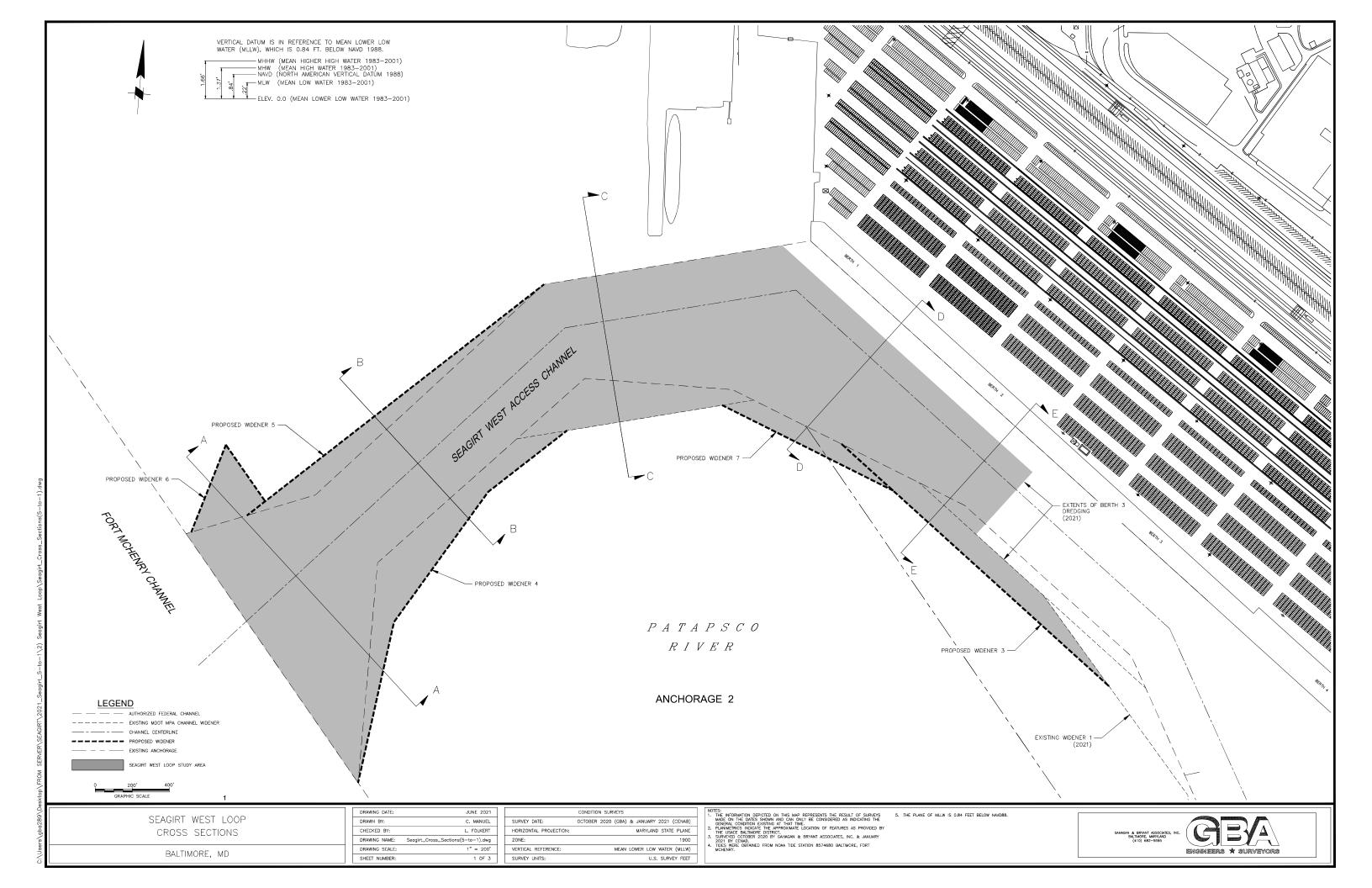
- 1. The configuration of the berth is taken from the construction drawings for Berths I, II, III Marginal Wharf, dated 1986.
- 2. Existing bathymetry is taken from cross-sections prepared by Gahagan & Bryant Associates, dated 2021, supplemented by cross-sections under the berth taken by WSP, dated 2019.
- 3. Subsurface stratigraphy was based on soil profiles contained in the construction drawings for Berths I, II, and III, dated 1986. Soil properties for the various strata are tabulated in the output file included in Attachment B.
- 4. The 'pinning' action of the piles inboard and outboard of the wharf was not accounted for.
- 5. A uniform live load of 600 psf was applied behind the inboard relieving platform.

#### Local and Global Stability Analysis

The 3:1 slope of the federal channel deepening was evaluated in terms of local stability from the outboard side of the cellular cofferdam to the Federal Channel using Slope/W (GeoStudio 2020) software program. The minimum factor of safety against slope failure for the proposed 3:1 slope was calculated to be 8.25.

The impact of deepening the federal channel was also evaluated in terms of global stability from the inboard edge of the inboard relieving platform to the Federal Channel using Slope/W (GeoStudio 2020) software program. The minimum factor of safety against slope failure was computed to be 3.10.

Graphical representation of the critical slip surfaces, the critical factors of safety, and the model's output files are included in Attachment D.

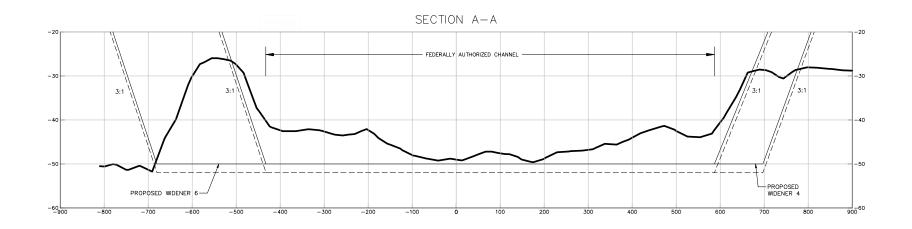

According to USACE publication number EM 1110-2-1902 titled "Slope Stability", a minimum safety factor of 1.5 is considered acceptable for long-term slope stability of excavated slopes. Local and global factors of safety computed exceed the 1.5 minimum, therefore, it can be concluded that the proposed dredging slope is acceptable and the proposed dredged pocket does not adversely impact berth stability.

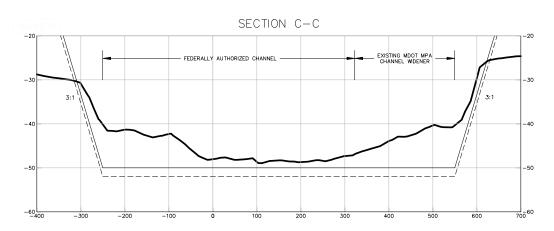
#### Conclusion

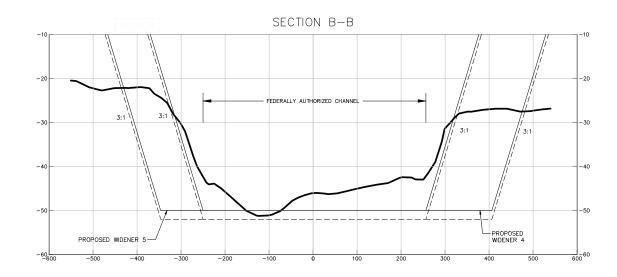
The proposed dredging within the federal channel limits (including side slopes) is far enough away from the berth and pier structures that the pile support would be unchanged from its present condition. Calculated factors of safety for the cofferdam stability models exceeded requirements by more than two times when the proposed dredging is considered.

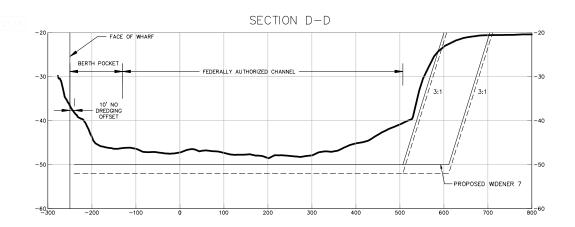
The proposed federal channel dredging for the Seagirt West Loop would not have any detrimental impact on the existing structures adjacent to the channel.

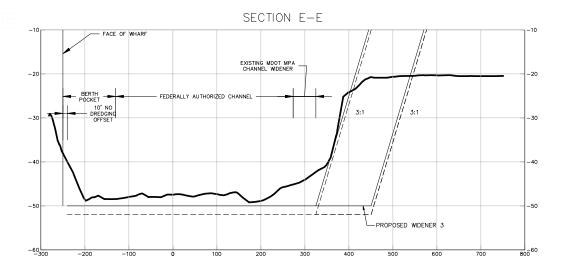
# ATTACHMENT A SEAGIRT WEST LOOP DREDGE SECTIONS





VERTICAL DATUM IS IN REFERENCE TO MEAN LOWER LOW WATER (MLLW), WHICH IS 0.84 FT. BELOW NAVD 1988. MHHW (MEAN HIGHER HIGH WATER 1983-2001)

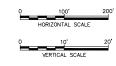

MHW (MEAN HIGH WATER 1983-2001)


NAVD (NORTH AMERICAN VERTICAL DATUM 1988)


MLW (MEAN LOW WATER 1983-2001) ELEV. 0.0 (MEAN LOWER LOW WATER 1983-2001)











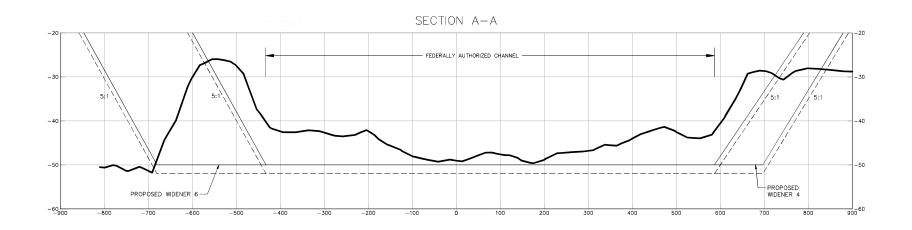

#### <u>LEGEND</u> CENAB/GBA COMBO SURVEY

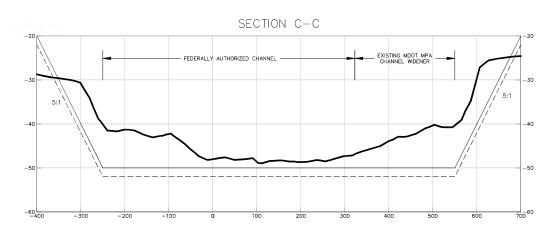
PROPOSED REQUIRED GRADE (-50') - - - - - PROPOSED OVERDEPTH (-52')

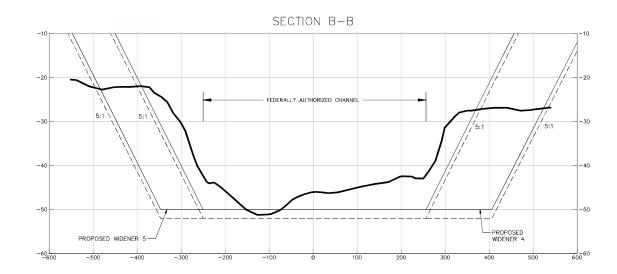


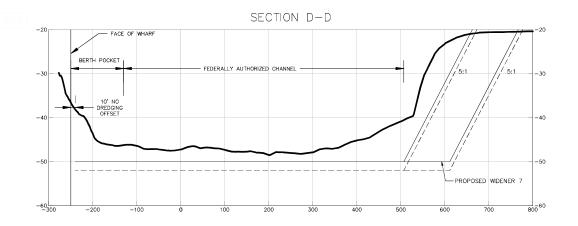
SEAGIRT WEST LOOP				
CROSS	SECTIONS	3H:1V	SLOPES	

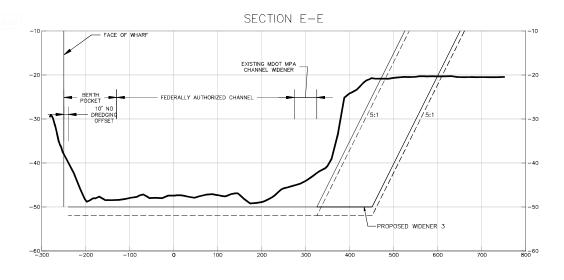
BALTIMORE, MD


	DRAWING DATE:		JUNE 202
	DRAWN BY:		C. MANUEL
	CHECKED BY:		L. FOLKER
	DRAWING NAME:	SEAGIRT WEST LOOF	CROSS SECTIONS
	DRAWING SCALE:		AS SHOWN
	SHEET NUMBER:		2 OF 3


	CONDITION SURVEYS				
	SURVEY DATE:	OCTOBER 2020 (GBA) & JANUARY 2021 (CENAB)			
	HORIZONTAL PROJECTION:	MARYLAND STATE PLANE			
	ZONE:	1900			
	VERTICAL REFERENCE:	MEAN LOWER LOW WATER (MLLW)			
	SURVEY UNITS:	U.S. SURVEY FEET			


NOTES:

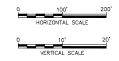

1. THE INFORMATION DEPICTED ON THIS MAP REPRESENTS THE RESULT OF SURVEYS MADE ON THE DATES SHOWN AND CAN ONLY BE CONSIDERED AS INDICATING THE CONFIDENCE DATE OF THE D












#### LEGEND

- PROPOSED REQUIRED GRADE (-50') 

> SEAGIRT WEST LOOP CROSS SECTIONS - 5H:1V SLOPES BALTIMORE, MD



DRAWING DATE:	JUNE 2021
DRAWN BY:	C. MANUEL
CHECKED BY:	L. FOLKERT
DRAWING NAME:	Seagirt_Cross_Sections(5-to-1).dwg
DRAWING SCALE:	AS SHOWN
SHEET NUMBER:	3 OF 3

	CONDITION SURVEYS				
SURVEY DATE:	OCTOBER 2020 (GBA) & JANUARY 2021 (CENAB)				
HORIZONTAL PROJECTION:	MARYLAND STATE PLANE				
ZONE:	1900				
VERTICAL REFERENCE:	MEAN LOWER LOW WATER (MLLW)				
SURVEY UNITS:	U.S. SURVEY FEET				

NOTES:

1. THE INFORMATION DEPICTED ON THIS MAP REPRESENTS THE RESULT OF SURVEYS

3. THE PLANE OF MILLW IS 0.84 FEET BELOW NAVDBB.

MUC ON THE DATES SHOWN AND CAN ONLY BE CONSIDERED AS INDICATING THE

5. THE PLANE OF MILLW IS 0.84 FEET BELOW NAVDBB.

4. PLANMATRICS INDICATE THE APPROXIMATE LOCATION OF FEATURES AS PROVIDED BY

THE USACE PALITIONED EDISTRICT.

5. SURVEYED OCTOBER 2020 BY CAHACAN & BRYANT ASSOCIATES, INC. & JANUARY

2021 BY CHARB.

6. TIDES WERE OBTAINED FIROM NOAA TIDE STATION 85746BD BALTIMORE, FORT

MOTERNY.



# ATTACHMENT B EXCERPTS FROM REFERENCE MATERIAL

CECW-ED	Department of the Army U.S. Army Corps of Engineers Washington, DC 20314-1000	EM 1110-2-2504
Engineer Manual 1110-2-2504		31 March 1994
	Engineering and Design	
	DESIGN OF SHEET PILE WALLS	
	Distribution Restriction Statement Approved for public release; distribution is unlimited.	

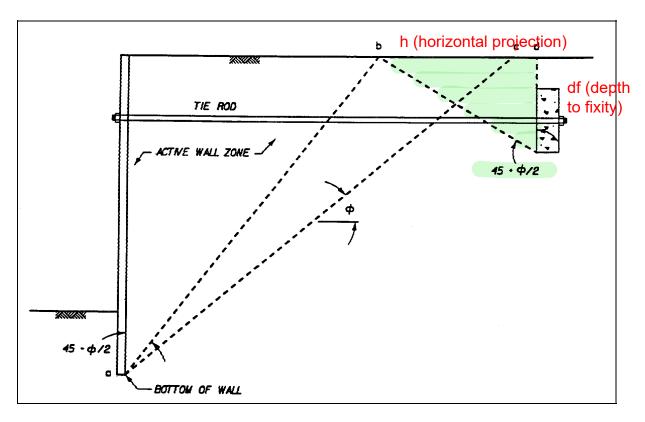
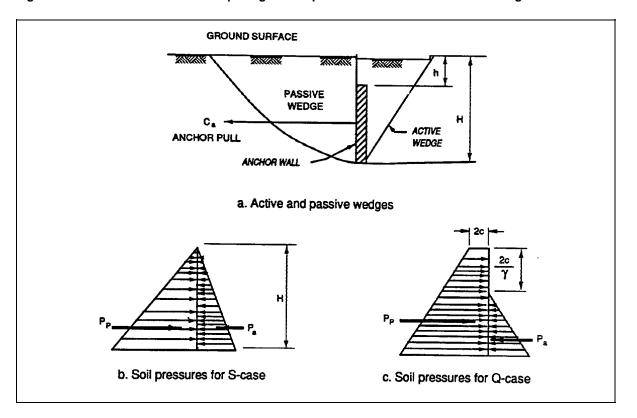
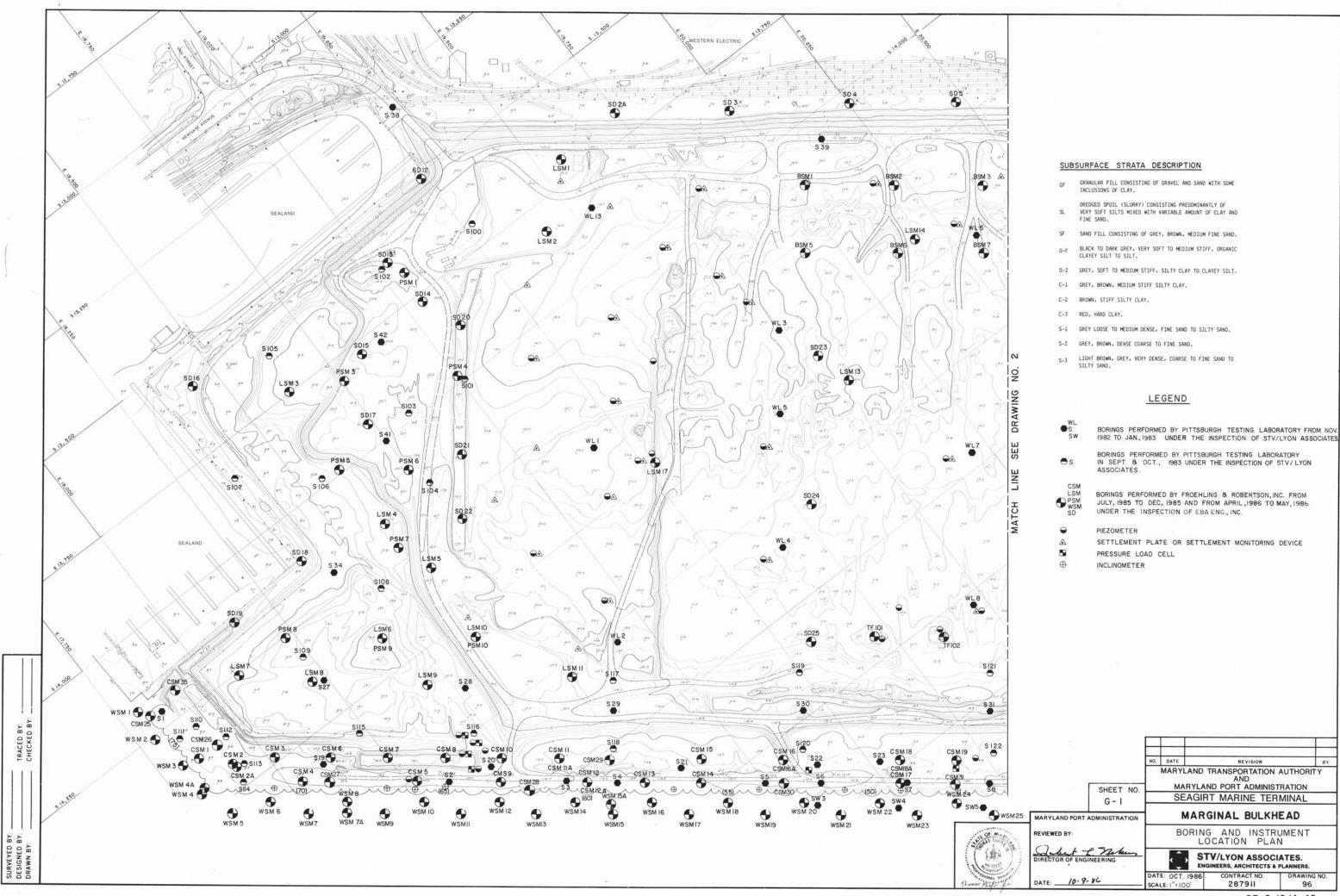
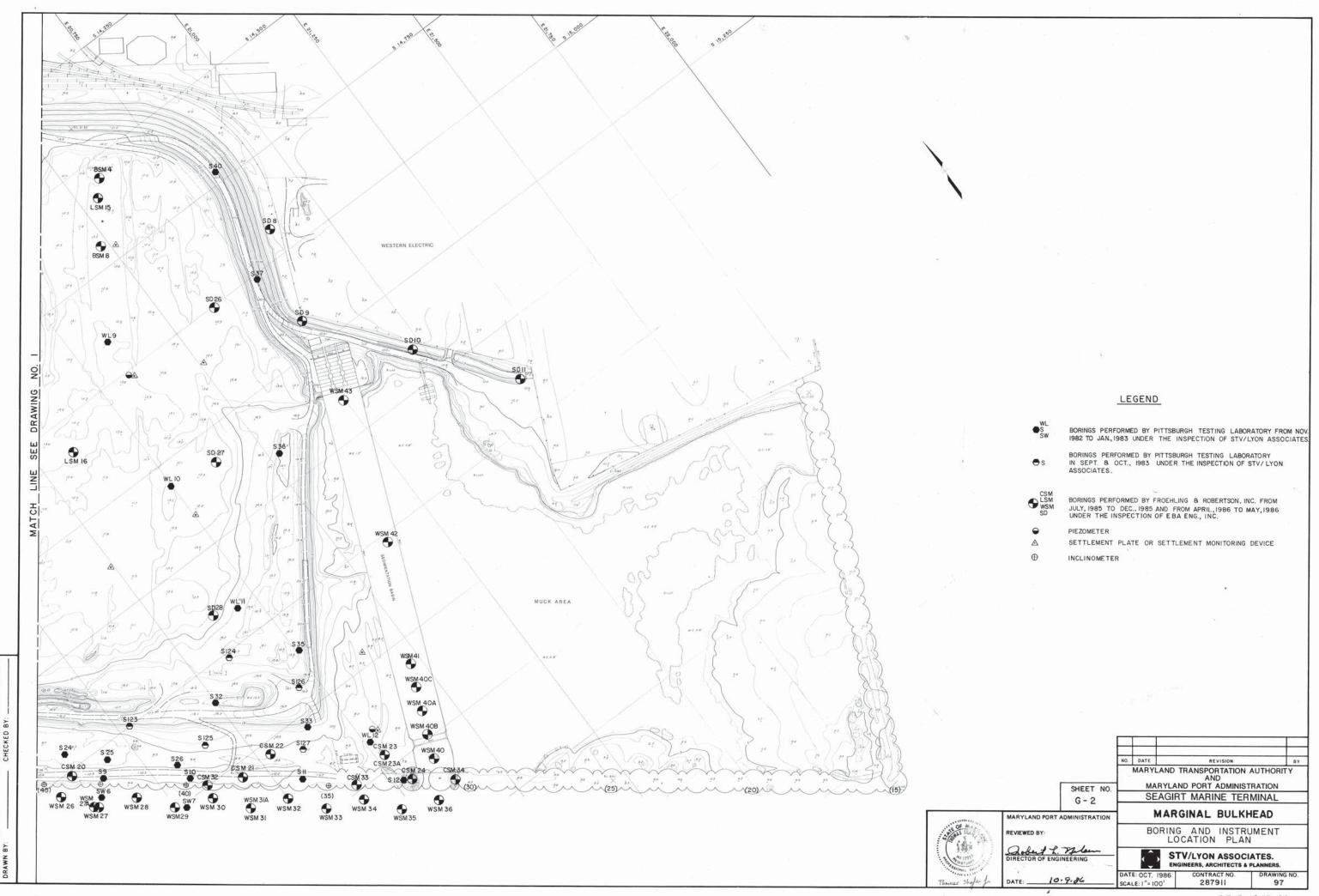
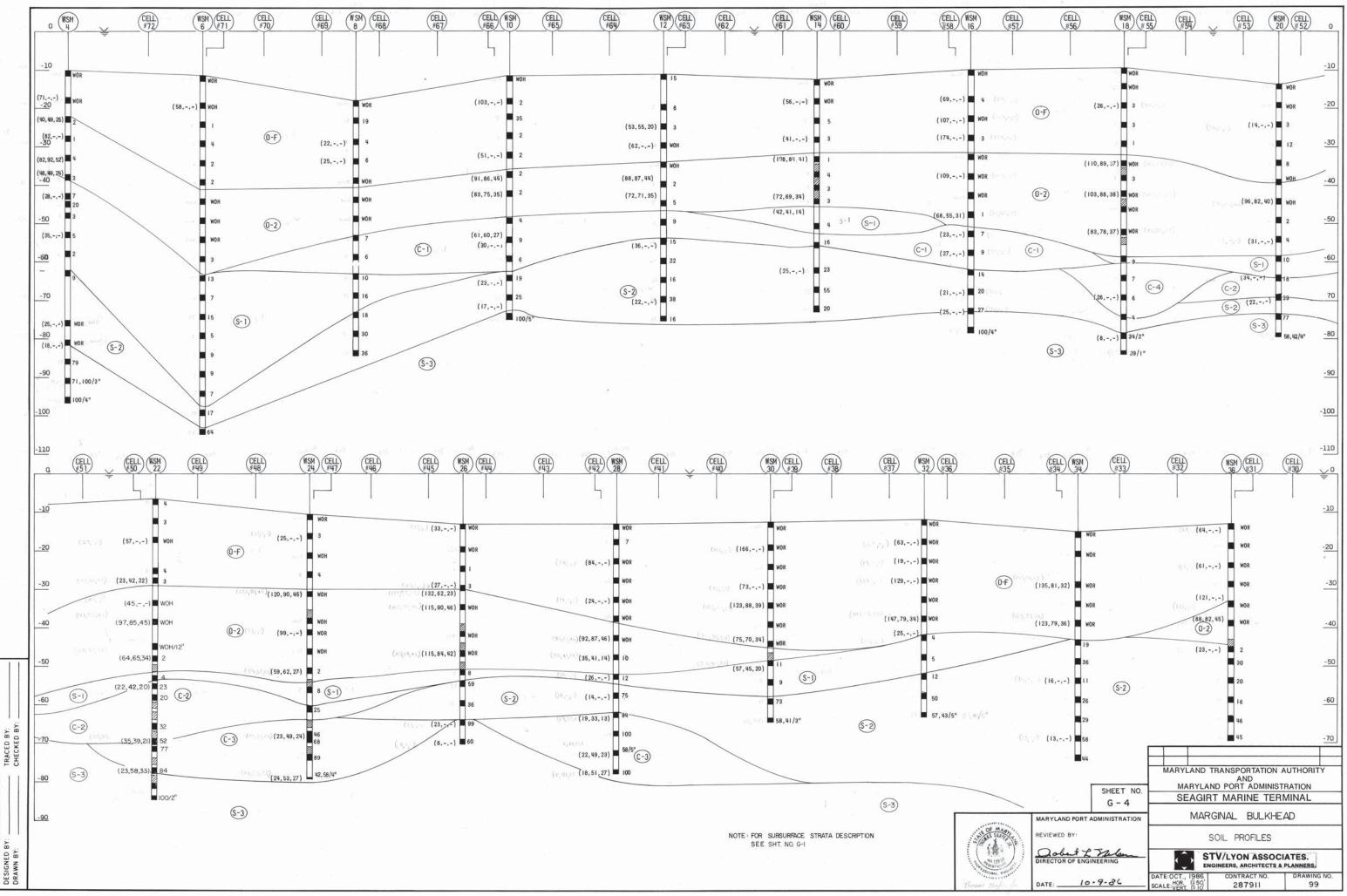
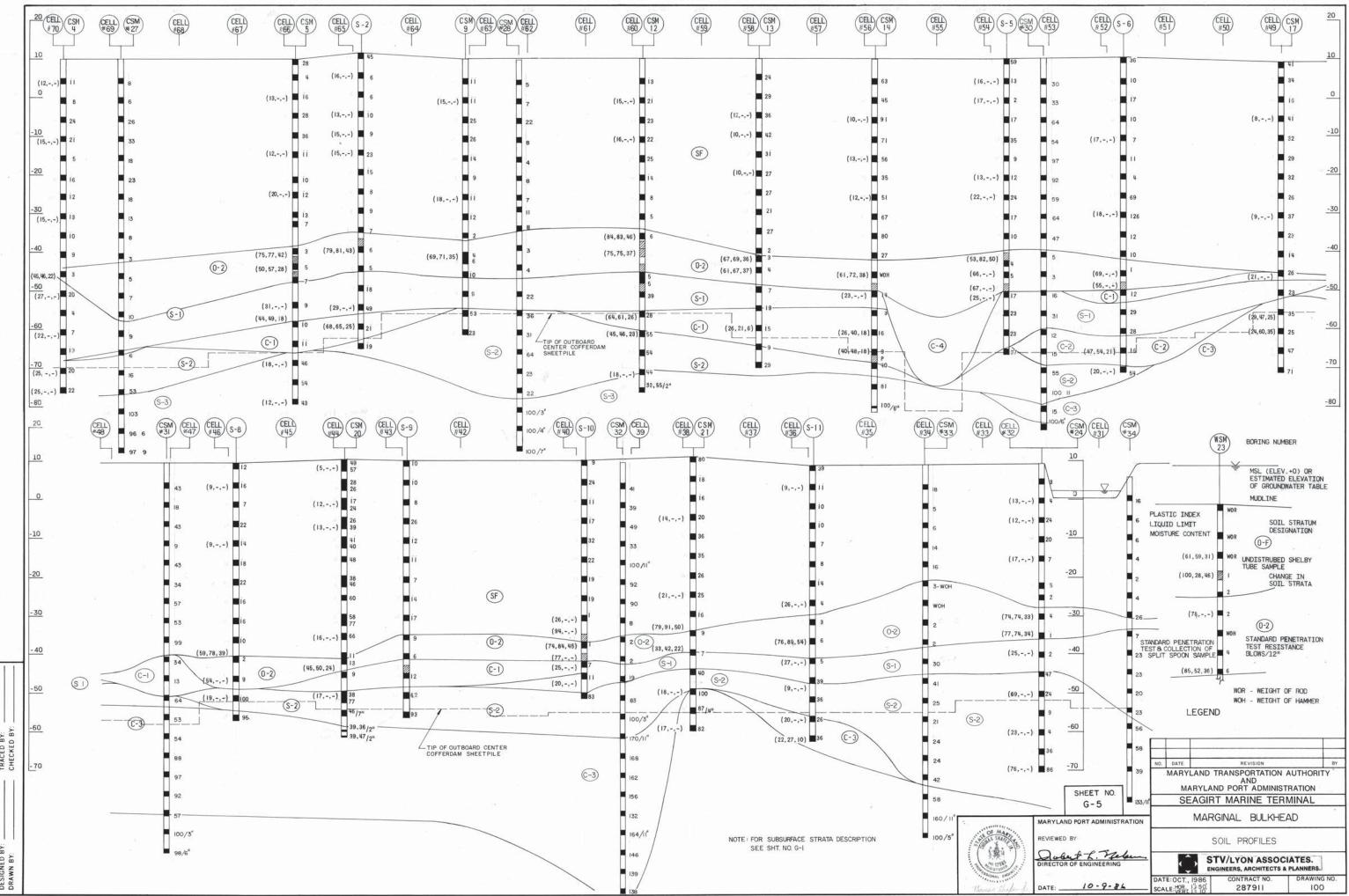
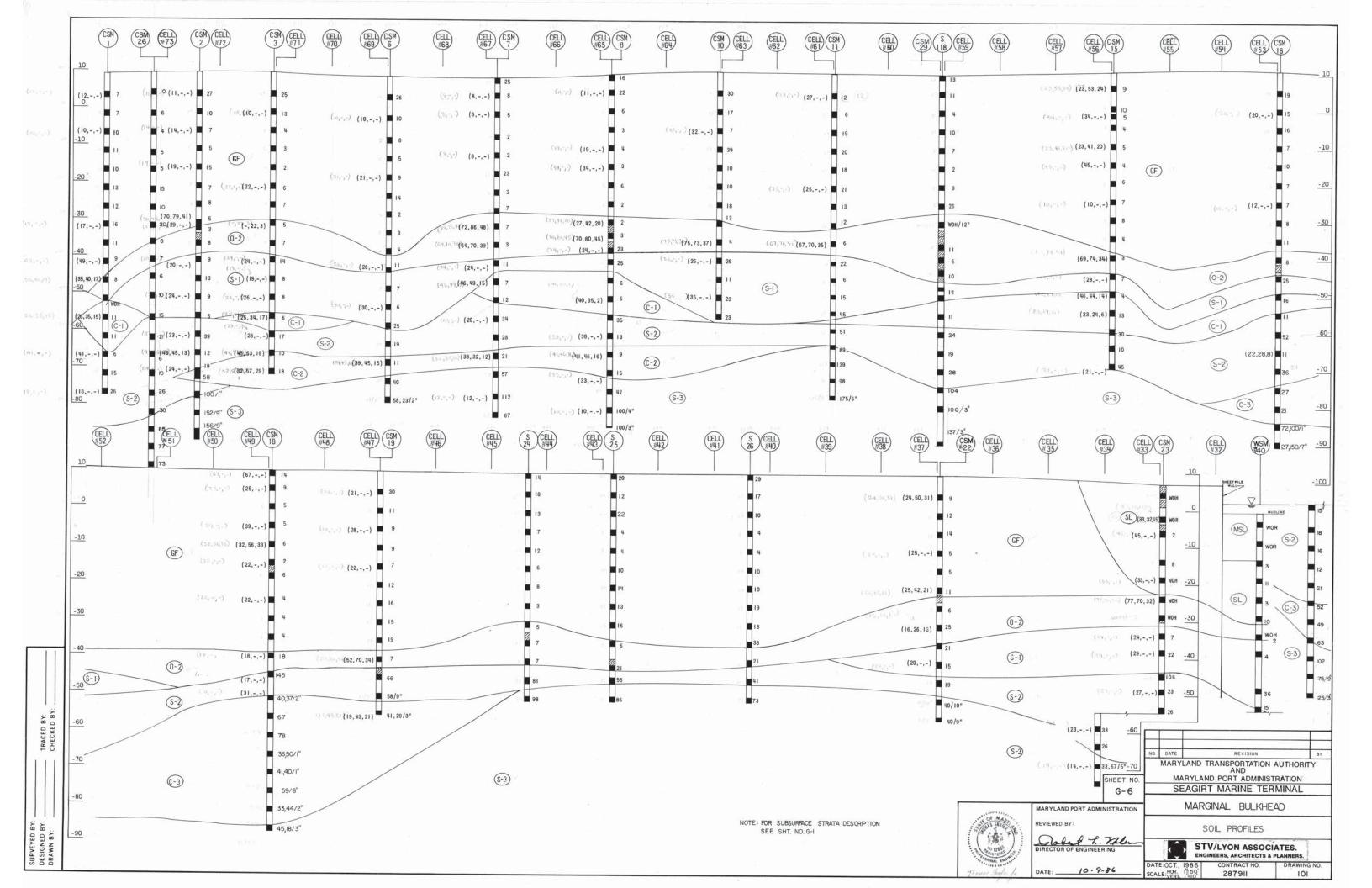



Figure 5-8. Minimum anchor - wall spacing for full passive anchor resistance in homogeneous soil



Figure 5-9. Resistance of continuous anchor wall
















Publication No. FHWA-NHI-16-009 FHWA GEC 012 - Volume I July 2016

### NHI Courses No. 132021 and 132022

## Design and Construction of Driven Pile Foundations – Volume I

<u>Developed following:</u>

AASHTO LRFD Bridge Design Specifications, 7th Edition, 2014, with 2015 Interim.

AASHTO LRFD Bridge Construction Specifications, 3rd Edition, 2010, with '11, '12, '13, '14, and '15 Interims.













Training Solutions for Transportation Excellence

The factored resistance must be greater than factored loads applied to the pile. The recommended AASHTO limits for factored pile design stresses will generally keep the driving stresses within recommended limits. Factored loads are covered in Article 3 of the AASHTO Specification (2014) while driving stress limits are presented in the respective pile material sections for concrete (Article 5), steel (Article 6), and timber (Article 8).

#### 8.3.1 Depth to Fixity

The unbraced length, l, or laterally unsupported length is defined by AASHTO (2014) as the distance between two braced points that resist buckling or distortion modes. For embedded piles, the unbraced length is considered for scour and pile stickup through air and/or water. For preliminary analysis, when lateral loads are applied, the effective length, K, for flexural or torsional resistance calculations is taken as the total unsupported length, plus an embedded depth to "fixity." If a lateral pile analysis with p-y curves for soil-structure interaction has been performed as discussed in Chapter 7, the depth to fixity concept is unnecessary. Most software with lateral analysis also includes additional features to determine a pile's buckling capacity given the soil model and a pile model with the expected stick-up above the ground level.

For preliminary calculations, however, the depth to fixity below the ground may be evaluated based on soil type and soil strength parameters as shown in Equation 8-6 for clays and Equation 8-8 for sands. Table 8-4 contains the rate of increase in soil modulus for sands,  $n_h$ , and should be used as applicable in the following depth to fixity estimates.

For clays:

$$d_f = 1.4 \left(\frac{EI_w}{E_s}\right)^{0.25}$$
 Eq. 8-6

$$E_s = 0.465s_u$$
 Eq. 8-7

For sands:

$$d_f = 1.8 \left( \frac{EI_w}{n_h} \right)^{0.2}$$
 Eq. 8-8

Where:

 $d_f$  = depth to fixity below the ground (ft). E = elastic modulus of pile material (ksi).  $E_s$  = elastic modulus of clay soil (ksi).

 $s_u$  = undrained shear strength of clay (ksf).

 $I_w$  = weak axis moment of inertia of pile (ft⁴).

 $n_h$  = rate of increase of soil modulus with depth (Table 8-4) (ksi/ft).

Table 8-4 Rate of Increase of Soil Modulus with Depth for Sands (ksi/ft) (after AASHTO 2014)

Consistency	Dry or Moist	Submerged
Loose	0.417	0.208
Medium	1.110	0.556
Dense	2.780	1.390

#### 8.3.2 Limiting Slenderness Ratio

Piles extending through air or water are unbraced over some length and therefore, for axial compression, the slenderness ratio should be checked during design. For non-composite steel piles, which are not fully embedded, slenderness ratio limits should be satisfied as follows:

$$\frac{Kl}{r_s} \le 120$$
 Eq. 8-9

Where:

K = effective length factor (Figure 8-4) (dimensionless).

I = unbraced length, or laterally unsupported length plus  $d_f$  (inches).

 $r_s$  = minimum radius of gyration,  $\sqrt{I/A}$  (inches).

#### 8.3.3 Resistance Factors

A discussion and step by step determination of the nominal structural resistance for timber, steel, and concrete piles is provided in the following sections. The AASHTO (2014) specifications form the basis of these respective sections. Following the Load and Resistance Factor Design (LRFD) approach, a resistance factor is applied to the calculated nominal structural resistance.

In practical terms, the imposed factored load must be less than or equal to the factored resistance. Chapter 2 provides a discussion on load combinations in which load factors are applied to respective load effects. The critical load combination is

# ATTACHMENT C CALCULATIONS



### Moffat & Nichol 2780 Lighthouse Point East, Suite D Baltimore, MD 21224

Evaluation of Timber Piles Removed from Dundalk Marine Terminal Berths 1 and 2

Wood Science Consulting March 12, 2021- Report WSC-21.15.01

#### 4.3 Comparison of 2011 and 2021 Test Results

The pile test data collected from DMT in 2021 was compared to the test data collected in 2011. In 2011, four pilings were also tested, and those results were reported in WAS Report 11.133.01. In 2011 two pilings from the 1929 vintage were tested as well as on from 1961 and another from 1966.

The results from both data sets were grouped into two vintages: 1966 and 1929. The results do no illustrate that the overall strength of the pilings has reduced from 2011 to 2021, however, there is a clear difference in the overall strength of the 1996 vintage pilings as compared to the 1929 pilings. Overall, all three mechanical property value means were higher in the pilings tested in 2021 than those tested in 2011. At this point and based on the limited number of pilings that have been tested there is no evidence that the pilings at Berths 1-4 have lost any strength since 2011. However, there is a clear difference between the mean property values from 1966 versus those from 1929. There was a 17% difference in mean MOR and a 20% difference in the mean MOE and C//.

Year Tested		of Rupture psi)	Modulus of (x10 ⁶	•	Compression Parallel (psi)		
Tested	1966	1929	1966	1929	1966	1929	
2021	5,912	5,016	1.523	1.095	2,541	2,434	
2011	5,148	4,470	1.085	1.030	2,039	1,902	
Average	5,661	4,743	1.139	1.062	2,486	1,970	
Difference	1	7%	20	%	2	0%	

Table 3. Results of the Wood Pile Testing for DMT Berths 1-4 in 1966 and 1929.

#### 4.4 Recommended Reference Design Values

Based on the results of the testing from 2011 and 2021 the recommended allowable design values provided in 2011 remain the same. The values provided in 2011 were based on the lowest mean residual design factors that were then applied to the allowable design values published in the NDS. The lowest residual design values were based on the lowest residual values to be conservative. Since there was no reduction in property values found since 2011 based on the recent testing there is no justification to reduce the allowable design values.

Table 4a. Recommended Reference Design Values for the Pilings at DMT Berths 1 and 2,	1966
vintage.	

	Reference	Residual Value	Recommended
Design Value	Design Value	per Testing Reference Desi	
	per the NDS		Value
F _b	2,400 psi	X 0.63	1,500 psi
$F_c$	1,200 psi	X 0.63	750 psi
Е	1,500,000 psi	X 0.65	0.98 x 10 ⁶ psi
$E_{min}$	790,000 psi	X 0.65	0.51 x 10 ⁶ psi

Table 4b. Recommended Reference Design Values for the Pilings at DMT Berths 1 and 2, 1929 vintage.

Design Value	Reference Design Value per the NDS	Residual Value per Testing	Recommended Reference Design Value
$F_b$	2,400 psi	X 0.47	1,150 psi
F _c	1,200 psi	X 0.45	550 psi
Е	1,500,000 psi	X 0.65	0.98 x 10 ⁶ psi
E _{min}	790,000 psi	X 0.65	0.51 x 10 ⁶ psi

#### **4.4 Degradation Rate Curves**

In order to estimate life expectancy over time and reduction in allowable stresses into the future, three degradation rate curves were developed. Rate of degradation over time is very difficult to predict, however, a simplified rate of degradation can be obtained following the concept published in "A Study of Fracture of Wood Based on the Theory of Stochastic Process" (Sumiya, 1963 – Wood Research 29:1-24.). An exponential rate of degradation over time is assumed for DMT since the environment has remained constant over time (i.e. the timbers have remained in a wet and submerged condition since the time of construction).

The rate of degradation is expressed as follows:

$$Y_T = Y_0 e^{-BT}$$

where:

T = time in service (years),

 $Y_T$  = property at time T,

 $Y_0$  = property at T=0, and

B = degradation rate constant (calculated using historical ASTM D2555 data and current ASTM D143 test results).

Three curves are provided in Appendix II illustrating the approximate degradation over time for F_b, F_c and E based on the results of the testing at DMT. It should be noted that these are generalized curves and should be used as estimates based on the number of pilings that have been mechanically tested at DMT. The mean property values from 2011 compared to 2021 did not show any evidence of property reductions, however, this may be simply attributed to the samples that were extracted in 2011 and 2021. A general reduction in allowable stresses over time should be assumed.

Geotechnical Engineering Study, Seagirt Terminal, Berth-IV, 2700 Broening Highway, Baltimore, Maryland (DWK Contract Number 09202.P)

#### 4.0 Bulkhead Analysis

#### 4.1 Discussion

A pile supported wharf deck and an inboard sheet pile cut-off wall braced by the wharf deck is planned for the Berth IV construction. We understand that the existing cellular cofferdams will be left in place. A stability analysis of the cellular cofferdam has been performed by others. We understand that improvement of the materials within the cofferdam cell using stone columns is planed to improve stability of the cells. The wharf deck foundation support piles will be installed both within and outside the cellular cofferdams.

#### 4.2 Soil Parameters for Inboard Sheet Pile Cut-off Wall

Based on the soil borings performed and the soil laboratory tests performed for this project and the available empirical relations of soil parameters to the SPT values, we have developed soil strength parameters for the design of the inboard sheet pile cut-off wall.

Estimated Design Parameters of On-Site Soils for Sheet Pile Analysis

	Bulk Density	Effective Friction Angle	Effective Cohesion
Soil Type	(γ)/pcf	(Φ')/degrees	(c')/psf
Unsurcharged Muck Slurry (MSL)	100	20	50
Stone Column Improved Muck Slurry	115	27	50
(MSL)			
Miscellaneous Fill (MF)	110	30	0
Recent Alluvial (O-2)	100	20	20
Stone Column Improved Recent Alluvial	115	27	50
(O-2)			
Basal Alluvial Sand (S-1)	115	30	0
Recent Alluvial Organic Clay/Elastic Silt	110	24	50
(C-1)			
Stone Column Improved Recent Alluvial	115	27	50
Organic Clay / Elastic Silt (C-1)			
Potomac Sand (S-3)	120	34	0
Potomac Clays (C-3)	125	24	100

These values can be used to develop the required soil pressures for analysis of the sheet pile wall. For both the cantilevered construction loading condition and the long term braced condition the stability of the wall needs to be analyzed. It is recommended that the effective soil strength parameters be used in the design of the sheet pile wall analysis as the drained condition is expected to be the critical case. A minimum construction surcharge of 200 psf is recommended to account for the general construction vehicle traffic. Additional surcharge may be required for heavier construction equipment. Two generalized design soil cross sections, one through Cell-19 and another through Cell-29 are presented as Figure Number -2 to this report. These values can be checked against the soil

LONGIT. LONGITUDINAL

EARTH

STRUCTURAL STEEL

SHAPES

I

3:1

CONCRETE

FENDER

STANDARD

ABOUT

ABT.

KIP.

PRECAST PRESTRESSED

200K BOLLARD

CONCRETE SLAB

LEGEND

20" SQ. PRESTRESSED CONCRETE PLUMB PILES

18" SQ. PRESTRESSED CONCRETE PLUMB PILES

HP 14X73 STEEL 'H' PLUMB INDICATOR PILES

3 VERTICAL TO 1 HORIZONTAL BATTER PILE

HP 14X73 STEEL 'H' PLUMB PILES

WATER LEVEL

20" SQ. PRESTRESSED CONCRETE PLUMB INDICATOR PILES

18" SQ. PRESTRESSED CONCRETE PLUMB INDICATOR PILES

STEEL SECTION

SHEET NO.

PLAN SECTION.

DETAIL NOS. ETC.

B. STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, THE AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS, AASHTO, 13TH EDITION, 1983.

C. SPECIFICATION FOR THE DESIGN, FABRICATION, AND ERECTION OF STRUCTURAL STEEL FOR BRIDGES, AISC, 1978.

D. DESIGN MANUALS PUBLISHED BY THE DEPARTMENT OF THE NAVY, NAVAL FACILITIES ENGINEERING COMMAND.

#### DESIGN LOADS

A. PATAPSCO FRONTAGE

1. VERTICAL LIVE LOADS

A) UNIFORM LOAD

(1) 1000 PSF FOR SUPERSTRUCTURE

(2) 800 PSF FOR PILING

B) CONTAINER CRANE

(1) RAIL MOUNTED 100' GAGE.

(2) CAPACITY UNDER SPREADER 55 SHORT TONS.

(3) 130 KIP VERTICAL WHEEL LOAD @ 4.5' C-C SPACING.

(4) 30% IMPACT.

(5) 150 KIP UPLIFT FORCE FOR LANDSIDE CRANE TIE DOWNS. 250 KIP UPLIFT FORCE FOR SEASIDE CRANE TIE DOWNS.

C) TRUCK LOAD: HS 20-44

D) SPECIAL EQUIPMENT LOADS (AS AN OVERLOAD PROVISION): THE SUPERSTRUCTURE WILL BE ANALYZED FOR THE FOLLOWING LOADS IN ACCORDANCE WITH LOADING COMBINATION GROUP IB IN ARTICLE 3.22 OF AASHTO 13TH EDITION.

(1) MARATHON LETRO-PORTER MODEL 2782 W/ 251.

o 90,000 LBS. CAPACITY AT 48 INCHES LOAD CENTER

o AXLE LOAD 226,000 LBS. WITH 30% IMPACT. o TIRE 98 INCHES DUTSIDE DIAMETER - 48 PLY-

RATING (2 TIRES PER AXLE) AT 86 PSI. o 175 INCHES FROM OUTSIDE TO OUTSIDE OF

o CONTACT AREA OF TIRE 1320 SQ. INCHES.

(2) CLARK EQUIPMENT, CLARKLIFT CY 700.

o 70,000 LBS CAPACITY AT 48 INCHES LOAD CENTER.

o AXLE LOAD 166,500 LBS PLUS 30% IMPACT.

o TIRE 18 X 25 - 32 PLY TANDEM (4 TIRES) AT 138 PSI.

o 81 INCHES FROM CENTERLINE TO CENTERLINE OF INTERIOR TIES.

o 127.25 INCHES FROM OUTSIDE TO OUTSIDE OF OUTER TIRES.

2. LATERAL LOADS

A) SHIP BERTHING - 60,000 DWT VESSEL WITH 0.4 FT/SEC. VELOCITY, AND 50,000 DWT VESSEL WITH 0.5 FT/SEC. VELOCITY AT 10° APPROACH ANGLE. 585 T.E.U. CON-TAINER BARGE WITH 1.0 FT/SEC VELOCITY AT 45° APPROACH ANGLE.

o CONTACT AREA OF TIRE 300 SQ. INCHES.

B) MOORING FORCE - 200 KIPS PER BOLLARD. at 3° (From the Horizontal)

C) WIND LOAD ON CONTAINER CRANE - 350 KIPS ON LANDSIDE RAIL AND 100 KIPS ON SEASIDE RAIL, (BASED ON 50 PSF WIND PRESSURE WITH 1.5 GUST FACTOR).

D) CRANE STOPS - BASED ON 1000 TON CONTAINER CRANE TRAVELING AT SPEED OF 150 FT/MIN. MAXIMUM IMPACT

FORCE = 150 KIPS.

STOWAGE PINS - 270 KIPS SEASIDE RAIL.
230 KIPS LANDSIDE RAIL

B. SEA-LAND EXTENSION (TO MATCH EXISTING WHARF)

1. VERTICAL LIVE LOADS A) UNIFORM LOAD

(1) 600 PSF FOR SUPERSTRUCTURE.

(2) 480 PSF FOR PILES.

B) CONTAINER CRANE

(1) RAIL MOUNTED 50' GAGE.

(2) 73.5 KIP VERTICAL WHEEL LOAD AT 5.0' C-C SPAC-

(3) 30% IMPACT.

(4) 150 KIP UPLIFT FORCE FOR CRANE TIE DOWNS

C) TRUCK LOAD: HS 20-44

A) SHIP BERTHING - 3.0 KLF LATERAL FORCE. B) MOORING FORCE - 150 KIP PER BOLLARD

C) WIND LOAD ON CONTAINER CRANE - 3.5 KIP HORIZONTAL LOAD AT EACH WHEEL.

D) CRANE STOPS AND STOWAGE PINS - TO MATCH EXISTING WHARF.

C. LOAD COMBINATIONS

1. SUPERSTRUCTURE (DECK SLABS, CAP BEAMS, CRANE GIRDERS,

LOAD COMBINATION % ALLOWABLE STRESS DEAD LOAD + LIVE LOAD (W/IMPACT) 100 DEAD LOAD + LIVE LOAD (W/IMPACT) + BERTHING FORCE + SOIL PRESSURE 100 DEAD LOAD + LIVE LOAD (W/IMPACT) + SOIL PRESSURE + MOORING FORCE + WIND LOAD

2. SUBSTRUCTURE (PRESTRESSED CONCRETE PILES AND H-PILES) SAME AS ABOVE EXCEPT IMPACT IS EXCLUDED.

III. MATERIAL PROPERTIES

A. REINFORCED CONCRETE, MINIMUM COMPRESSIVE STRENGTH AT 28

1. f'c = 4000 PSI FOR CAST-IN-PLACE CONCRETE DECK SLABS. BEAMS, CRANE GIRDERS, PILE BENTS AND OTHER STRUCTURAL MEMBERS.

2. f'c = 5000 PSI FOR PRESTRESSED CONCRETE PLANKS AND 18" SQ. PRESTRESSED CONCRETE PILES.

3. f'c = 6000 PSI FOR 20" SQ. PRESTRESSED CONCRETE PILES AND STRUTS.

B. REINFORCING STEEL

1. DEFORMED REINFORCING BARS SHALL CONFORM TO ASTM A615. GRADE 60 (Fy =60KSI), EXCEPT TIES AND STIRRUPS, WHICH SHALL CONFORM TO ASTM A615, GRADE 40 (Fy = 40KSI).

2. PRESTRESSED STRANDS SHALL BE SEVEN WIRE, STRESS RE-LIEVED STRANDS CONFORMING TO ASTM A416 GRADE 270K.

3. WIRE SPIRAL TIES SHALL CONFORM TO ASTM A82.

C. STRUCTURAL STEEL

ROLLED SHAPES AND PLATES SHALL CONFORM TO ASTM A36.

2. BOLTS AND ANCHOR BOLTS SHALL CONFORM TO ASTM A307.

WELDING SHALL CONFORM TO AWS, ELECTRODES SHALL BE E70XX SERIES FOR A36 STEEL, OR APPROVED EQUAL.

D. PILE CAPACITY, ALL PILES SHALL BE DRIVEN TO A MINIMUM BEARING CAPACITY AS FOLLOWS:

1. 18" SQ. PRECAST CONCRETE PILES - 140 TONS.

2. 20" SQ. PRECAST CONCRETE PILES - 145 TONS.

3. 14HP73 PILES - 130 TONS.

IV. MINIMUM CONCRETE COVER OVER REINFORCING BARS SHALL BE AS FOLLOWS UNLESS OTHERWISE SHOWN ON THE DRAWINGS:

A. CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3 TN.

B. CONCRETE EXPOSED TO EARTH OR WEATHER

1. BOTTOM OF BEAMS AND SLABS 3 IN. (4 IN. BEAMS OVER PILES) 2 IN.

2. TOP OF BEAMS AND SLABS

WISE SHOWN.

2 IN. (3 IN. OUTSIDE FACE OF 3. SIDES OF BEAMS AND WALLS FASCIA BEAM)

ALL EXPOSED CONCRETE EDGES SHALL BE CHAMFERED 3/4" UNLESS OTHER-

VI. SEE DRAWING NO. TS-9 FOR FENDER DESIGN REQUIREMENTS.

	ADI.	ADOUT		
1	ADD.	ADDITION	MAX.	MAXIMUM
	ADDL.	ADDITIONAL	MET.	METAL
	ALT.	ALTERNATE	MIN.	MINIMUM
	APPROX.	APPROXIMATE		
	A STATE OF THE STA		N.	NORTH
·	В	BOTTOM OF	N.S.	NEAR SIDE
	вм.	BEAM	NTS.	NOT TO SCALE
	BRG.	BEARING	NO.	NUMBER
	BETW.	BETWEEN	7	
	BOT.	BOTTOM	0.C.	ON CENTER
	001.	BOTTOM	OPNG.	OPENING
	C.I.P.	CAST-IN-PLACE	OPP.	OPPOSITE
	CTR.		0/0 -	OUT TO OUT
	CIK.	CENTER	PL.	
	0.70	CENTERLINE		PLATE
	C/C	CENTER TO CENTER	PSI.	POUND PER SQUARE INCH
	CL.	CLEAR	LB.	POUND
	CONC.	CONCRETE	P.S.	PRESTRESSED
	CONT.	CONTINUOUS	P.C.	PRECAST CONCRETE
		CONTRACTION JOINT	PROJ.	PROJECTION
	C.J.	CONSTRUCTION JOINT		
			R.	RADIUS
	DET.	DETAIL	R/C	REINFORCED CONCRETE
	DIAG.	DIAGONAL	REQD.	REQUIRED
	DIA.0	DIAMETER		
	DIM.	DIMENSION	SCH.	SCHEDULE
	DO.	DITTO	SECT.	SECTION :
	DWG.	DRAWING	S/SHT.	SHEET
			SIM.	SIMILAR
	EA.	EACH -	SPEC.	SPECIFICATION
	EL.	ELEVATION	SQ.	SQUARE
	EQ.	EQUAL	STD.	STANDARD
	EXIST.	EXISTING	ST.	STEEL
	EXP.	EXPANSION	STR.	STRUCTURAL
	E.S.	EACH SIDE	SYM.	SYMMETRICAL
	E.J.	EXPANSION JOINT	SP.	SPACE, SPACING
	E,J.	EXPANSION JUINI		
		ETHTO:	STAGG.	STAGGERED
	FIN.	FINISH	L	202702 202000020
	F.S.	FAR SIDE	1	TOP OF THICKNESS
	Contractive Contra		THK.	THICKNESS
	GALV.	GALVANIZE	100000	THROUGH
	GR.	GRADE	TOT.	TOTAL
	GRD.	GROUND	TS	TYPICAL STRUCTURE DETAILS
			TYP.	TYPICAL
	HEX.	HEXAGON	TRANS.	TRANSVERSE
	HORZ.	HORIZONTAL		
			VERT.	VERTICAL
	JT.	JOINT		
			W/	WITH

#### STRUCTURAL

PART I - SEASIDE MARGINAL WHARF (34'-6")

PART II - PLATFORMS OVER EXISTING CELLS (73*-0")

PART III - LANDSIDE RELIEVING PLATFORMS (30'-0" OR 40'-0") - CAP BEAM

EB - EDGE BEAM

- FASCIA BEAM (SEASIDE) FB - LANDSIDE CRANE GIRDER LB - LONGITUDINAL BEAM

1000 POUNDS

KIP PER SQUARE INCH

- PRESTRESSED CONCRETE SLAB - SEASIDE CRANE GIRDER

- SEALAND BEAM SLCG - SEALAND CRANE GIRDER

- SEALAND LONGITUDINAL BEAM SLLB - SEALAND TIE-BEAM

WITHOUT

W.L.

WATER LEVEL

SHEET NO. S-1

MARYLAND PORT ADMINISTRATION

REVIEWED BY:

DATE: 1049-86

MARYLAND PORT ADMINISTRATION SEAGIRT MARINE TERMINAL MARGINAL BULKHEAD STRUCTURAL NOTES, ABBREVIATIONS,

> STV/LYON ASSOCIATES. ENGINEERS, ARCHITECTS & PLANNERS. CONTRACT NO. DRAWING NO

21

PF-5-12/3-21

NOTES CHANGE N.B.

MARYLAND TRANSPORTATION AUTHORITY

SYMBOLS AND LEGEND

287911

#### SEAGIRT LOOP DEEPENING FEASIBILITY - PILE FIXITY AND PASSIVE WEDGE

#### DEPTH TO FIXITY FOR CONCRETE PILES AT SMT 1-2

df 17.10697 ft per FHWA-NHI-16-009 = depth to fixity
E 4030.509 ksi per ACI 318-14
Iw 0.643004 ft^4

Es 0.11625 ksi per FHWA-NHI-16-009 su 0.25 ksf interpreted from soil profile

fc 5000 psi per drawings

df = 1.4((E*Iw)/Es)^0.25

E = 57000*fc^0.5 = 4030509 psi = 4030.509 ksi I = bh^3/12 = 0.643004 ft^4 for 20-inch square pile

Es = 0.465*su = 0.11625 ksi

#### **Horizontal Projection of Passive Wedge**

phi 0 degrees for clay soil

phi 20 degrees drained condition (from SMT 4) h 17.10697 for phi = 0

h 24.43129 for phi = 20 (drained condition) h 32.17354 for phi = 34 (high phi for comparison)

h = df*tan(45-phi/2)

#### DEPTH TO FIXITY FOR TIMBER PILES AT CANTON MARINE TERMINAL PIER 13

df 7.022472 ft per FHWA-NHI-16-009 = depth to fixity

E 1500 ksi per NDS

lw 0.049063 ft^4

Es 0.11625 ksi per FHWA-NHI-16-009 su 0.25 ksf interpreted from soil profile

fc 5000 psi per drawings

df = 1.4((E*Iw)/Es)^0.25

E = 1500000 psi = 1500 ksi

I = PI*d^4/64 0.049063 ft^4 for 12-inch round pile

Es = 0.465*su = 0.11625 ksi

#### **Horizontal Projection of Passive Wedge**

phi 0 degrees for clay soil

phi 20 degrees drained condition (from SMT 4)

h 7.022472 for phi = 0

h 10.02913 for phi = 20 (drained condition) h 13.20735 for phi = 34 (high phi for comparison)

h = df*tan(45-phi/2)



Figure 5-8. Minimum anchor - wall spacing for full passive anchor resistance in homogeneous soil

Soil Type	Bulk Density (γ)/pcf	Effective Friction Angle (Φ')/degrees	Effective Cohesion (c')/psf
Unsurcharged Muck Slurry (MSL)	100	20	50
Stone Column Improved Muck Slurry (MSL)	115	27	50
Miscellaneous Fill (MF)	110	30	0
Recent Alluvial (O-2)	100	20	20
Stone Column Improved Recent Alluvial (O-2)	115	27	50
Basal Alluvial Sand (S-1)	115	30	0
Recent Alluvial Organic Clay/Elastic Silt (C-1)	110	24	50
Stone Column Improved Recent Alluvial Organic Clay / Elastic Silt (C-1)	115	27	50
Potomac Sand (S-3)	120	34	0
Potomac Clays (C-3)	125	24	100

These values can be used to develop the required soil pressures for analysis of the sheet pile wall. For both the cantilevered construction loading condition and the long term braced condition the stability of the wall needs to be analyzed. It is recommended that the effective soil strength parameters be used in the design of the sheet pile wall analysis as the drained condition is expected to be

Table 4b. Recommended Reference Design Values for the Pilings at DMT Berths 1 and 2, 1929 vintage.

Design Value	Reference Design Value per the NDS	Residual Value per Testing	Recommended Reference Design Value
Fb	2,400 psi	X 0.47	1,150 psi
Fc	1,200 psi	X 0.45	550 psi
Е	1,500,000 psi	X 0.65	0.98 x 106 psi
F	790 000 nsi	X 0.65	0.51 v 106 nei

# BALTIMORE HARBOR ANCHORAGES AND CHANNELS (BHAC)

# MODIFICATION OF SEAGIRT LOOP CHANNEL

### **FEASIBILITY STUDY**

## FINAL INTEGRATED FEASIBILITY REPORT & ENVIRONMENTAL ASSESSMENT

# APPENDIX B7: Capacity Evaluation

Baltimore Harbor Anchorages and Channels (BHAC)
Modification of Seagirt Loop Channel Feasibility Study

**Gahagan & Bryant Associates, Inc.** 9008-O Yellow Brick Road

Baltimore, Maryland 21237 (410) 682-5595 info@gba-inc.com

ENGINEERS * SURVEYORS

#### **MEMORANDUM**

Date: July 18, 2022

To: Michelle Osborne.,
From: Lauren Folkert, E.I.T.

Cc: David Bibo, Holly Miller, Brian Newbury, P.E.

Re: Seagirt Feasibility Study - Capacity and Phasing Planning

#### INTRODUCTION

Gahagan & Bryant Associates, Inc. (GBA) was tasked to evaluate the scheduling, sequencing, and available capacity for the modifications being considered in the Baltimore Harbor Anchorages and Channels (BHAC) Modifications of Seagirt Loop Channel, Maryland Feasibility Study. This feasibility study focuses on the deepening and widening of the Seagirt Loop Channels and the deepening and expansion of a federally authorized anchorage. See Attachment A – Location Map for details of the study area. Note that the information presented in this memorandum is based on conditions known as of July 2022. Information presented can be adjusted as assumptions change.

#### **BALTIMORE HARBOR CHANNEL IMPROVEMENTS**

#### **Seagirt Loop Channels Deepening and Widening**

Seagirt Marine Terminal (SMT) is one of the Port's primary terminals. The channels that serve Seagirt Marine Terminal include the Seagirt West Access Channel, Dundalk West Access Channel, and the Seagirt–Dundalk Connecting Channel. All three (3) channels are currently federally authorized to a depth of -42' MLLW.

In 2013, SMT Berth 4 was deepened to El. -50' MLLW and neo-Panamax cranes were installed to allow larger vessels to call on the Port of Baltimore. MDOT MPA is currently performing channel improvements (deepening and widening) to allow a second 50-foot berth to come online early in State Fiscal Year (SFY) 2022. MDOT MPA maintains the Dundalk West Access Channel and Seagirt-Dundalk Connecting Channel to elevation -50 feet mean lower low water (MLLW) plus 2 feet of allowable pay overdepth (El. -50' + 2' OD MLLW) to allow deep draft vessels to call on Berths 3 and 4. MDOT MPA maintains the Seagirt West Access Channel to a depth of -45'+2' OD MLLW. To allow for 3' of under keel clearance any vessel with drafts greater than of 42' must back out of the berthing areas and exit via the 50' channels.

The proposed modifications to the Seagirt Loop channels will improve existing navigation to accommodate the increased expected traffic and larger vessel sizes calling on SMT. The modifications

being studied include deepening the existing channel to EL. -50'+2' OD MLLW and adding channel wideners (EL.-50'+2' OD MLLW). The proposed wideners shown on Attachment A are based on results of a 2022 ship simulation performed at the U.S. Army Research and Development Center (ERDC). Concept volumes for the Seagirt West Loop modifications are based on both 5H:1V side slopes and are shown in Table 1. MDOT MPA in partnership with Ports America Chesapeake (PAC) will plan to develop a third 50-foot berth with improvements to SMT Berths 1 and 2. This effort will be done independently of the Seagirt Loop Feasibility Study, but the volumes for SMT Berths 1 and 2 were considered for capacity modeling.

**Table 1:** Seagirt West Loop Concept Volumes

Area	Volume (CY)		
Seagirt West Access Channel Deepening and Widening	1,942,200		
Berths 1 and 2	55,100		
Total	1,997,300		

¹Volumes presented include 2 feet of overdepth (EL. -50' + 2' OD MLLW).

#### **BALTIMORE HARBOR PLACEMENT SITES**

The Maryland Department of Transportation Maryland Port Administration (MDOT MPA) maintains the Baltimore Harbor placement sites to accommodate federal, state, and private maintenance volumes and identified federal and state new work projects. The active placement sites for the Baltimore Harbor are the Cox Creek Dredged Material Containment Facility (DMCF) and the Masonville DMCF.

#### **Cox Creek DMCF and Cox Creek Expanded**

The existing Cox Creek site includes a DMCF as well as wetland and upland areas. The current dikes are constructed to El. +36′ MLLW. MDOT MPA is actively expanding the Cox Creek DMCF. The Cox Creek Expanded (CCE) project consists of raising the existing dikes to El. +60′ MLLW and expanding the facility onto the upland portion of the property with a contractual completion date of May 2024. This memorandum assumes that the dike raising milestones shown in Table 2 are met. The milestone dates and elevations up to El. +60′ MLLW are assumptions that have been provided by the Cox Creek design team during harbor capacity planning meetings and are subject to change throughout construction.

²Planning volumes based on surveys conducted by CENAB in February 2021 & GBA in December 2021/January 2022.

<b>Table 2:</b> Cox Creek Dike Raising Schedule
-------------------------------------------------

State Fiscal Year ¹	Dike Crest Elevation (FT, MLLW)	Maximum Filling Elevation ² (FT, MLLW)	Capacity (mcy) ⁴	
Existing	36	33	5.0	
2023 (January)	44	41 ³	6.3	
2024 (May)	60	57	14.8	

¹Milestone dates are based on information provided at Harbor Planning Meetings. The dates noted for the El. +44 and El. 60 dikes are based on the Cox Creek dike raising to El. +60 dike construction contract required completion dates. The timing does not account for the Maryland Department of the Environment permitting process to get raised freeboards approved.

#### Masonville DMCF

The existing Masonville DMCF dikes are currently constructed to El. +18' MLLW. MDOT MPA will begin construction later in 2021 for the raising of the dikes beyond El. +18' MLLW incrementally to El. +30' MLLW. This memo assumes that the dike raising milestones shown in Table 3 are met. The available capacity estimates associated with the future dike raisings of Masonville (based on preliminary designs) are also shown in Table 3. Note that the available capacities shown in are subject to change as preliminary designs and model assumptions are refined.

**Table 3:** Masonville Dike Raising Schedule

State Fiscal Year	Dike Crest Elevation (FT, MLLW)	Maximum Filling Elevation ¹ (FT, MLLW)	Capacity (mcy) ³
2023	18 (with BDW ² )	15	6.0
2025	34	21	7.1
2026	30	27	8.2

¹Maximum filling elevation based on 3' on required freeboard.

#### **Discussion**

Attachment B shows a Baltimore Harbor Dredged Material Containment Facilities Placement Plan for SFY 2022 through SFY 2027. The SFY 2022 cumulative placement values shown for Masonville and Cox Creek are based on actual placement quantities. The projected quantities shown from SFY 2023 through SFY 2027 are based on the planned operations and maintenance (O&M) and new work

²Maximum filling elevation based on freeboard requirements.

³The +41 filling elevation would require raising the north south cross dike. Without any modifications the Cox Creek construction team will only seek permit approvals for a filling elevation of +38.

⁴Capacity values shown are subject to change as preliminary designs and model assumptions are refined.

²Base Dike Widening (BDW)

³Capacity values shown are subject to change as preliminary designs and model assumptions are refined.

projects. Note that planned volumes from SFY 2023 to SFY 2027 accounts for federal, state, and private projects.

The remaining Cox Creek and Masonville capacities shown in Attachment B assume the dike raising milestones presented in Table 2 and Table 3 are met. The cumulative cell volumes and capacities displayed for each dike raising milestone are based on preliminary designs. Numbers are subject to change as preliminary designs and model assumptions are refined.

The placement plan shows the quantity associated with the Seagirt West Loop deepening and widening placed in Cox Creek over two (2) inflows. Phase 1 dredging is assumed to deepen the channel and channel wideners to El. -46′ + 2′ OD MLLW (1,175,600 CY) in SFY 2026. Phase 2 dredging is assumed to deepen the channel and channel wideners to El. -50′ + 2′ OD MLLW (766,600 CY) in SFY 2027. It is also assumed that the state will deepen SMT Berths 1 and 2 to El. -50′ + 2′ OD MLLW (55,100 CY) in SFY 2027.

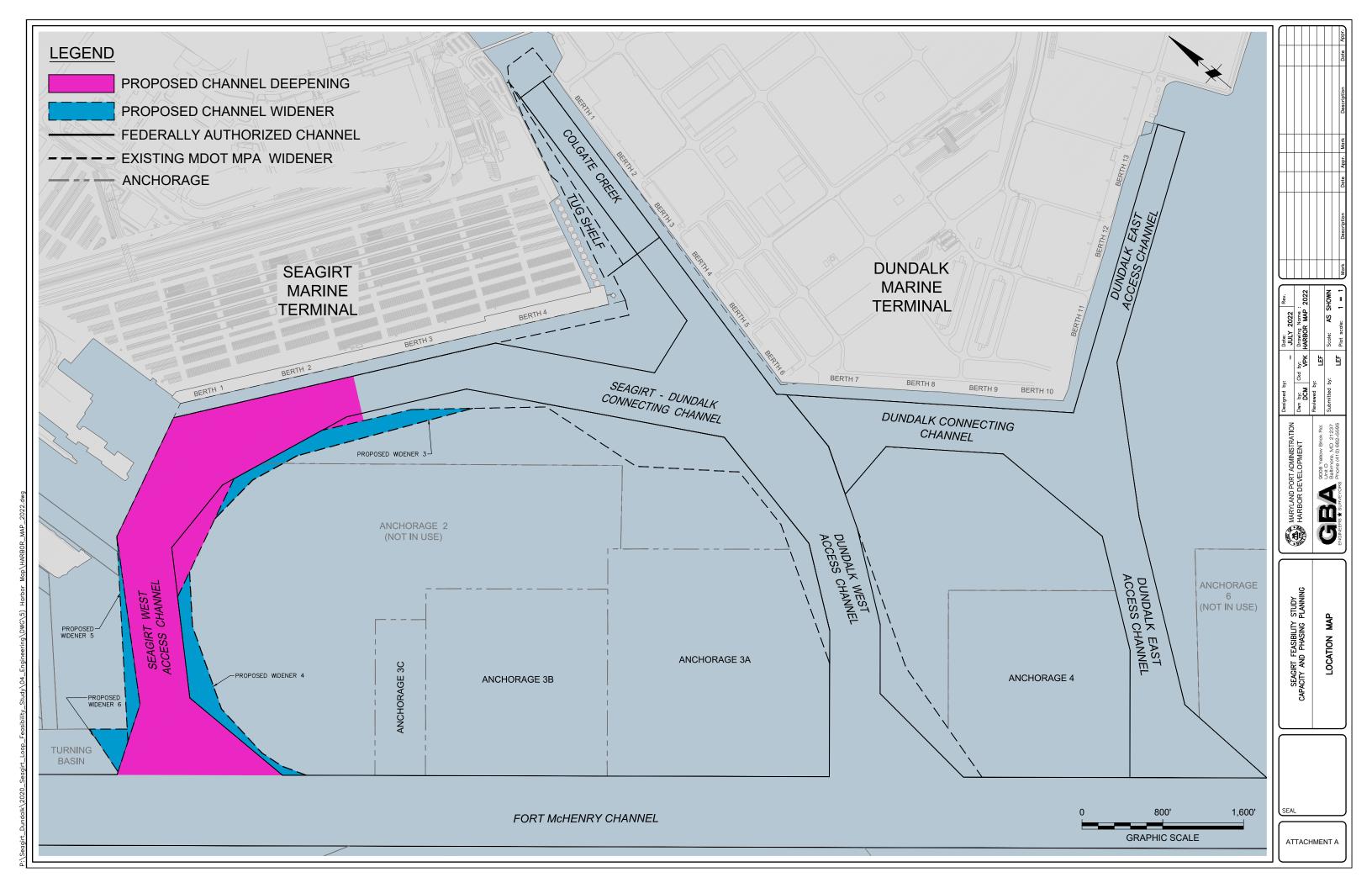
#### **Conclusions**

Phase 1 and Phase 2 Seagirt West Loop inflows can be placed in Cox Creek.

- The Seagirt West Loop Deepening and Widening inflow requires all El. +60' MLLW dike raising to be complete and the borrow area ready to accept dredged material. If the dike raising to El. +60' MLLW schedule slips, the Seagirt West Loop inflow will need to be deferred until the dike raising is completed.
- If Cox Creek dike raising to El. +60' MLLW construction is completed when currently planned, Seagirt West Loop deepening and widening can be completed by SFY 2027.

#### **APPENDICES**

- Appendix A Harbor Map
- Appendix B Baltimore Harbor Dredged Material Containment Facilities Placement Plan


**Gahagan & Bryant Associates, Inc.** 9008-O Yellow Brick Road Baltimore, Maryland 21237

(410) 682-5595 info@gba-inc.com



### **APPENDIX A**

**Location Map** 



Gahagan & Bryant Associates, Inc. 9008-O Yellow Brick Road Baltimore, Maryland 21237 (410) 682-5595 info@gba-inc.com



### **APPENDIX B**

Baltimore Harbor Dredged Material Containment Facilities Placement Plan

#### **Baltimore Harbor Dredged Material Containment Facilities Placement Plan**

(Actual Placement Quantities Through SFY 2022 and Projected Quantities Thereafter)

Milestone	Cell Volume ^{2,3} (MCY)	Cumulative Cell Capacity ⁴ (MCY)	SFY2022	SFY2023 ⁷	SFY2024	SFY2025	SFY2026	SFY2027
El. +18' MLLW w/ BDW	4.7	6.0	78,400	442,600	285,000			
El. +24' MLLW	5.5	7.1				378,000		
El. +30' MLLW	6.4	8.2					70,000	560,000
El. +36' MLLW W/ BDW	3.9	5.0	700,000	516,000				
El. +44' MLLW (January 2023)	4.9	6.3			575,000			
El. +60' MLLW (April 2024)	11.5	14.8				775,000	1,835,600	921,700
	Cumulative Placement Total ^{5,6}		7.9	8.9	9.8	10.9	12.8	14.3
	Cumulative Placement MV		4.0	4.5	4.8	5.1	5.2	5.8
	Cumulative Placement CC		3.9	4.4	5.0	5.8	7.6	8.5
	Remaining MV Capacity Remaining Capacity in %		2.0 32.8%	1.5 25.4%	1.2 20.7%	2.0 27.6%	3.0 36.5%	2.4 29.7%
	Remaining CC Capacity Remaining Capacity in %		1.1 22.0%	0.6 11.7%	1.3 20.8%	9.0 61.0%	7.2 48.6%	6.3 42.4%
			dike raising	•	est Loop dee	epening and w	videning.	

#### Notes:

- 1) State Fiscal Year (SFY)
- 2) Cell Volumes for Masonville to El. +18' MLLW based on AD survey. Cell capacities for future dike milestones are based on preliminary designs.
- 3) Cell Volumes for Cox Creek are based on preliminary designs.
- 4) Cumulative cell capacities are determined by with the formula Cell Capacity = Cell Volume /[ $(1 + e_{final})/(1 + e_{cut})$ ]

 $e_{cut}$ = in-situ void ratio = 6.0

 $e_{final}$ = steady state void ratio = 4.5

- $(1 + e_{final})/(1 + e_{cut})$  = steady state volume occupied (assume 0.78 steady state volume occupied at Masonville and Cox Creek)
- 5) Cumulative material placed at Masonville and Cox through SFY2022 is based on actual placement quantities.
- 6) Cumulative material placed at Masonville and Cox Creek between SFY 2023 through SFY 2027 are based on currently planned new work and maintenance projects.
- 7) The SFY 2023 volume placed at Cox Creek includes the USACE 2023 maintenance dredging base contract amount of 500 KCY. Contract includes options for up to 700 KCY.
- 8) The quantity for the Seagirt West Loop Modifications is based on 5H:1V slopes. Seagirt West Loop material is assumed to be placed in two (2) inflows; 1,175,600 CY in SFY2026 and 766,600 CY in SFY2027.
- 9) Placement plan assumes Seagirt Berths 1 and 2 will be deepened in SFY 2027 (55,100 CY).
- 10) Placement plan assume 660,000 CY of maintenance material is placed in Cox Creek in SFY 2026 and 100,000 CY of maintenance material is placed in Cox Creek in SFY 2027 in addition to the Seagirt West Loop new work material.